Photonic crystal fibers technologies and opportunities of development in telecommunications systems
DOI:
https://doi.org/10.15587/2313-8416.2016.58758Słowa kluczowe:
photonic crystal, communications, propagation, dispersion, photonic crystal fibersAbstrakt
Photonic crystal fibers compressors in fibre-laser systems allow the generation of output light pulses with a pulse width on the order of 100 fs in the megawatt range of peak powers. Thus, Photonic crystal fibers play the key role in the development of novel fibre-laser sources of ultrashort light pulses and creation of fibre-format components for the control of such pulses. In this paper we will discuss the photonic crystal fibers technology development opportunities in the field of communications systems
Bibliografia
Hondros, D., Debye, P. (1910). Electromagnetic waves along long cylinders of dielectric. Ann. Phys., 32 (3), 465–476.
Schriever, O. (1920). Electromagnetic waves in dielectric wires. Ann. Phys., 63 (7), 645–673.
Kapany, N. S. (1967). Fiber Optics. Principles and Applications. Academic Press, New York, 447.
Kapron, F. P. (1970). RADIATION LOSSES IN GLASS OPTICAL WAVEGUIDES. Applied Physics Letters, 17 (10), 423. doi: 10.1063/1.1653255
Miya, T., Terunuma, Y., Hosaka, T., Miyashita, T. (1979). Ultimate low-loss single-mode fibre at 1.55 μm. Electronics Letters, 15 (4), 106. doi: 10.1049/el:19790077
Adams, M. J. (1981). An Introduction to Optical Waveguides. John Wiley & Sons, 401.
Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58 (20), 2059–2062. doi: 10.1103/physrevlett.58.2059
Yablonovitch, E., Gmitter, T., Leung, K. (1991). Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Physical Review Letters, 67 (17), 2295–2298. doi: 10.1103/physrevlett.67.2295
Chan, C. T., Datta, S., Yu, Q. L., Sigalas, M., Ho, K. M., Soukoulis, C. M. (1994). New structures and algorithms for photonic band gaps. Physica A: Statistical Mechanics and Its Applications, 211 (4), 411–419. doi: 10.1016/0378-4371(94)00133-2
Johnson, S., Joannopoulos, J. (2001). Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 8 (3), 173. doi: 10.1364/oe.8.000173
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., Cornell, E. A. (1995). Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science, 269 (5221), 198–201. doi: 10.1126/science.269.5221.198
Russell, P. (2003). Photonic Crystal Fibers. Science, 299 (5605), 358–362. doi: 10.1126/science.1079280
Knight, J. C., Broeng, J., Birks, T. A., Russell, P. S. J. (1998). Photonic Band Gap Guidance in Optical Fibers. Science, 282 (5393), 1476–1478. doi: 10.1126/science.282.5393.1476
Russell, P. S. J. (2006). Photonic-Crystal Fibers. Journal of Lightwave Technology, 24 (12), 4729–4749. doi: 10.1109/jlt.2006.885258
Cregan, R. F., Mangan, B. J., Knight, J. C., Birks, T. A., Russell, P. S. J., Roberts, P. J., Allan, D. C. (1999). Single-Mode Photonic Band Gap Guidance of Light in Air. Science, 285 (5433), 1537–1539. doi: 10.1126/science.285.5433.1537
Marcatili, E. A. J., Schmeltzer, R. A. (1964). Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers. Bell System Technical Journal, 43 (4), 1783–1809. doi: 10.1002/j.1538-7305.1964.tb04108.x
Zheltikov, A. M. (2004). Nonlinear optics of microstructure fibers. Physics-Uspekhi, 47 (1), 69–98. doi: 10.1070/pu2004v047n01abeh001731
Knight, J. C., Birks, T. A., Russell, P. S. J., Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 21 (19), 1547. doi: 10.1364/ol.21.001547
Gfeller, F. R., Bapst, U. (1979). Wireless in-house data communication via diffuse infrared radiation. Proceedings of the IEEE, 67 (11), 1474–1486. doi: 10.1109/proc.1979.11508
##submission.downloads##
Opublikowane
Numer
Dział
Licencja
Copyright (c) 2016 Haider Ali Muse
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.