Учет рассеяния в транспортной модели Ландауэра-Датты-Лундстрома
DOI:
https://doi.org/10.15587/2313-8416.2015.38847Słowa kluczowe:
нанофизика, наноэлектроника, рассеяние электронов, рассеяние фононов, коэффициент прохождения, длина свободного пробега, коэффициент диффузии, подвижность, Si MOSFETAbstrakt
Качественно рассматривается рассеяние носителей тока и тепла в транспортной модели ЛДЛ по ходу изменения времен рассеяния в процессе столкновений. На примере 1D проводника выводится базовое соотношение между коэффициентом прохождения Т и средней длиной свободного пробега . В качестве примера анализируются экспериментальные данные для Si MOSFET с привлечением моделей различной достоверности.
Bibliografia
Datta Supriyo. Lessons from Nanoelectronics: A New Perspective on Transport (2012). Hackensack, New Jersey: World Scientific Publishing Company, 473. Available at: www.nanohub.org/courses/FoN1
Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company, 227. Available at: www.nanohub.org/resources/11763
Kruglyak, Yu. A. (2013). The Generalized Landauer – Datta – Lunstrom Electron Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 11 (3), 519–549. Erratum: ibid, (2014). 12 (2), 415.
Kruglyak, Yu. A. Heat transfer by phonons in Landauer-Datta-Lunstrom transport model, ScienceRise. – 2015. – Т. 2, № 2 (7). – С. 81–93. doi: 10.15587/2313-8416.2015.36332
Landauer, R. (1957). Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM Journal of Research and Development, 1 (3), 223–231. doi: 10.1147/rd.13.0223
Landauer, R. (1970). Electrical resistance of disordered one-dimensional lattices. Philosophical Magazine, 21 (172), 863–867. doi: 10.1080/14786437008238472
Lundstrom, M. (2000). Fundamentals of Carrier Transport, 2nd Ed. Cambridge: Cambridge Univ. Press.
Dirac, P. A. M. (1927). The Quantum Theory of the Emission and Absorption of Radiation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 114 (767), 243–265. doi: 10.1098/rspa.1927.0039
Fermi, E. (1950). Nuclear Physics. University of Chicago Press.
Jeong, C., Kim, R., Luisier, M., Datta, S., Lundstrom, M. (2010). On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. Journal of Applied Physics, 107 (2), 023707. doi: 10.1063/1.3291120
Kruglyak, Yu. A. (2013). From Ballistic Conductivity to Diffusional in the Landauer-Datta-Lunstrom Transport Model, Nanosystems, Nanomaterials, Nanotechnologies, 11 (4), 655–677.
Shockley, W. (1962). Diffusion and Drift of Minority Carriers in Semiconductors for Comparable Capture and Scattering Mean Free Paths. Physical Review, 125 (5), 1570–1576. doi: 10.1103/physrev.125.1570
Jeong, C., Antoniadis, D. A., Lundstrom, M. S. (2009). On Backscattering and Mobility in Nanoscale Silicon MOSFETs. IEEE Transactions on Electron Devices, 56 (11), 2762–2769. doi: 10.1109/ted.2009.2030844
Pierret, R. F. (1996). Semiconductor Device Fundamentals. Reading, MA: Addison–Wesley.
Lundstrom, M. (2008). ECE 612: Nanoscale Transistors. Lecture 4. Polysilicon Gates. QM Effects. Available at: www.nanohub.org/resourses/5364
Taur, Y., Ning, T. (2009). Fundamentals of Modern VLSI Devices, 2nd Ed., Cambridge univ. Press, Cambridge, UK.
Kruglyak, Yu. Landauer-Datta-Lundstrom (2014). Generalized Transport Model for Nanoelectronics, Journal of Nanoscience, 725420, 15. doi: 10.1155/2014/725420
Kruglyak, Yu. A. (2014). A Generalized Landauer-Datta-Lundstrom Electron Transport Model, Russian Journal of Physical Chemistry, 88 (11), 1826–1836.
##submission.downloads##
Opublikowane
Numer
Dział
Licencja
Copyright (c) 2015 Юрій Олексійович Кругляк
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.