Selection of state variables and algorithms of parametric identification of the object by its kinematic characteristics
DOI:
https://doi.org/10.15587/2313-8416.2017.99049Keywords:
pattern recognition, fuzzy clustering, algorithms of parametric classification, generalized coordinates, Lame functionsAbstract
It is shown that algorithms of fuzzy clustering or algorithms of parametric classification can be used to solve the problem of qualitative identification under fuzzy data. It is suggested that in the conditions of masking the object as information signs for solving the recognition problem it is necessary to use the kinematic characteristics of their motion: the components of the velocity vectors and the acceleration of the characteristic points of the object in a system of generalized coordinates using Lame functions
References
Demin, D. A. (2014). Mathematical description typification in the problems of synthesis of optimal controller of foundry technological parameters. Eastern-European Journal of Enterprise Technologies, 1 (4 (67)), 43–56. doi: 10.15587/1729-4061.2014.21203
Vasenko, Yu. A. (2012). Sovershenstvovanie tekhnologii polucheniya iznosostojkogo chuguna. Tekhnologicheskij audit i rezervy proizvodstva, 1 (3), 17–21. Available at: http://journals.uran.ua/tarp/article/viewFile/4870/4521
Demin, D. A. (2010). Prinyatie reshenij v processe upravleniya ehlektroplavkoj s uchetom faktorov nestabil'nosti tekhnologicheskogo processa. Vestnik NTU "HPI", 17, 67–72.
Ponomarenko, O. I., Trenyov, N. S. (2013). Komp'yuternoe modelirovanie processov kristallizacii kak rezerv povysheniya kachestva porshnej DVS. Tekhnologicheskij audit i rezervy proizvodstva, 6 (2 (14)), 36–40. Available at: http://journals.uran.ua/tarp/article/viewFile/19529/17205
Demin, D. A., Bozhko, A. B., Zrajchenko, A. V., Nekrasov, A. G. (2006). Identifikaciya chuguna dlya opredeleniya racional'nyh rezhimov legirovaniya. Eastern-European Journal of Enterprise Technologies, 4 (1 (22)), 29–32.
Lin, Z., Lyu, M. R., King, I. (2011). MatchSim: a novel similarity measure based on maximum neighborhood matching. Knowledge and Information Systems, 32 (1), 141–166. doi: 10.1007/s10115-011-0427-z
Arsirii, Е., Manikaeva, О., Vasilevskaja, O. (2015). Development of the decision support subsystem in the systems of neural network pattern recognition by statistical information. Eastern-European Journal of Enterprise Technologies, 6 (4 (78)), 4–12. doi: 10.15587/1729-4061.2015.56429
Fraze-Frazenko, O. (2012). Algorithm of study neural network for image recognition. Technology audit and production reserves, 4/1 (6), 33–34. Available at: http://dspace.oneu.edu.ua/jspui/handle/123456789/259
Fercev, A. A. (2012). Uskorenie obucheniya nejronnoj seti dlya raspoznavaniya izobrazhenij s pomoshch'yu tekhnologii NVidia Cuda. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya Fiziko-matematicheskie nauki, 1 (26), 183–191.
Aouati, M. (2016). Localization of vectors–patterns in the problems of parametric classification with the purpose of increasing its accuracy. Eastern-European Journal of Enterprise Technologies, 4 (4 (82)), 10–20. doi: 10.15587/1729-4061.2016.76171
Unglert, K., Radic, V., Jellinek, A. M. (2016). Principal component analysis vs. self-organizing maps combined with hierarchical clustering for pattern recognition in volcano seismic spectra. Journal of Volcanology and Geothermal Research, 320, 58–74. doi: 10.1016/j.jvolgeores.2016.04.014
Fakhar, K., El Aroussi, M., Saidi, M. N., Aboutajdine, D. (2016). Fuzzy pattern recognition-based approach to biometric score fusion problem. Fuzzy Sets and Systems, 305, 149–159. doi: 10.1016/j.fss.2016.05.005
Perova, I. (2014). Adaptive treatment of these mediсo-biological researches by methods of computational intelligence. Eastern-European Journal of Enterprise Technologies, 1 (4 (67)), 24–28. doi: 10.15587/1729-4061.2014.21202
Demin, D. A. (2013). Mathematical modeling in the problem of selecting optimal control of obtaining alloys for machine parts in uncertainty conditions. Problems of mechanical engineering, 6, 15–23.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Aouati Mourad
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.