Графен в транспортной модели Ландауэра-Датты-Лундстрома
DOI:
https://doi.org/10.15587/2313-8416.2015.36443Ключевые слова:
нанофизика, наноэлектроника, графен, число мод, максимальная проводимость, эффективная масса, фононные состояния, теплопроводность, термоэлектрические коэффициентыАннотация
Обсуждаются такие свойства графена как плотность электронных состояний и носителей тока, число мод и максимальная проводимость, рассеяние и подвижность в графене, циклотронная частота и эффективная масса, плотность фононных состояний, сравнительный вклад электронов и фононов в теплопроводность графена. В справочных целях дается сводка термоэлектрических коэффициентов для графена в баллистическом и диффузионном режимах проводимости со степенным законом рассеяния
Библиографические ссылки
Kruglyak, Yu. (2014). Landauer-Datta-Lundstrom Generalized Transport Model for Nanoelectronics, Journal of Nanoscience, 15. doi: 10.1155/2014/725420
Kruglyak, Yu. A. (2013). Landauer-Datta-Lundstrom Generalized Electron Transport Model for Nanoelectronics. Nanosystems, Nanomaterials, Nanotechnologies, 11 (3), 519–549. Erratum: ibid, (2014). 12 (2), 415.
Strikha, М. V. (2010). Physics of Graphene: Status and Perspectives. Sensor Electronics Microsys. Tech., 7 (3), 5–13.
Geim, A. K. (2009). Graphene: Status and Prospects. Science, 324 (5934), 1530–1534. doi: 10.1126/science.1158877
Novoselov, K. S. (2009). Beyond the wonder material. Physics World, 22 (8), 27–30.
Lozovik, Yu. E., Merkulova, S. P., Sokolik, A. A. (2008). Collective electron phenomena in graphene. Physics Uspekhi, 51, 727–744. doi: 10.3367/ufnr.0178.200807h.0757
Morozov, S. V., Novoselov, K. S., Geim, A. K. (2008). Electronic transport in graphene. Physics Uspekhi, 51, 744–748 doi: 10.3367/ufnr.0178.200807i.0776
Tsuneya, A. (2008). Physics of Graphene. Zero-Mode Anomalies and Roles of Symmetry. Progress of Theoretical Physics Supplement, 176, 203–226. doi: 10.1143/ptps.176.203
Geim, A. K., Novoselov, K. S. (2007). The Rise of Graphene. Nature Materials, 6, 183–191. doi: 10.1038/nmat1849
McClure, J. W. (1956). Diamagnetism of Graphite. Physical Review, 104 (3), 666–671. doi: 10.1103/physrev.104.666
Slonczewski, J. C., Weiss, P. R. (1958). Band Structure of Graphite. Physical Review, 109 (2), 272–279. doi: 10.1103/physrev.109.272
Ando, T. (2005). Theory of electronic states and transport in carbon nanotubes. Journal of the Physical Society of Japan, 74 (13), 777–817. doi: 10.1143/jpsj.74.777
Shon, N. H., Ando, T. (1998). Quantum transport in two-dimensional graphite system. Journal of the Physical Society of Japan, 67 (7), 2421–2429. doi: 10.1143/jpsj.67.2421
Peres, N. M. R., Lopes dos Santos, J. M. B., Stauber, T. (2007). Phenomenological study of the electronic transport coefficients of graphene. Physical Review B, 76 (7). doi: 10.1103/physrevb.76.073412
Zhu, W., Perebeinos, V., Freitag, M., Avouris, P. (2009). Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene, Physical Review B, 80 (23), 235–402. doi: /10.1103/physrevb.80.235402
Perebeinos, V., Avouris, P. (2010). Inelastic scattering and current saturation graphene. Physical Review B, 81 (19). doi: 10.1103/physrevb.81.195442
Das Sarma, S., Adam, S., Hwang, E. H., Rossi, E. (2011). Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 83 (2), 407–470. doi: 10.1103/revmodphys.83.407
Novoselov, R. S., Geim, A. K., Morozov S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306 (5659), 666–669. doi: 10.1126/science.1102896
Morozov, S. V., Novoselov, K. S., Schedin, F., Jiang, D., Firsov, A. A., Geim, A. K. (2005). Two-dimensional electron and hole gases at the surface of graphite. Physical Review B, 72 (20). doi: 10.1103/physrevb.72.201401
Novoselov, R. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., Firsov, A. A. (2005). Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature, 438 (7065), 197–200. doi: 10.1038/nature04233
Zhang, Y., Tan, Y.-W., Stormer, H. L., Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry's phase in grapheme. Nature, 438 (7065), 201–204. doi: 10.1038/nature04235
Laughlin, R. B. Condensed Matter Theory (II): Graphene Band Structure. Graphene Density of States. Available at: http://large.stanford.edu/courses/
Supriyo Datta. Graphene Bandstructures (2008). Purdue University. Available at: www.nanohub.org/resources/5710
Supriyo Datta. Graphene Density of States I (2008). Purdue University. Available at: www.nanohub.org/resources/5721
Supriyo Datta. Graphene Density of States II (2008). Purdue University. Available at: www.nanohub.org/resources/5722
Kruglyak, Yu. A., Kruglyak, N. E. (2012). Calculation of graphene band structure. Methodological and theoretical basis. Visnyk Odessa State Ecolog. Univ., 13, 207–218.
Lundstrom, M. (2009). Sums in k-space/Integrals in Energy Space. Purdue University. Available at: www.nanohub.org/resources/7296
Berdebes, D., Low, T., Lundstrom, M. (2009). Lecture Notes on Low Bias Transport in Graphene: An Introduction. Purdue University. Available at: www.nanohub.org/resources/7435
Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/resources/11763
Kruglyak, Yu. A., Strikha, М. V. (2014). Lessons of nanoelectronics: Hall effect and measurement of electrochemical potentials within «bottom–up» approach, Sensor Electronics Microsys. Tech., 11 (1), 5–27.
Kruglyak, Yu. A. (2013). From Ballistic Conductivity to Diffusional in the Landauer-Datta-Lunstrom Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 11 (4), 655–677.
Kruglyak, Yu. A., Kruglyak, N. E. (2013). Lessons of nanoelectronics. 3. Electronic conductivity and conductivity modes by «bottom – up» approach, Physics in Higher Education, 19 (3), 99–110.
Kruglyak, Yu. A., Kruglyak, N. E. (2013). Lessons of nanoelectronics. 2. Elastic resistor model and new Ohm’s law by «bottom – up» approach, Physics in Higher Education, 19 (2), 161–173.
Kruglyak, Yu. A. (2014).Heat transfer by phonons in Landauer-Datta-Lundstrom approach, Proceedings of the International Conference. Nanomaterials: Applications and Properties”, 3 (2), 5.
Singh, D., Murthy, J. Y., Fisher, T. S. (2011). Spectral phonon conduction and dominant scattering pathways in graphene. Journal of Applied Physics, 110 (9). doi: 10.1063/1.3656451
Fisher, T. S. (2013). Thermal Energy at the Nanoscale. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/courses/2
Das Sarma, S., Adam, S., Hwang, E. H., Rossi, E. (2011). Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 83 (2), 407–470. doi: 10.1103/revmodphys.83.407
Kim, R. S. (2011). Physics and Simulation of Nanoscale Electronic and Thermoelectric Devices. West Lafayette: Purdue University, 220.
Supriyo Datta, Lessons from Nanoelectronics: A New Perspective on Transport (2012). Hackensack, New Jersey: World Scientific Publishing Company. Avaialble at: www.nanohub.org/courses/FoN1
Kruglyak, Yu. A., Strikha, М. V. (2013). Lessons of nanoelectronics: Non-equilibrium Green’s functions method in matrix representation. II. Model transport problems, Sensor Electronics Microsys. Tech., 10 (4), 5–22.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2015 Юрій Олексійович Кругляк
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Наше издание использует положения об авторских правах Creative Commons CC BY для журналов открытого доступа.
Авторы, которые публикуются в этом журнале, соглашаются со следующими условиями:
1. Авторы оставляют за собой право на авторство своей работы и передают журналу право первой публикации этой работы на условиях лицензии Creative Commons CC BY, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылкой на авторов оригинальной работы и первую публикацию работы в этом журнале.
2. Авторы имеют право заключать самостоятельные дополнительные соглашения, которые касаются неэксклюзивного распространения работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном хранилище учреждения или публиковать в составе монографии), при условии сохранения ссылки на первую публикацию работы в этом журнале .