Dynamic behavior features research of multistory sections with angular shapes in seismic hazard conditions

Authors

  • Владимир Александрович Сахаров University of Zielona Góra Licealna str., 9, Zielona Góra, Poland, 65-417, Ukraine https://orcid.org/0000-0002-9381-3283
  • Олександр Сергійович Сахаров Kyiv National University of Construction and Architecture Povitroflotsky ave., 31, Kyiv, Ukraine, 03680, Ukraine https://orcid.org/0000-0002-8334-9712
  • Олександр Володимирович Литвин Kyiv National University of Construction and Architecture Povitroflotsky ave., 31, Kyiv, Ukraine, 03680, Ukraine https://orcid.org/0000-0002-2818-3457

DOI:

https://doi.org/10.15587/2313-8416.2016.85841

Keywords:

simulation, direct dynamic method, seismicity, multistory buildings, soil base – foundation – building

Abstract

The results of the oscillation of two-sectional multistory building with angular shapes under seismic loads are presented. The simulation was performed for the system "soil base – foundation – building" by explicit scheme of the direct time integration method in 3D. The results demonstrated that the angular shape of the buildings leads to increased minimum distances to neighboring structures

Author Biographies

Владимир Александрович Сахаров, University of Zielona Góra Licealna str., 9, Zielona Góra, Poland, 65-417

Doctor of Technical Sciences, professor
Department of Structural Mechanic

Олександр Сергійович Сахаров, Kyiv National University of Construction and Architecture Povitroflotsky ave., 31, Kyiv, Ukraine, 03680

Doctor of Technical Sciences, professor

Department of Base and Foundation

Олександр Володимирович Литвин, Kyiv National University of Construction and Architecture Povitroflotsky ave., 31, Kyiv, Ukraine, 03680

Аспірант, молодший науковий співробітник

Кафедра основ і фундаментів

References

Krasnikov, N. D. (1970). Dinamicheskie svojstva gruntov i metody ih opredelenija [Dynamic properties of soils and methods of their determination]. Leningrad: Strojizdat, 240.

Bolisetti, C., Coleman, J. (2015). Advanced Seismic Soil Structure Modeling. U. S. Department of Energy Office of Nuclear Energy.

Boyko, I. P., Sakharov, O. S., Sakharov, V. O. (2013). Behavior of the multi-story building under seismic loads with the account of the viscoplasticity of the soil base. Soil Mechanics and Geotechnical Engineering. Paris, 2, 1443–1446.

Sakharov, V. (2016). Dynamic behavior of Zymne Monastery Cathedral on soil base with consideration of non-linear deformation of materials. Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues, 503–506. doi: 10.1201/b20057-107

DBN V.1.1-12:2014. Construction in seismic regions of Ukraine (2014). Kyiv: Mіnregіon of Ukraine, 110.

Nemchinov, Yu. I., Maryenkov, N. H., Havkin, A. K., Babik, K. N. (2008). Building design with a given level of seismic resistance (with the recommendations of Eurocode 8, international standards and requirements DBN). Building constructions. Kyiv, 76, 6–8.

Guyan, R. J. (1965). Distributed mass matrix for plate element bending. AIAA Journal, 3 (3), 567–568. doi: 10.2514/3.2922

Li, M., Lu, X., Lu, X., Ye, L. (2014). Influence of soil–structure interaction on seismic collapse resistance of super-tall buildings. Journal of Rock Mechanics and Geotechnical Engineering, 6 (5), 477–485. doi: 10.1016/j.jrmge.2014.04.006

Sakharov, V. O. (2015). Use of spectral superelements in dynamic analysis of “soil base – foundation – building” systems. Visnyk of Prydniprovsk State Academy of Civil Engineering and Architecture, 1 (202), 35–44.

Sakharov, A., Altenbah, I. (Ed.) (1982). The finite elements method in the mechanics of solids. Kyiv: Vishcha Shkola, 80.

Published

2016-12-20

Issue

Section

Technical Sciences