Quality management of dispersion-strengthened beryllium-based composite alloy

Authors

  • Дмитро Миколайович Макаренко Zhukovsky National Aerospace University "Kharkiv Aviation Institute", Chkalovа str., 17, Kharkov, Ukraine, 61070, Ukraine https://orcid.org/0000-0002-4672-2880

DOI:

https://doi.org/10.15587/2313-8416.2016.69259

Keywords:

composite materials, dispersion-strengthened, aluminum, beryllium, strength, boundary strength, ultimate tensile strength

Abstract

The article is devoted to investigation of the composition and properties of dispersion-strengthened beryllium-based composite alloy, used in various industries, including the aircraft manufacture aircraft. Analyzed the properties of these materials are analyzed to ensure their quality management. The mathematical relationship of dispersion strengthened beryllium-based composite alloy parameters from content of beryllium oxide and temperature are built

Author Biography

Дмитро Миколайович Макаренко, Zhukovsky National Aerospace University "Kharkiv Aviation Institute", Chkalovа str., 17, Kharkov, Ukraine, 61070

Senior Lecturer

Department of cars and transport infrastructure

References

Brautman, L. J., Krock, R. H. (1975). Composite Materials, New York: Academic Press.

Лахтин Ю.М. Материаловедение Учебник для вiсших технических учебнiх заведений, 1990, 528 с.

Mendoza-Ruiz, D. C., Esneider-Alcala, M. A., Estrada-Guel, I., Miki-Yoshida, M., Lopez-Gomez, M., Martinez-Sanchez, R. (2008). Dispersion of graphite nanoparticles in a6063 aluminum alloy by mechanical milling and hot extrusion. Reviews on advanced materials science, 18, 280–283.

Al-Be splavy – metallicheskie kompozicionnye materialy shirokogo naznachenija. Vserossijskij nauchno-issledovatel'skij institut aviacionnyh materialov. Available at: http://viam.ru/public/files/1996/1996-202052.pdf (Last accessed: 18.05.2016).

Mouritz, A. (2012). Aluminium alloys for aircraft structures. Introduction to Aerospace Materials, 173–201. doi: 10.1533/9780857095152.173

Öz, T., Karaköse, E., Keskin, M. (2013). Impact of beryllium additions on thermal and mechanical properties of conventionally solidified and melt-spun Al–4.5wt.%Mn–xwt.%Be (x=0, 1, 3, 5) alloys. Materials & Design, 50, 399–412. doi: 10.1016/j.matdes.2013.03.024

Chen, H., Ginzburg, V. V., Yang, J., Yang, Y., Liu, W., Huang, Y. et. al. (2016). Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science. doi: 10.1016/j.progpolymsci.2016.03.001

Biron, M. (2013). Composites. Thermosets and Composites, 299–473. doi: 10.1016/b978-1-4557-3124-4.00006-7

Kovaleva, A. V., Chernyj, A. A. (2008). Kompozicionnye materialy v tehnike i issledovanie vozmozhnostej poluchenija izdelij iz raznorodnyh materialov v litejnom proizvodstve. Penza: Penzenskij gosudarstvennyj universitet, 161.

Demin, D. A. (2005). Optimizacija tehnologicheskogo processa v cehe predprijatija. Eastern-European Journal of Enterprise Technologies, 6/1 (18), 48–59.

Kovalenko, B. P., Demin, D. A., Bozhko, A. B. (2006). Optimizacija sostava holodnotverdejushhih smesej (HTS) s propilenkarbonatom. Eastern-European Journal of Enterprise Technologies, 6/1 (18), 59–61.

Published

2016-05-31

Issue

Section

Technical Sciences