Наноэлектроника «снизу – вверх»: эффекты холла, измерение электрохимических потенциалов и транспорт спинов в модели НРФГ

Автор(и)

  • Юрій Олексійович Кругляк Одеський державний екологічний університет, Україна

DOI:

https://doi.org/10.15587/2313-8416.2015.51353

Ключові слова:

наноэлектроника, эффекты Холла, измерение химпотенциала, транспорт спинов, метод НРФГ, графен

Анотація

В концепции «снизу – вверх» наноэлектроники рассматриваются эффекты Холла, методы измерения электрохимических потенциалов, подходы Ландауэра и Бюттекера, учет магнитного поля в методе неравновесных функций Грина (НРФГ), спиновый транспорт в формализме НРФГ в спинорном представлении, обсуждаются вращение магнитных контактов и спинов, роль спиновых гамильтонианов Зеемана и Рашбы, квантовый спиновый эффект Холла, вычисление спинового потенциала, четырехкомпонентный формат описания спинового транспорта

Біографія автора

Юрій Олексійович Кругляк, Одеський державний екологічний університет

Доктор хімічних наук, професор

Кафедра інформаційних технологій

Посилання

Hall, E. H. (1879). On a New Action of the Magnet on Electric Currents. American Journal of Mathematics, 2 (3), 287–292. doi: 10.2307/2369245

Klitzing, K. v., Dorda, G., Pepper, M. (1980). New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Physical Review Letters, 45 (6), 494–497. doi: 10.1103/physrevlett.45.494

fon Klitcing, K. (1985). Kvantovyj jeffekt Holla: Nobelevskie lekcii po fizike. UFN, 150 (1), 107–126.

Reedtz, G. M., Cage, M. E. (1987). An automated potentiometric system for precision measurement of the quantized hall resistance. Journal of Research of the National Bureau of Standards, 92 (5), 303–310. doi: 10.6028/jres.092.030

Tsui, D. C., Stormer, H. L., Gossard, A. C. (1982). Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Physical Review Letters, 48 (22), 1559–1562. doi: 10.1103/physrevlett.48.1559

Stepanovskij, Ju. P. (1998). Drobnyj kvantovyj jeffekt Holla. Jelektromagnitnye javlenija,1 (3), 427–442.

Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H., Ong, N. P. (2010). Anomalous Hall effect. Reviews of Modern Physics, 82 (2), 1539–1592. doi: 10.1103/revmodphys.82.1539

Dyakonov, M. I., Perel, V. I. (1971). Possibility of orientating electron spins with current. Sov. Phys. JETP Lett., 13, 467.

Dyakonov, M. I., Perel, V. I. (1971). Current-induced spin orientation of electrons in semiconductors. Physics Letters A, 35 (6), 459–460. doi: 10.1016/0375-9601(71)90196-4

Kane, C. L., Mele, E. J. (2005). Quantum Spin Hall Effect in Graphene. Physical Review Letters, 95 (22). doi: 10.1103/physrevlett.95.226801

Srinivasan, S., Sarkar, A., Behin-Aein, B., Datta, S. (2011). All-Spin Logic Device With Inbuilt Nonreciprocity. IEEE Transactions on Magnetics, 47 (10), 4026–4032. doi: 10.1109/tmag.2011.2159106

Kane, C., Moore, J. (2011). Topological insulators. Physics World, 24 (02), 32–36. doi: 10.1088/2058-7058/24/02/36

Datta, S. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company, 492. doi: 10.1142/8029

Krugljak, Ju. A. (2015). Nanoelectronics «bottom – up»: current generation, generalized Ohm’s law, elastic resistors, conductivity modes, thermoelectricity. ScienceRise, 7/2 (12), 76–100. doi: 10.15587/2313-8416.2015.45700

Krugljak Ju. O., Krugljak, N. Ju., Striha, M. V. (2012). Uroky nanoelektroniky: vynyknennja strumu, formuljuvannja zakonu Oma i mody providnosti v koncepcii' «znyzu – vgoru». Sensor. elektr. mikrosyst. tehn., 9 (4), 5–29. Available at: http://dspace.onu.edu.ua:8080/handle/123456789/3643

Ashkroft N., Mermin N. (1979). Fizika tverdogo tela. Vol. 1-2. Moscow: Mir, 458; 486.

Rashba, E. I. (2003). Spin currents in thermodynamic equilibrium: The challenge of discerning transport currents. Physical Review B, 68 (24). doi: 10.1103/physrevb.68.241315

Buttiker, M. (1988). Symmetry of electrical conduction. IBM Journal of Research and Development, 32 (3), 317–334. doi: 10.1147/rd.323.0317

Krugljak, Ju. A. (2015). Nanoelectronics «bottom – up»: non-equillibrium Green’s functions method, model transport problems and quantum interference. ScienceRise, 9/2 (14), 41–72. doi: 10.15587/2313-8416.2015.48827

Krugljak, Ju. A. (2015). Nanoelectronics «bottom – up»: non-equillibrium Green’s functions method, model transport problems and quantum interference. ScienceRise, 2/2 (7), 93–106. doi: 10.15587/2313-8416.2015.36443

Krugljak, Ju. A. (2015). The «bottom – up» nanoelectronics: elements of spintronics and magnetronics. ScienceRise, 8/2 (13), 51–68. doi: 10.15587/2313-8416.2015.47792

Sears, F. W., Salinger, G. L. (1975). Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. Boston: Addison-Wesley.

Landauer, R. (1957). Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM Journal of Research and Development, 1 (3), 223–231. doi: 10.1147/rd.13.0223

Landauer, R. (1970). Electrical resistance of disordered one-dimensional lattices. Philosophical Magazine, 21 (172), 863–867. doi: 10.1080/14786437008238472

Landauer, R. (1988). Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of Research and Development, 32 (3), 306–316. doi: 10.1147/rd.323.0306

Landauer, R. (1996). Spatial variation of currents and fields due to localized scatterers in metallic conduction (and comment). Journal of Mathematical Physics, 37 (10), 5259. doi: 10.1063/1.531590

Buttiker, M. (1986). Four-Terminal Phase-Coherent Conductance. Physical Review Letters, 57 (14), 1761–1764. doi: 10.1103/physrevlett.57.1761

Sharvin, Ju. V. (1965). Ob odnom vozmozhnom metode issledovanija poverhnosti Fermi. ZhJeTF,. 48 (3), 984–985.

Sharvin, Yu. V., Bogatina, N. I. (1969). Investigation of Focusing of Electron Beams in a Metal by a Longitudinal Magnetic Field. Sov. Phys. JETP, 29 (3), 419–423.

Imry, Y.; Grinstein, G., Mazenko, G. (Eds.) (1986). In Directions in Condensed Matter Physics. Singapore: World Scientific, 101.

Imry, Y., Landauer, R. (1999). Conductance viewed as transmission. Reviews of Modern Physics, 71 (2), 306–312. doi: 10.1103/revmodphys.71.s306

Lesovik, G. B., Sadovskij, I. A. (2011). Opisanie kvantovogo jelektronnogo transporta s pomoshh'ju matric rassejanija. UFN., 181 (10), 1041–1096. doi: 10.3367/ufnr.0181.201110b.1041

Stone, A. D., Szafer, A. (1988). What is measured when you measure a resistance? – The Landauer formula revisited. IBM Journal of Research and Development, 32 (3), 384–413. doi: 10.1147/rd.323.0384

Golizadeh-Mojarad, R., Zainuddin, A. N. M., Klimeck, G., Datta, S. (2008). Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime. Journal of Computational Electronics, 7 (3), 407–410. doi: 10.1007/s10825-008-0190-x

Haug, R. J. (1993). Edge-state transport and its experimental consequences in high magnetic fields. Semicond. Semiconductor Science and Technology, 8 (2), 131–153. doi: 10.1088/0268-1242/8/2/001

Cage, M. E. (1997). Current distributions in quantum Hall effect devices. Journal of Research of the National Institute of Standards and Technology, 102 (6), 677–691. doi: 10.6028/jres.102.045

Martines-Duart, Dzh. M., Martin-Palma, R. Dzh., Agullo-Rueda, F. (2007). Nanotehnologii dlja mikro- i optojelektroniki. Moscow: Tehnosfera, 368.

Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C. et. al (2006). Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science, 312 (5777), 1191–1196. doi: 10.1126/science.1125925

Brey, L., Fertig, H. A. (2006). Edge states and the quantized Hall effect in graphene. Physical Review B, 73 (19). doi: 10.1103/physrevb.73.195408

Peres, N. M. R., Castro Neto, A. H., Guinea, F. (2006). Conductance quantization in mesoscopic graphene. Physical Review B, 73 (19). doi: 10.1103/physrevb.73.195411

Abanin, D. A., Lee, P. A., Levitov, L. S. (2006). Spin-Filtered Edge States and Quantum Hall Effect in Graphene. Physical Review Letters, 96 (17). doi: 10.1103/physrevlett.96.176803

Kubo, R. (1957). Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan, 12 (6), 570–586. doi: 10.1143/jpsj.12.570

Yourgrau, W., van der Merwe, A., Raw, G. (1982). Treatise on Irreversible and Statistical Thermophysics. Dover, New York.

Krugljak, Ju. A. (2015). Model' provodimosti Landaujera – Datty – Lundstroma v mikro- i nanojelektronike i transportnoe uravnenie Bol'cmana. ScienceRise, 3/2 (8), 108–116. doi: 10.15587/2313-8416.2015.38848

Doniach, S., Sondheimer, E. H. (1998). Green’s Functions for Solid State Physicists. College Press London, 336. doi: 10.1142/p067

Blanter, Y. M., Büttiker, M. (2000). Shot noise in mesoscopic conductors. Physics Reports, 336 (1-2), 1–166. doi: 10.1016/s0370-1573(99)00123-4

Hasan, M. Z., Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82 (4), 3045–3067. doi: 10.1103/revmodphys.82.3045

Krugljak, Ju. A., Prejss, H., Janoshek, R. (1971). Raschet jelektronnyh obolochek benzil'nogo radikala neogranichennym metodom Hartri – Foka na gaussovom bazise. Zh. strukt. him., 12 (4), 689–696.

Krugljak, Ju. A. (2014). Generalized Landauer-Datta-Lundstrom model of electron and heat transport for micro- and nanoelectronics. ScienceRise, 5/3 (5), 6–21. doi: 10.15587/2313-8416.2014.30726

Kruglyak, Y. A., Ukrainsky, I. I. (1970). Study of the electronic structure of alternant radicals by theDODS method. International Journal of Quantum Chemistry, 4 (1), 57–72. doi: 10.1002/qua.560040106

Kruglyak, Yu. A. (2015). Quantum-chemical studies of quasi-one-dimensional electron systems. 1. Polyenes. ScienceRise, 5/2 (10), 69–105. doi: 10.15587/2313-8416.2015.42643

Rashba, E. I. (1960). Properties of semiconductors with an extremum loop . 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid. State., 2, 1109.

Bychkov, Y. A., Rashba, E. I. (1984). Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. Journal of Physics C: Solid State Physics, 17 (33), 6039–6045. doi: 10.1088/0022-3719/17/33/015

Winkler, R. (2003). Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems. Berlin: Springer, 228. doi: 10.1007/b13586

Hanle, W. (1924). Uber magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Zeitschrift for Physik, 30 (1), 93–105. doi: 10.1007/bf01331827

Van Dyck, R., Stoltenberg, J. Pengra, D. (2006). The Hanle Effect. – Washington: The University of Washington.

Huang, B., Jang, H.-J., Appelbaum, I. (2008). Geometric dephasing-limited Hanle effect in long-distance lateral silicon spin transport devices. Applied Physics Letters, 93 (16), 162508. doi: 10.1063/1.3006333

Koo, H. C., Kwon, J. H., Eom, J., Chang, J., Han, S. H., Johnson, M. (2009). Control of Spin Precession in a Spin-Injected Field Effect Transistor. Science, 325 (5947), 1515–1518. doi: 10.1126/science.1173667

Wunderlich, J., Park, B.-G., Irvine, A. C., Zarbo, L. P., Rozkotova, E., Nemec, P et. al (2010). Spin Hall Effect Transistor. Science, 330 (6012), 1801–1804. doi: 10.1126/science.1195816

Sih, V., Lau, W. H., Myers, R. C., Horowitz, V. R., Gossard, A. C., Awschalom, D. D. (2006). Generating Spin Currents in Semiconductors with the Spin Hall Effect. Physical Review Letters, 97 (9). doi: 10.1103/physrevlett.97.096605

Fundamentals of nanoelectronics – quantum models. Available at: http://nanohub.org/courses/FoN2

PurdueX. Free online courses from Purdue University. Available at: https://www.edx.org/school/purduex

##submission.downloads##

Опубліковано

2015-10-28

Номер

Розділ

Фізико-математичні науки