Аналіз продуктивності біотехнологічного отримання водню за використання мікроорганізмів з різними типами метаболізму, перспективні напрямки подальших досліджень

Auteurs-es

  • Людмила Сергіївна Зубченко Національний технічний університет України «Київський політехнічний інститут» пр. Перемоги, 37, м. Київ, Україна, 03056, Ukraine https://orcid.org/0000-0002-2549-3185
  • Євген Васильович Кузьмінський Національний технічний університет України «Київський політехнічний інститут» пр. Перемоги, 37, м. Київ, Україна, 03056, Ukraine https://orcid.org/0000-0002-5632-8297

DOI :

https://doi.org/10.15587/2313-8416.2015.52116

Mots-clés :

біоводень, темнове бродіння, пурпурні бактерії, гідрогенази, мікробний паливний елемент, екзоелектрогени

Résumé

У статті проаналізовано основні біотехнологічні методи отримання водню, а саме: біофотоліз води з використанням водоростей або ціанобактерій, темнове бродіння, а також отримання водню у мікробних паливних елементах. Розглянуто біохімічні особливості виробництва водню мікроорганізмами з різними типами метаболізму. Визначено недоліки кожного з методів та перспективні напрямки подальших досліджень

Bibliographies de l'auteur-e

Людмила Сергіївна Зубченко, Національний технічний університет України «Київський політехнічний інститут» пр. Перемоги, 37, м. Київ, Україна, 03056

Асистент, аспірант

Кафедра екобіотехнології та біоенергетики

Євген Васильович Кузьмінський, Національний технічний університет України «Київський політехнічний інститут» пр. Перемоги, 37, м. Київ, Україна, 03056

Доктор хімічних наук, професор, завідувач кафедри

Кафедра екобіотехнології та біоенергетики

Références

Lovley, D. R. (2006). Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology, 4 (7), 497–508. doi: 10.1038/nrmicro1442

Markov, S. A., Weaver, P. F. (2007). Bioreactors for H2 Production by Purple Nonsulfur Bacteria. Applied Biochemistry and Biotechnology, 145 (1-3), 79–86. doi: 10.1007/s12010-007-8032-z

Holub, N., Shchurska, K., Trotzenko, M. (2014). Anaerobne ochyshchennia stichnykh vod pyvzavodiv z odnochasnym oderzhanniam vodniu [Simultaneous anaerobic wastewater treatment and hydrogen production]. Journal of Water Chemistry. and Technology, 2, 163–176.

Prytula, I., Tashyrev, O. (2012). Usovershenstvovanie metoda vydeleniia vodorobrazuiushchikh bakteriy roda Clostridium [Improvement of the isolation method of hydrogen, which is formed by bacteria of genus Clostridium] Microbiology Journal, 74 (6), 58–64.

Shchurska, K., Kuzminskii, Ye. (2011). Sposoby produkuvannia biovodniu [Methods of hydrogen production]. Scientific news “KPI”, 3, 105–114.

Chong, M.-L., Sabaratnam, V., Shirai, Y., Hassan, M. A. (2009). Biohydrogen production from biomass and industrial wastes by dark fermentation. International Journal of Hydrogen Energy, 34 (8), 3277–3287. doi: 10.1016/j.ijhydene.2009.02.010

Ntaikou, I., Antonopoulou, G., Lyberatos, G. (2010). Biohydrogen Production from Biomass and Wastes via Dark Fermentation: A Review. Waste and Biomass Valorization, 1 (1), 21–39. doi: 10.1007/s12649-009-9001-2

Venkata, M. S. (2009). Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: Process evaluation towards optimization. International Journal of Hydrogen Energy, 34 (17), 7460–7474. doi: 10.1016/j.ijhydene.2009.05.062

Reungsang, A., Saripan, A. F. (2013). Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum KKU-ED1: Culture conditions optimization using mixed xylose/arabinose as substrate. Electronic Journal of Biotechnology, 16 (1). doi: 10.2225/vol16-issue1-fulltext-1

Chen, C.-Y., Yang, M.-H., Yeh, K.-L., Liu, C.-H., Chang, J.-S. (2008). Biohydrogen production using sequential two-stage dark and photo fermentation processes. International Journal of Hydrogen Energy, 33 (18), 4755–4762. doi: 10.1016/j.ijhydene.2008.06.055

De Amorim, E. L. C., Sader, L. T., Silva, E. L. (2012). Effect of Substrate Concentration on Dark Fermentation Hydrogen Production Using an Anaerobic Fluidized Bed Reactor. Applied Biochemistry and Biotechnology, 166 (5), 1248–1263. doi: 10.1007/s12010-011-9511-9

Hay, J. X. W., Wu, T. Y., Juan, J. C., Md. Jahim, J. (2013). Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: Overview, economics, and future prospects of hydrogen usage. Biofuels, Bioproducts and Biorefining, 7 (3), 334–352. doi: 10.1002/bbb.1403

Seifert, K., Thiel, M., Wicher, E., Wodarczak, M., Laniecki, M. (2012). Microbiological Methods of Hydrogen Generation. Faculty of Chemistry, A. Mickiewicz University, Poznań, Poland. 225–250. doi: 10.5772/33563

Oh, Y.-K., Kim, Y.-J., Park, J.-Y., Lee, T. H., Kim, M.-S., Park, S. (2005). Biohydrogen production from carbon monoxide and water byRhodopseudomonas palustris P4. Biotechnology and Bioprocess Engineering, 10 (3), 270–274. doi: 10.1007/bf02932024

Bothe, H., Winkelmann, S., Boison, G. (2008). Maximizing Hydrogen Production by Cyanobacteria. Zeitschrift Für Naturforschung C, 63 (3-4), 226–232. doi: 10.1515/znc-2008-3-412

Natural'noe jelektrichestvo: fotosintez – delo budushhego (2006). Populjarnaja mehanika. Available at: http://www.popmech.ru/article/670-naturalnoe-elektrichestvo//

Chongcharoenthaweesuk, P., Jiangdong, Z., Mavituna, F. (2011). Metabolic flux balance analysis for biological hydrogen production by purple non-sulfur bacteria. IACSIT Press, Singapoore, 9.

Balashev, K. (1998). Fotocataliticheskoe preobrazovanie solnechnoy energii. [Photocatalytic conversation of sun energy]. International Soros Science Education, 8, 58–64. Available at: http://window.edu.ru/resource/259/21259/files/9808_058.pdf

Rubin, A. (2003). Reguliatzia pervichnyh protzessov photosinteza [Regulation of primary processes of photosynthesis]. Successes of biochemistry, 43, 225–265. Available at: http://www.inbi.ras.ru/ubkh/43/rubin.pdf

Nikandrov, V. (2000). Neorganicheskiie poluprovodniki v biologicheskih I biochimicheskih sistemah: biosintez, svoystva i fotohimicheskaia aktivnost [Inorganic semiconductiors in biological and biochemical systems: biosynthesis, characteristics and photocgemical activity]. Successes of biochemistry, 40, 357–596. Available at: http://www.inbi.ras.ru/ubkh/40/nikandrov.pdf

Logan, B. E. (2005). Simultaneous wastewater treatment and biological electricity generation. Water Science & Technology, 52 (1-2), 31–37.

Ahn, Y., Logan, B. E. (2010). Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresource Technology, 101 (2), 469–475. doi: 10.1016/j.biortech.2009.07.039

Dalvi, A. D., Mohandas, N., Shinde, O. A., Kininge, P. T. (2011). Microbial fuel cell for production of bioelectricity from whey and biological waste treatment. International journal of advanced biotechnology and research, 2 (2), 263–268.

Mathura, A. K., Singh, D. (2007). Microbial fuel cells: A promising technology for waste water treatment and power generation. Environ. Sci. Technol., 35, 3057–3063.

Zielke, E. A. (2005). Design of a single chamber microbial fuel cell. Microbial Fuel Cell technology, 35. Available at: http://www.engr.psu.edu/ce/enve/logan/bioenergy/pdf/engr_499_final_zielke.pdf

Publié-e

2015-10-29

Numéro

Rubrique

Biological sciences