Form of the male and female corpus callosum internal organization at the mature age
DOI:
https://doi.org/10.15587/2313-8416.2016.67450Keywords:
corpus callosum, funicular subunits, commissural cords, fascicular portions, plastinated cutsAbstract
Aim: to study the special features of the male and female corpus callosum internal organization at the mature age.
Materials and methods: the total preparations of the male and female corpus callosum (10 preparation of each sex) at 45–60 years old were used as the material. The given preparations were used to get from it the plate cuts in the two mutually perpendicular planes with 2 mm. thick. Then the received tissue plates of the corpus callosum underwent plastination in the epoxy. Then the preparations were extracted from the non-polymerized epoxy and placed on the polyethylene film that was covered with the other film of the same size. Further this stratified block was placed amid the two glasses of the equal size that shrunk together by placing the small load on it. After the complete polymerization the received epoxy plates with the corpus callosum tissue contained in it underwent the gentle grinding and the accurate polish and as the result was obtained the surface denudation of its tissue structures that were colored with the 1 % solution of blue methylene for 1% borax solution.
Results of research: at the study of the corpus callosum plastinated cuts in saggital plane was revealed that the transverse platen-form elevations of its higher surface are the cord-form tenias standing out from within and going through the corpus callosum. At its studying in the transverse cut was established that in adults can be separated two types of corpus callosum by its density: the dense one and disperse one.
At the large increases of the binocular loupe (microscope MBS-9) can be seen the gaps between the adjacent commissural cords. Within it can be detected the blood vessels. On the transverse cut of commissural cords in its depth are revealed the thinnest streaks which totality consists of the two alternate dark and light lines that form the layered striation. Among the series of the light lines are visible the interlayer that separate the whole depth of commissural
Conclusions: the human corpus callosum is the collector combination of the nerve conductors ordered by the separate portion totalities and having the cord form near 3 mm. These constructions that we call the funicular subunits of the corpus callosum form the transverse platen-form elevations on the higher surface named transverse lines. There are two types of the corpus callosum by the density of commissural cords composition – the dense one and the disperse one. The commissural cords depth is dismembered by interstitial interlayer into the certain number of layered sections within which are concentrated the separate totalities of the nerve fibers named the corpus callosum fascicular portions
References
Buklina, S. B. (2004). Mozolistoe telo, mezhpolusharnoe vzaimodejstvie i funkcii pravogo polushariya mozga. Zhurnal nevrologii i psihiatrii im. S. S. Korsakova, 104 (5), 8–14.
Ardekani, B. A., Bachman, A. H., Figarsky, K., Sidtis, J. J. (2013). Corpus callosum shape changes in early Alzheimer’s disease: an MRI study using the OASIS brain database. Brain Structure and Function, 219 (1), 343–352. doi: 10.1007/s00429-013-0503-0
Ardekani, B. A., Figarsky, K., Sidtis, J. J. (2012). Sexual Dimorphism in the Human Corpus Callosum: An MRI Study Using the OASIS Brain Database. Cerebral Cortex, 23 (10), 2514–2520. doi: 10.1093/cercor/bhs253
Blanchet, B., Roland, J., Braun, M.et. al (1995). The anatomy and the MRI anatomy of the interhemispheric cerebral commissures, 22 (4), 237–251.
Bruner, E., de la Cuétara, J. M., Colom, R., Martin-Loeches, M. (2012). Gender-based differences in the shape of the human corpus callosum are associated with allometric variations. Journal of Anatomy, 220 (4), 417–421. doi: 10.1111/j.1469-7580.2012.01476.x
Garel, C., Cont, I., Alberti, C., Josserand, E., Moutard, M. L., Ducou le Pointe, H. (2011). Biometry of the Corpus Callosum in Children: MR Imaging Reference Data. American Journal of Neuroradiology, 32 (8), 1436–1443. doi: 10.3174/ajnr.a2542
Yang, F., Yang, T. Z., Luo, H. et. al (2012). Comparative study of ultrasonography and magnetic resonance imaging in midline structures of fetal brain. Sichuan Da Xue Xue Bao Yi Xue Ban, 43 (5), 720–724.
Jovanov-Milosević, N., Benjak, V., Kostović, I.(2006). Transient cellular structures in developing corpus callosum of the human brain, 30 (2), 375–381.
Van der Knaap, L. J., van der Ham, I. J. M. (2011). How does the corpus callosum mediate interhemispheric transfer? A review. Behavioural Brain Research, 223 (1), 211–221. doi: 10.1016/j.bbr.2011.04.018
Avtandilov, G. G. (1980). Vvedenie v kolichestvennuyu patologicheskuyu morfologiyu. Moscow: Medicina, 18.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Юрий Петрович Костиленко, Ольга Дмитриевна Боягина
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.