Дослідження методів аналізу відгуків про товари магазинів електроніки
DOI:
https://doi.org/10.15587/2313-8416.2018.135069Ключевые слова:
обробка природної мови, обчислювальні алгоритми, аналіз даних, комп’ютерна лінгвістикаАннотация
Робота присвячена вивченню методів аналізу відгуків про товари магазинів електроніки. Предметом дослідження є відгуки про товари. Метою роботи є аналіз методів обробки природної мови в контексті задачі аналізу відгуків. Методом дослідження є комп'ютерне та математичне моделювання.
В роботі були розглянуті різні класи методів аналізу відгуків про товари магазинів електроніки, в якості практичної реалізації було проведено порівняння результатів передбачення. Результати дослідження мають застосування при аналізі відгуків будь-якого магазину
Библиографические ссылки
Ratner, A., De Sa, C., Wu, S., Selsam, D., Re, C. (2016). Data programming: Creating large training sets, quickly. Advances in Neural Information Processing Systems (NIPS). New York: Curran Associates, 3567–3575.
Lei, T., Barzilay, R., Jaakkola, T. (2016). Rationalizing neural predictions. Empirical Methods in Natural Language Processing. Austin, 107–117. doi: http://doi.org/10.18653/v1/d16-1011
Roth, B., Klakow, D. (2013). Combining generative and discriminative model scores for distant supervision. Empirical Methods in Natural Language Processing. Seattle, 24–29.
Srivastava, S., Labutov, I., Mitchell, T. (2017). Joint concept learning and semantic parsing from natural language explanations. Empirical Methods in Natural Language Processing. Copenhagen, 1527–1536. doi: http://doi.org/10.18653/v1/d17-1161
Voigt, R., Jurafsky, D. (2015). The Users Who Say 'Ni': Audience Identification in Chinese-language Restaurant Reviews. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing, 314–319. doi: http://doi.org/10.3115/v1/p15-2052
% Of Consumers Trust Online Reviews As Much As Personal Recommendations. Search Engine Land. Available at: https://searchengineland.com/88-consumers-trust-online-reviews-much-personal-recommendations-195803 Last accessed: 04.06.2018
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. Stanford University Sentiment Analysis. Available at: https://nlp.stanford.edu/sentiment/ Last accessed: 07.06.2018
Wang, S., Manning, C. (2012). Baselines and Bigrams: Simple, Good Sentiment and Topic Classification. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Jeju, 90–94.
Hochreiter, S., Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9 (8), 1735–1780. doi: http://doi.org/10.1162/neco.1997.9.8.1735
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1 (4), 541–551. doi: http://doi.org/10.1162/neco.1989.1.4.541
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2018 Olekander Vechur, Oleksii Spodarets
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Наше издание использует положения об авторских правах Creative Commons CC BY для журналов открытого доступа.
Авторы, которые публикуются в этом журнале, соглашаются со следующими условиями:
1. Авторы оставляют за собой право на авторство своей работы и передают журналу право первой публикации этой работы на условиях лицензии Creative Commons CC BY, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылкой на авторов оригинальной работы и первую публикацию работы в этом журнале.
2. Авторы имеют право заключать самостоятельные дополнительные соглашения, которые касаются неэксклюзивного распространения работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном хранилище учреждения или публиковать в составе монографии), при условии сохранения ссылки на первую публикацию работы в этом журнале .