Strobing the moving objects marks in the image processing system with stationary video camera

Authors

DOI:

https://doi.org/10.15587/2313-8416.2017.96524

Keywords:

image processing, tracking algorithms, image recognition, strobing the marks, shooting trainer

Abstract

The method of a fast-acting increase in the images processing system with a stationary camera is offered by applying the strobing operation to detected objects. The article gives a short analysis of the most often used practice methods of tracking moving objects on images with a static and dynamic background. Also the fast-acting parameters are given and analyzed for the synthesized method in the condition of a high interference

Author Biographies

Oleksii Bieliaiev, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Postgraduate student, Assistant

Department of Media Engineering and Information Radioelectronic Systems 

Volodymyr Kartashov, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Doctor of technical sciences, Professor, Head of Department

Department of Media Engineering and Information Radioelectronic Systems 

Francy Loutouangou, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Postgraduate student

Department of Media Engineering and Information Radioelectronic Systems 

References

Bieliaiev, O. V., Kartashov, V. M. (2015). Obnaruzhenie ob’ektov zadannoj formy i opredelenie ih koordinat na izobrazhenii v mul’timedijnom strelkovom trenazhere [Objects detection and determination of their coordinates on the image in a multimedia shooting simulator]. Information processing systems, 10 (135), 16–21.

Zubkov, O. V., Koryttsev, I. V., Oleynikov, V. M., Sidorov, G. I., Kondrashov, E. V. (2011). Pat. No. 59467 UA. Electronic laser shooting simulator. MPKF41G3/26. No. u201015833; declareted: 28.12.2010; published: 10.05.2011, Bul. No. 9.

Kartashov, V. M., Sidorov, G. I., Bieliaiev, O. V. (2013). Pat. No. 80324 UA. Advanced electronic laser shooting simulator. MPKF41G3/26. No. u201213148; declareted: 19.11.2012; published: 27.05.2013, Bul. No. 10.

Slipchenko, M. I., Kartashov, V. M., Sidorov, G. I., Bieliaiev, O. V. (2013). Pat. No. 83387 UA. Advanced electronic laser shooting simulator. MPKF41G3/26. No. u201301988; declareted: 18.02.2013; published: 10.09.2013, Bul. No. 17.

Jafri, R., Arabnia, H. R. (2009). A Survey of Face Recognition Techniques. Journal of Information Processing Systems, 5 (2), 41–68. doi: 10.3745/jips.2009.5.2.041

Nixon, M. (1985). Eye spacing measurement for facial recognition. SPIE Proceedings, 575, 279–285. doi: 10.1117/12.966515

Reisfeld, D. (1994). Generalized symmetry transforms: attentional mechanisms and face recognition. Tel-Aviv, 56.

Graf, H., Chen, T., Petajan, E., Cosatto, E. (1995). Locating faces and facial parts. International Workshop on Automatic Face- and Gesture-Recognition, 41–46.

Cox, I., Ghosn, J., Yianilos, P. (1996). Featurebased face recognition using mixture-distance. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 209–216. doi: 10.1109/cvpr.1996.517076

Konushin, A. (2003). Slezhenie za tochechnymi osobennostjami sceny [Tracking the point features of the scene]. Computer graphics and multimedia, 4. Available at: http://www.ict.edu.ru/ft/002409/num4pntrac.pdf

Vezhnevets, A. P. (2006). Metody klassifikacii s obucheniem po precedentam v zadache raspoznavanija ob’ektov na izobrazhenijah [Classification methods with learning by use of precedents in the problem of recognition of objects in images]. International Conference of Computer Graphics and View. Novosibirsk. Available at: http://graphicon.ru/html/2006/proceedings/papers/fr10_34_VezhnevetsA.pdf

Amit, Y. (2002). 2D object detection and recognition: models, algorithms, and networks. Cambridge: MIT Press, 324.

Viola, P., Jones, M. J. (2001). Rapid Object Detection using a Boosted Cascade of Simple Features. IEEE CVPR. doi: 10.1109/cvpr.2001.990517

Ferryman, J. M., Maybank, S. J., Worrall, A. D. (2000). Visual Surveillance for Moving Vehicles. International Journal of Computer Vision, 37 (2), 187–197. doi: 10.1023/a:1008155721192

KaewTraKulPong, P., Bowden, R. (2002). An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection. Video-Based Surveillance Systems, 135–144. doi: 10.1007/978-1-4615-0913-4_11

Kuzmin, S. Z. (1967). Digital processing of radar information. Moscow: Soviet radio, 400.

Abezgauz, G. G., Tron, A. P., Kopenkin, Yu. N., Korovina, I. A. (1970). Handbook of Probabilistic Calculations. Moscow: Military Publishing, 536.

Published

2017-03-31

Issue

Section

Technical Sciences