The application of Bayesian network to building model of risk estimation of actuarial processes

Authors

  • Світлана Віталіївна Трухан Institute for Applied System Analysis National Technical University of Ukraine “Kyiv Polytechnic Institute” Peremohy str., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-5726-2576
  • Петро Іванович Бідюк Institute for Applied System Analysis National Technical University of Ukraine “Kyiv Polytechnic Institute” Peremohy str., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-7421-3565

DOI:

https://doi.org/10.15587/2313-8416.2016.74962

Keywords:

Bayesian network, operational risk, conditional probabilities, acyclic graph, actuarial processes

Abstract

The article deals with methodology of development Bayesian network (BN) for risk estimation and probability of damages if insurance case was happened. The model in terms of BN was proposed. It’s shows cause-and-effect relationships between factors of operational risks and damages of insurance companies (IC). The effectiveness of suggested model was experimentally proved used to actual data of Ukrainian IC in 2003–2014 years

Author Biography

Петро Іванович Бідюк, Institute for Applied System Analysis National Technical University of Ukraine “Kyiv Polytechnic Institute” Peremohy str., 37, Kyiv, Ukraine, 03056

Professor, Doctor of technical sciences

References

Vnukova, N. M.; Vnukova, N. M. (Ed.) (2004). Strahuvannja: teorija i praktyka. Kharkiv: Burun knyga, 376.

Bidjuk, P. I., Korshevnjuk, L. O. (2010). Proektuvannja komp’juternyh informacijnyh system pidtrymky pryjnjattja rishen'. Kyiv: NNK «IPSA» NTUU «KPI», 340.

Bidjuk, P. I., Gasanov, A. S. (2005). Postroenie i metody obuchenija Bajesovskih setej. Kibernetika i sistemnyj analiz, 4, 133–147.

Dzhekson, P. (2001). Jekspertnye sistemy. Moscow: Kiev-Vil'jams, 624.

Lauritzen, S. L., Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B, 50 (2), 157–224.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, CA (USA): Morgan Kauffmann Publishers, Inc., 552.

Cheng, J., Greiner, R. (2001). Learning Bayesian Belief Network Classifiers: Algorithms and System. Lecture Notes in Computer Science, 141–151. doi: 10.1007/3-540-45153-6_14

Stephenson, T. A., Bourlard, H., Bengio, S., Morris, A. C. (2000). Automatic speech recognition using dynamic Bayesian networks with both acoustic and articulatory variables. ICSLP, 2, 951–954.

Rossi, P. E., Allenby, G. M. (2003). Bayesian statistics and marketing. Marketing Science, 22 (13), 304–328.

Bidjuk, P. I., Romanenko, V. D., Tymoshhuk, O. L. (2013). Analiz chasovyh rjadiv. Kyiv: Politehnika, 600.

Murphy, K. (1998). A Brief Introduction to Graphical Models and Bayesian Networks. UBC. Available at: http://www.ai.mit.edu/~murphyk/Bayes/bnintro.html

Niedermayer, D. (2008). An Introduction to Bayesian networks and their contemporary applications. INSA. Available at: http://liris.cnrs.fr/amille/enseignements/master_ia/Alain/exposes_2005/bayesian_networks.pdf

Cooper, G. F. (1990). The computational complexity of probabilistic inference using bayesian belief networks. Artificial Intelligence, 42 (2-3), 393–405. doi: 10.1016/0004-3702(90)90060-d

Dagum, P., Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60 (1), 141–153. doi: 10.1016/0004-3702(93)90036-b

Terent'ev, A. N., Bidjuk, P. I. (2005). Metody postroenija Bajesovskih setej. Adaptivnye sistemy avtomaticheskogo upravlenija (mezhvedomstvennyj nauchno-tehnicheskij sbornik), 8, 130–141.

Terent'ev, A. N., Bidjuk, P. I. (2006). Jevristicheskij metod postroenija Bajesovskih setej. Matematicheskie mashiny i sistemy, 3, 12–23.

Djuk, V. A., Samojlenko, A. P. (2001). DataMining: uchebnyj kurs. Sankt-Peterburg: Piter, 368.

Tulup'ev, A. L., Nikolenko, S. I., Sirotkin, A. V. (2006). Bajesovskie seti: Logiko-verojatnostnyj podhod. Sankt-Peterburg: Nauka, 607.

Terentyev, A. N., P. I. Bidyuk, Korshevnyuk, L. A. (2007). Bayesian network as instrument of intelligent data analysis. Journal of Automation and Information Sciences, 39 (8), 28–38. doi: 10.1615/jautomatinfscien.v39.i8.40

Grishhenko, N. B. (2001). Osnovy strahovoj dejatel'nosti. Barnaul: Izd-vo Altajskogo un-ta, 274.

Published

2016-09-01

Issue

Section

Technical Sciences