Susceptibility of pipe steel of a controllable rolling tо stress-corrosion cracking

Autor

  • Lyudmila Nyrkova E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine K. Мalevich str., 11, Kyiv, Ukraine, 03150, Ukraine https://orcid.org/0000-0003-3917-9063
  • Anatoliy Rybakov E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine K. Мalevich str., 11, Kyiv, Ukraine, 03150, Ukraine
  • Sergey Mel’nychuk E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine K. Мalevich str., 11, Kyiv, Ukraine, 03150, Ukraine
  • Svitlana Osadchuk E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine K. Мalevich str., 11, Kyiv, Ukraine, 03150, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2019.179545

Słowa kluczowe:

pipie steel, polarization, slow strain rate tests, cathode protection, stress-corrosion cracking

Abstrakt

Susceptibility of Х70 pipe steel to stress-corrosion cracking (SCC) under complex influence of factors is investigated. Sensitivity to SCC is evaluated by  coefficient (the ratio of relative reduction of the sample in air to its relative reduction in the solution). Susceptibility of X70 steel to SCC at the corrosion potential is low, but increases in the presence of stress concentrator and under applying of the cathodic polarisation. It is established some differences in the susceptibility to SCC at the – 1.0 VAg/AgCl of X70 pipe steel of different manufacturing. At the same combination of other factors, the greatest influence on sensitivity to SCC is predetermined by the presence of stress concentrator

Biogramy autorów

Lyudmila Nyrkova, E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine K. Мalevich str., 11, Kyiv, Ukraine, 03150

PhD, Head of Department

Department of Welding of Oil and Gas Pipes

Anatoliy Rybakov, E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine K. Мalevich str., 11, Kyiv, Ukraine, 03150

PhD, Senior Research Fellow

Department of Welding of Oil and Gas Pipes

Sergey Mel’nychuk, E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine K. Мalevich str., 11, Kyiv, Ukraine, 03150

Engineer

Department of Welding of Oil and Gas Pipes

Svitlana Osadchuk, E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine K. Мalevich str., 11, Kyiv, Ukraine, 03150

Junior Researcher

Department of Welding of Oil and Gas Pipes

Bibliografia

Antonov, V. G., Arabei, A. B., Voronin, V. N., Dolgov, I. A., Kantor, M. M., Knoshinski, Z., Surkov, IU. P.; Arabei, A. B., Knoshinski, Z. (Eds.). (2006). Korrozionnoe rastreskivanie pod napriazheniem trub magistralnykh gazoprovodov: atlas. Moscow: Nauka, 105.

Frank Cheng, Y. (2013). Stress Corrosion Cracking of Pipelines. Hoboken: John Willey&Sons Publishing, 257.

Song, F. M. (2009). Predicting the mechanisms and crack growth rates of pipelines undergoing stress corrosion cracking at high pH. Corrosion Science, 51 (11), 2657–2674. doi: http://doi.org/10.1016/j.corsci.2009.06.051

Wang, J., Atrens, A. (2003). SCC initiation for X65 pipeline steel in the “high” pH carbonate/bicarbonate solution. Corrosion Science, 45 (10), 2199–2217. doi: http://doi.org/10.1016/s0010-938x(03)00044-1

Chu, R., Chen, W., Wang, S.-H., King, F., Jack, T. R., Fessler, R. R. (2004). Microstructure Dependence of Stress Corrosion Cracking Initiation in X-65 Pipeline Steel Exposed to a Near-Neutral pH Soil Environment. Corrosion, 60 (3), 275–283. doi: http://doi.org/10.5006/1.3287732

Zhang, C., Cheng, Y. F. (2009). Synergistic Effects of Hydrogen and Stress on Corrosion of X100 Pipeline Steel in a Near-Neutral pH Solution. Journal of Materials Engineering and Performance, 19 (9), 1284–1289. doi: http://doi.org/10.1007/s11665-009-9579-3

Arafin, M. A., Szpunar, J. A. (2009). A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies. Corrosion Science, 51 (1), 119–128. doi: http://doi.org/10.1016/j.corsci.2008.10.006

Parkins, R. N., Blanchard, W. K., Delanty, B. S. (1994). Transgranular Stress Corrosion Cracking of High-Pressure Pipelines in Contact with Solutions of Near Neutral pH. Corrosion, 50 (5), 394–408. doi: http://doi.org/10.5006/1.3294348

Egbewande, A., Chen, W., Eadie, R., Kania, R., Van Boven, G., Worthingham, R., Been, J. (2014). Transgranular crack growth in the pipeline steels exposed to near-neutral pH soil aqueous solutions: Discontinuous crack growth mechanism. Corrosion Science, 83, 343–354. doi: http://doi.org/10.1016/j.corsci.2014.02.032

Chen, W., Vanboven, G., Rogge, R. (2007). The role of residual stress in neutral pH stress corrosion cracking of pipeline steels – Part II: Crack dormancy. Acta Materialia, 55 (1), 43–53. doi: http://doi.org/10.1016/j.actamat.2006.07.021

Tang, X., Cheng, Y. F. (2009). Micro-electrochemical characterization of the effect of applied stress on local anodic dissolution behavior of pipeline steel under near-neutral pH condition. Electrochimica Acta, 54 (5), 1499–1505. doi: http://doi.org/10.1016/j.electacta.2008.09.037

Harris, N., Askarov, G. (2006). Activation of corrosion processes on main gas pipelines of large diameter with impulse temperature change. Oil and gas business.

Asahi, H., Kushida, T., Kimura, M., Fukai, H., Okano, S. (1999). Role of Microstructures on Stress Corrosion Cracking of Pipeline Steels in Carbonate-Bicarbonate Solution. Corrosion, 55 (7), 644–652. doi: http://doi.org/10.5006/1.3284018

Szklarska-Smialowska, Z., Xia, Z., Rebak, R. B. (1994). Technical Note:Stress Corrosion Cracking of X-52 Carbon Steel in Dilute Aqueous Solutions. Corrosion, 50 (5), 334–338. doi: http://doi.org/10.5006/1.3294341

TU 14-3-995-81 Truby stalnye elektrosvarnye priamoshovnye ekspandinovannye diametrom 1420 mm iz stali marki X-70. Tekhnicheskie usloviia.

SNiP 2.05.06-85 Magistralnye truboprovody. Available at: http://profidom.com.ua/v-2/v-2-3/1653-snip-2-05-06-85-magistralnyje-truboprovody

GOST 5639-82 Steels and alloys. Methods for detection and detеrmination of grain size. Available at: http://docs.cntd.ru/document/1200005473

GOST 5640-68 Steel. Metallographic method for determination of microstructure of sheets and bands. Available at: http://docs.cntd.ru/document/1200004803

GOST 1778-70 Steel. Metallographic methods for the determination of nonmetallic inclusions. Available at: http://gostrf.com/normadata/1/4294835/4294835064.pdf

DSTU 4219-2003. Steel pipe mains general requirements for corrosion protection. Available at: https://dnaop.com/html/34129/doc-%D0%94%D0%A1%D0%A2%D0%A3_4219-2003

##submission.downloads##

Opublikowane

2019-11-05

Numer

Dział

Technical Sciences