Наноэлектроника «снизу – вверх»: метод неравновесных функций Грина, модельные транспортные задачи и квантовая интерференция

Auteurs-es

  • Юрий Алексеевич Кругляк Одесский государственный экологический университет ул. Львовская, 15, Одесса, Украина, 65016, Ukraine

DOI :

https://doi.org/10.15587/2313-8416.2015.48827

Mots-clés :

наноэлектроника, квантовый транспорт, квантовая интерференция, дефазировка, НРФГ, когерентность, транспорт спинов

Résumé

В рамках концепции «снизу – вверх» наноэлектроники рассматривается метод неравновесных функций Грина (НРФГ) в матричной формулировке и применение его к модельным транспортным задачам 1D и 2D проводников в хюккелевском приближении. Сформулирован общий метод учета электрических контактов в уравнении Шредингера. Рассматриваются модели упругой дефазировки и спиновой дефазировки, учет некогерентных процессов с использованием зонда Бюттекера

Biographie de l'auteur-e

Юрий Алексеевич Кругляк, Одесский государственный экологический университет ул. Львовская, 15, Одесса, Украина, 65016

Доктор химических наук, профессор

Кафедра информационных технологий

Références

Krugljak, Ju. O., N. Krugljak, Ju., Striha, M. V. (2012). Lessons of nanoelectronics: current generation, Ohm’s law formulation and conduction modes in «bottom–up» approach. Sensor Electronics and Мicrosystem Technologies, 9 (4), 5–29.

Krugljak, Ju. A. (2015). Nanoelectronics «bottom – up»: current generation, generalized ohm’s law, elastic resistors, conductivity modes, thermoelectricity. ScienceRise, 7/2 (12), 76–100. doi: 10.15587/2313-8416.2015.45700

Krugljak, Ju. A. (2015). The «bottom – up» nanoelectronics: elements of spintronics and magnetronics. ScienceRise, 8/2 (13), 51–68. doi: 10.15587/2313-8416.2015.47792

Datta, S. (2012). Lessons from Nanoelectronics. Hackensack, New Jersey: World Scientific Publishing Company, 492. Available at: https://nanohub.org/courses/FoN1 doi: 10.1142/8029

Datta, S., Narlikar, A. V., Fu, Y. Y. (2012). Nanoelectronic devices: A unified view. The Oxford Handbook on Nanoscience and Nanotechnology: Frontiers and Advances. Oxford University Press, 1 (1), 26.

Datta, S. (2005). Quantum Transport: Atom to Transistor, 404. doi: 10.1017/cbo9781139164313

Datta, S. (2008). Nanodevices and Maxwell’s Demon. Lecture Notes in Nanoscale Science and Technology, 2, 59–81. doi: 10.1007/978-0-387-73048-6_7

Caroli, C., Combescot, R., Nozieres, P., Saint-James, D. (1972). A direct calculation of the tunnelling current: IV. Electron-phonon interaction effects. Journal of Physics C: Solid State Physics, 5 (1), 21–42. doi: 10.1088/0022-3719/5/1/006

Kubo, R. (1957). Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan, 12 (6), 570–586. doi: 10.1143/jpsj.12.570

Sears, F. W., Salinger, G. L. (1975). Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. Boston: Addison-Wesley, 331–336, 355–361.

Martin, P. C., Schwinger, J. (1959). Theory of Many-Particle Systems. I. Physical Review, 115 (6), 1342–1373. doi: 10.1103/physrev.115.1342

Kadanoff, L. P., Baym, G. (1962). Quantum Statistical Mechanics. New York: W. A. Benjamin, 203.

Keldysh, L. V. Diagram Technique for Non-Equilibrium Processes [Text] / L. V. Keldysh // JETP. – 1965. – Vol. 20, Issue 4. – P. 1018–1026.

Landauer, R. (1957). Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM Journal of Research and Development, 1 (3), 223–231. doi: 10.1147/rd.13.0223

Landauer, R. (1970). Electrical resistance of disordered one-dimensional lattices. Philosophical Magazine, 21 (172), 863–867. doi: 10.1080/14786437008238472

Landauer, R. (1996). Spatial variation of currents and fields due to localized scatterers in metallic conduction (and comment). Journal of Mathematical Physics, 37 (10), 5259. doi: 10.1063/1.531590

Datta, S. (1989). Steady-state quantum kinetic equation. Physical Review B, 40 (8), 5830–5833. doi: 10.1103/physrevb.40.5830

Datta, S. (1990). A simple kinetic equation for steady-state quantum transport. Journal of Physics: Condensed Matter, 2 (40), 8023–8052. doi: 10.1088/0953-8984/2/40/004

Meir, Y., Wingreen, N. S. (1992). Landauer formula for the current through an interacting electron region. Physical Review Letters, 68 (16), 2512–2515. doi: 10.1103/physrevlett.68.2512

Datta, S. (2001). Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge University Press, 377.

Smit, R. H. M., Noat, Y., Untiedt, C., Lang, N. D., van Hemert, M. C., van Ruitenbeek, J. M. (2002). Measurement of the conductance of a hydrogen molecule. Nature, 419 (6910), 906–909. doi: 10.1038/nature01103

Buttiker, M. (1988). Symmetry of electrical conduction. IBM Journal of Research and Development, 32 (3), 317–334. doi: 10.1147/rd.323.0317

Anderson, P. W. (1958). Absence of Diffusion in Certain Random Lattices. Physical Review, 109 (5), 1492–1505. doi: 10.1103/physrev.109.1492

Anderson, P. W. (1981). New method for scaling theory of localization. II. Multichannel theory of a “wire” and possible extension to higher dimensionality. Physical Review B, 23 (10), 4828–4836. doi: 10.1103/physrevb.23.4828

Krugljak, Ju. A. (1967). Metody vychislenij v kvantovoj himii. Raschet π-jelektronnoj struktury molekul prostymi metodami molekuljarnyh orbitalej. Kyiv: Naukova dumka, 161.

Kruglyak, Y. A., Ukrainsky, I. I. (1970). Study of the electronic structure of alternant radicals by theDODS method. International Journal of Quantum Chemistry, 4 (1), 57–72. doi: 10.1002/qua.560040106

Kruglyak, Yu. A. (2015). Quantum-chemical studies of quasi-one-dimensional electron systems. 1. Polyenes. ScienceRise, 5/2 (10), 69–105. doi: 10.15587/2313-8416.2015.42643

Kventsel, G. F., Kruglyak, Y. A. (1968). Local electronic states in long polyene chains. Theoretica Chimica Acta, 12 (1), 1–17. doi: 10.1007/bf00527002

Striha, M. V. (2010). Fizyka grafenu : stan i perspektyvy. Sensor Electronics and Microsystem Technologies, 1 (7(3)), 5–13.

Krugljak, Ju. A. (2015). Graphene in Landauer-Datta-Lundstrom transport model. ScienceRise, 2/2 (7), 93–106. doi: 10.15587/2313-8416.2015.36332

Kruglyak, Y. A., Dyadyusha, G. G. (1968). Torsion barriers of end-groups in cumulenes. Theoretica Chimica Acta, 10 (1), 23–32. doi: 10.1007/bf00529040

Kruglyak, Y. A., Dyadyusha, G. G. (1968). Torsion barriers of end-groups in cumulenes. Theoretica Chimica Acta, 12 (1), 18–28. doi: 10.1007/bf00527003

Kruglyak, Yu. A. (2015) Quantum-chemical studies of quasi-one-dimensional electron systems. 2. Cumulenes and origin of the forbidden zone. ScienceRise, 6/2 (11), 122–148. doi: 10.15587/2313-8416.2015.44540

Van Wees, B. J., van Houten, H., Beenakker, C. W. J., Williamson, J. G., Kouwenhoven, L. P., van der Marel, D., Foxon, C. T. (1988). Quantized conductance of point contacts in a two-dimensional electron gas. Physical Review Letters, 60 (9), 848–850. doi: 10.1103/physrevlett.60.848

Wharam, D. A., Thornton, T. J., Newbury, R., Pepper, M., Ahmed, H., Frost, J. E. F. et. al. (1988). One-dimensional transport and the quantisation of the ballistic resistance. Journal of Physics C: Solid State Physics, 21 (8), L209–L214. doi: 10.1088/0022-3719/21/8/002

Golizadeh-Mojarad, R., Zainuddin, A. N. M., Klimeck, G., Datta, S. (2008). Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime. Journal of Computational Electronics, 7 (3), 407–410. doi: 10.1007/s10825-008-0190-x

Berger, C., Zhimin, S., Xuebin, L., Xiaosong, W., Brown, N., Naud, C. et. al. (2006). Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science, 312 (5777), 1191–1196. doi: 10.1126/science.1125925

Fujita, M., Wakabayashi, K., Nakada, K., Kusakabe, K. (1996). Peculiar Localized State at Zigzag Graphite Edge. Journal of the Physical Society of Japan, 65 (7), 1920–1923. doi: 10.1143/jpsj.65.1920

Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M. S. (1996). Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B, 54 (24), 17954–17961. doi: 10.1103/physrevb.54.17954

Brey, L., Fertig, H. A. (2006). Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B, 73 (23), 235411. doi: 10.1103/physrevb.73.235411

Wakabayashi, K., Takane, Y., Yamamoto, M., Sigrist, M. (2009). Electronic transport properties of graphene nanoribbons. New Journal of Physics, 11 (9), 095016. doi: 10.1088/1367-2630/11/9/095016

Koch, M., Ample, F., Joachim, C., Grill, L. (2012). Voltage-dependent conductance of a single graphene nanoribbon. Nature Nanotechnology, 7 (11), 713–717. doi: 10.1038/nnano.2012.169

Buttiker, M. (1986). Four-Terminal Phase-Coherent Conductance. Physical Review Letters, 57 (14), 1761–1764. doi: 10.1103/physrevlett.57.1761

Golizadeh-Mojarad, R., Datta, S. (2007). Nonequilibrium Green’s function based models for dephasing in quantum transport. Physical Review B, 75 (8), 081301(R). doi: 10.1103/physrevb.75.081301

Krugljak, Ju. O., Striha, M. V. (2013). Uroky nanoelektroniky : Efekt Hola i vymirjuvannja elektrohimichnyh potencialiv v koncepcii' «znyzu – vgoru». Sensor Electronics Microsystem Technologies,10 (4), 5–22.

Krugljak, Ju. O., Striha, M. V. (2014). Uroky nanoelektroniky : Transport spiniv v modeli NRFG i kvantovyj spinovyj efekt Hola v koncepcii' «znyzu – vgoru». Sensor Electronics Microsystem Technologies, 11 (1), 5–27.

Weber, B., Mahapatra, S., Ryu, H., Lee, S., Fuhrer, A., Reusch, T. C. G. et. al. (2012). Ohm’s Law Survives to the Atomic Scale, 335 (6064), 64–67. doi: 10.1126/science.1214319

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75 (3), 715–775. doi: 10.1103/revmodphys.75.715

nanoHUB-U: Fundamentals of Nanoelectronics, Part 2: Quantum Models. Available at: https://nanohub.org/courses/FoN2

PurdueX. Free online courses from Purdue University. Available at: https://www.edx.org/school/purduex

Téléchargements

Publié-e

2015-09-25

Numéro

Rubrique

Physics and mathematics