The application of Bayesian network to building model of risk estimation of actuarial processes
DOI:
https://doi.org/10.15587/2313-8416.2016.74962Keywords:
Bayesian network, operational risk, conditional probabilities, acyclic graph, actuarial processesAbstract
The article deals with methodology of development Bayesian network (BN) for risk estimation and probability of damages if insurance case was happened. The model in terms of BN was proposed. It’s shows cause-and-effect relationships between factors of operational risks and damages of insurance companies (IC). The effectiveness of suggested model was experimentally proved used to actual data of Ukrainian IC in 2003–2014 years
References
Vnukova, N. M.; Vnukova, N. M. (Ed.) (2004). Strahuvannja: teorija i praktyka. Kharkiv: Burun knyga, 376.
Bidjuk, P. I., Korshevnjuk, L. O. (2010). Proektuvannja komp’juternyh informacijnyh system pidtrymky pryjnjattja rishen'. Kyiv: NNK «IPSA» NTUU «KPI», 340.
Bidjuk, P. I., Gasanov, A. S. (2005). Postroenie i metody obuchenija Bajesovskih setej. Kibernetika i sistemnyj analiz, 4, 133–147.
Dzhekson, P. (2001). Jekspertnye sistemy. Moscow: Kiev-Vil'jams, 624.
Lauritzen, S. L., Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B, 50 (2), 157–224.
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, CA (USA): Morgan Kauffmann Publishers, Inc., 552.
Cheng, J., Greiner, R. (2001). Learning Bayesian Belief Network Classifiers: Algorithms and System. Lecture Notes in Computer Science, 141–151. doi: 10.1007/3-540-45153-6_14
Stephenson, T. A., Bourlard, H., Bengio, S., Morris, A. C. (2000). Automatic speech recognition using dynamic Bayesian networks with both acoustic and articulatory variables. ICSLP, 2, 951–954.
Rossi, P. E., Allenby, G. M. (2003). Bayesian statistics and marketing. Marketing Science, 22 (13), 304–328.
Bidjuk, P. I., Romanenko, V. D., Tymoshhuk, O. L. (2013). Analiz chasovyh rjadiv. Kyiv: Politehnika, 600.
Murphy, K. (1998). A Brief Introduction to Graphical Models and Bayesian Networks. UBC. Available at: http://www.ai.mit.edu/~murphyk/Bayes/bnintro.html
Niedermayer, D. (2008). An Introduction to Bayesian networks and their contemporary applications. INSA. Available at: http://liris.cnrs.fr/amille/enseignements/master_ia/Alain/exposes_2005/bayesian_networks.pdf
Cooper, G. F. (1990). The computational complexity of probabilistic inference using bayesian belief networks. Artificial Intelligence, 42 (2-3), 393–405. doi: 10.1016/0004-3702(90)90060-d
Dagum, P., Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60 (1), 141–153. doi: 10.1016/0004-3702(93)90036-b
Terent'ev, A. N., Bidjuk, P. I. (2005). Metody postroenija Bajesovskih setej. Adaptivnye sistemy avtomaticheskogo upravlenija (mezhvedomstvennyj nauchno-tehnicheskij sbornik), 8, 130–141.
Terent'ev, A. N., Bidjuk, P. I. (2006). Jevristicheskij metod postroenija Bajesovskih setej. Matematicheskie mashiny i sistemy, 3, 12–23.
Djuk, V. A., Samojlenko, A. P. (2001). DataMining: uchebnyj kurs. Sankt-Peterburg: Piter, 368.
Tulup'ev, A. L., Nikolenko, S. I., Sirotkin, A. V. (2006). Bajesovskie seti: Logiko-verojatnostnyj podhod. Sankt-Peterburg: Nauka, 607.
Terentyev, A. N., P. I. Bidyuk, Korshevnyuk, L. A. (2007). Bayesian network as instrument of intelligent data analysis. Journal of Automation and Information Sciences, 39 (8), 28–38. doi: 10.1615/jautomatinfscien.v39.i8.40
Grishhenko, N. B. (2001). Osnovy strahovoj dejatel'nosti. Barnaul: Izd-vo Altajskogo un-ta, 274.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Світлана Віталіївна Трухан, Петро Іванович Бідюк
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.