Surface structure of silica-based superhydrophobic coatings

Authors

  • Андрей Витальевич Клишин National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-1927-4098
  • Алексей Владимирович Миронюк National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-0499-9491
  • Владимир Андреевич Дудко National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Victory аve., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-6703-4331
  • Денис Витальевич Баклан National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-6608-0117
  • Владимир Павлович Чашка-Ратушный National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-0594-306X
  • Дмитрий Витальевич Тарасенко National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-5125-0750

DOI:

https://doi.org/10.15587/2313-8416.2016.80162

Keywords:

superhydrophobic surface, fumed silica, contact angle, sliding angle, surface roughness

Abstract

Formation of stochastic superhydrophobic structures based on the particles of fumed silica and styrene butyl methacrylic polymer were investigated in this article. Critical concentration of the filler composition with different size of the particles and surface modification was found. Optimal composition for obtaining a stable Cassie superhydrophobic state from solution by coating with applicator was developed

Author Biographies

Андрей Витальевич Клишин, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056

Department of chemical technology of composition materials

Алексей Владимирович Миронюк, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate professor

Department of chemical technology of composition materials

Владимир Андреевич Дудко, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Victory аve., 37, Kyiv, Ukraine, 03056

Department of chemical technology of composition materials

Денис Витальевич Баклан, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056

Department of chemical technology of composition materials 

Владимир Павлович Чашка-Ратушный, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056

Department of chemical technology of composition materials

Дмитрий Витальевич Тарасенко, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056

Department of chemical technology of composition materials

References

Crawford, J., Ivanova, E. (2015). Superhydrophobic Surfaces. Elsevier Inc., 180.

Fresnais, J., Chapel, J. P., Benyahia, L., Poncin-Epaillard, F. (2009). Plasma-Treated Superhydrophobic Polyethylene Surfaces: Fabrication, Wetting and Dewetting Properties. Journal of Adhesion Science and Technology, 23 (3), 447–467. doi: 10.1163/156856108x370127

Bai, H., Li, C., Shi, G. (2008). Electrochemical Fabrication of Superhydrophobic Surfaces on Metal and Semiconductor Substrates. Journal of Adhesion Science and Technology, 22 (15), 1819–1839. doi: 10.1163/156856108x319999

Zhi, J.-H., Zhang, L.-Z., Yan, Y., Zhu, J. (2017). Mechanical durability of superhydrophobic surfaces: The role of surface modification technologies. Applied Surface Science, 392, 286–296. doi: 10.1016/j.apsusc.2016.09.049

Flemming, M., Coriand, L., Duparré, A. (2009). Ultra-hydrophobicity Through Stochastic Surface Roughness. Journal of Adhesion Science and Technology, 23 (3), 381–400. doi: 10.1163/156856108x370082

Cassie, A. B. D., Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546. doi: 10.1039/tf9444000546

Wenzel, R. N. (1949). Surface Roughness and Contact Angle. The Journal of Physical and Colloid Chemistry, 53 (9), 1466–1467. doi: 10.1021/j150474a015

Choi, W., Tuteja, A., Mabry, J. M., Cohen, R. E., McKinley, G. H. (2009). A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. Journal of Colloid and Interface Science, 339 (1), 208–216. doi: 10.1016/j.jcis.2009.07.027

Roach, P., Shirtcliffe, N. J., Newton, M. I. (2008). Progess in superhydrophobic surface development. Soft Matter, 4 (2), 224–240. doi: 10.1039/b712575p

Kosak Söz, C., Yilgör, E., Yilgör, I. (2015). Influence of the average surface roughness on the formation of superhydrophobic polymer surfaces through spin-coating with hydrophobic fumed silica. Polymer, 62, 118–128. doi: 10.1016/j.polymer.2015.02.032

Abdulhussein, A. T., Kannarpady, G. K., Wright, A. B., Ghosh, A., Biris, A. S. (2016). Current trend in fabrication of complex morphologically tunable superhydrophobic nano scale surfaces. Applied Surface Science, 384, 311–332. doi: 10.1016/j.apsusc.2016.04.186

Published

2016-10-30

Issue

Section

Chemistry