Поиск глобального минимума методом точной квадратичной регуляризации

Автор(и)

  • Анатолий Иванович Косолап Український державний хіміко-технологічний університет пр. Гагаріна, 8, г. Дніпропетровськ, Україна, 49005, Україна

DOI:

https://doi.org/10.15587/2313-8416.2014.32250

Ключові слова:

глобальный минимум, точная квадратичная регуляризация, прямо-двойственные методы внутренней точки, дихотомия

Анотація

Мы предлагаем новый метод точной квадратичной регуляризации для поиска глобального минимума функций при наличии ограничений. Метод включает нелинейные преобразования функций, локальный поиск и дихотомию. Этот метод позволил решить множество сложных тестовых и прикладных задач глобальной оптимизации. Сравнительные численные эксперименты показали его преимущество над существующими методами решения данного класса задач.

Біографія автора

Анатолий Иванович Косолап, Український державний хіміко-технологічний університет пр. Гагаріна, 8, г. Дніпропетровськ, Україна, 49005

Доктор фізико-математичних наук, професор

Кафедра спеціалізованих комп’ютерних систем

Посилання

Samarski, А. А., Mikhajlov, A. P. (2001). Mathematical modelling: Ideas, methods, examples. The second edition corrected. Moscow: Physmathlit, 320.

Kenneth, V. P., Storn, R. M., Lampinen, J. A. (2005). Differential Evolution. A Practical Approach to Global Optimization. Berlin: Springer-Verlag, 542.

Nocedal, J., Wright, S. J. (2006). Numerical optimization. Springer, 685.

Kosolap, A. (2013). Methods of Global Optimization. Dnipropetrovsk, Ukraine: Science and education, 316.

Ye, Y. (2003). Semidefinite programming. Stanford University, 161.

Floudas, C. A., Pardalos, P. M. (1990). A collection of Test Problems for Constrained Global Optimization Algorithms. Berlin Helldelberg: Springer-Verlag, 193.

##submission.downloads##

Опубліковано

2014-12-25

Номер

Розділ

Фізико-математичні науки