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The aim of the study was to compare alpha and beta diversity
indices, assess the overall structure and identify taxa of the
oropharyngeal microbiota in patients with acute tonsillitis
under the influence of smoking.

Materials and methods. 54 samples of oropharyngeal swabs
from patients with acute tonsillitis were analyzed, which
were divided into groups, namely Group 1 (26 people), who
smoked, and Group 2 (28 people), who did not smoke. To as-
sess alpha diversity, the Shannon, Simpson, Pielu, Fisher and
Chao-1 indices were used, for beta diversity, the Whittaker,
Harrison, Wilson-Schmidt and Bray-Curtis indices. The
PAST v.4.03 program was used with PERMANOVA, ANOSIM
(9999 permutations) and SIMPER statistical analysis.
Results. Analysis of the results of alpha-diversity indices
did not reveal statistically significant differences between
groups (p > 0.05). The results of beta-diversity indices
demonstrated a greater diversity of microbial communi-
ties in group 1 (smokers) (Whittaker indices 3.59 vs. 3.05;
Harrison indices 0.33 vs. 0.28). The results of multivariate
analyses (PERMANOVA, ANOSIM) did not reveal statisti-
cally significant differences in the structure of the microbi-
ome of patients with tonsillitis (p > 0.05). SIMPER analysis
demonstrated that a-hemolytic streptococci (20.28%), Neis-
seria spp. (19.59%) belong to taxa responsible for 74.58% of
the total intergroup differentiation of the oropharynx, howev-
er, they show different colonization densities (5.15 in smokers
vs. 4.96 in non-smokers for a-hemolytic Streptococcus spp.
and 1.50 in smokers vs. 2.21 in non-smokers for Neisse-
ria spp.)

Conclusion. Regardless of smoking status, the oropharyn-
geal microbiota of patients with acute tonsillitis is charac-
terized by taxa similarity. However, in patients who smoke,
increased variability of microbial communities is observed,
in particular, a decrease in commensal bacteria of the ge-
nus Corynebacterium spp., a tendency to increase p-hemo-
Iytic streptococci and the appearance of fungi of the genus
Candida spp., which may affect the course of the inflamma-
tory process
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The aim of the study is to assess the current state of the phar-
maceutical market for insulins, including historical stages of
studying the structure of the insulin molecule and its proper-
ties, which formed the basis for the development of commer-
cial preparations and analogs, as well as analysis of promis-
ing biotechnological approaches to improve the treatment of
diabetes mellitus (DM).

Materials and methods. The materials used were scientific
publications, official websites of manufacturing companies,
FDA and EMA databases, clinical trial registries. Methods
of content analysis, comparative, analytical, and generaliza-
tion of information were applied.

Results and discussion. The results indicate that recombi-
nant insulin preparations (from rapid-acting analogs to
long-acting ones) provide better glycemic control but are
limited by high development and production costs. Innova-
tions include combined preparations with GLP-1 agonists,
glucose-sensitive insulins, and oral forms, which face bio-
availability challenges.

Conclusions. The analysis points to the evolution of insu-
lin production technologies from determining the molecule
structure and implementing recombinant DNA technologies,
which enabled the transition to human recombinant prepara-
tions and analogs. The market offers preparations with var-
ious profiles (from ultra-rapid to ultra-long), including bi-
phasic mixtures, improving glycemic control. Combinations
of insulin with GLP-1 agonists, amylin analogs (pramlintide),
and the development of glucose-sensitive insulins have po-
tential for personalized therapy but are limited by technical
challenges (stability, biocompatibility). Oral forms face low
bioavailability, but the use of nanotechnology and effective
excipients opens prospects for improving accessibility and
effectiveness of DM treatment

Keywords: Insulin, recombinant DNA technologies, biosimi-
lars, insulin analogs, oral delivery systems
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The aim: study of innovative world strategies of fight with
antibiotic resistance.

Materials and methods. The study was conducted by ana-
lyzing available scientific literature, open sources in the da-
tabases Google Scholar, PubMed, Clarivate, Web of Science,
Scopus, etc., as well as the results of our own research.

The results. The Global Action Plan on Antimicrobial Re-
sistance, developed by WHO, was approved in 2015, and in
2023, it was found that 134 out of 194 countries, including
Ukraine, which is 69% of the world s countries, had officially
adopted national action plans. However, today there are diffi-
culties in effective communication between all countries and
the full implementation of the Global Plan, national action
plans due to the fact that developing countries have limited
resources for the necessary measures. Antibiotic-resistant
bacteria and antibiotic resistance genes are extremely dan-
gerous for human health, which can be compared to a time
bomb. Therefore, the fight against antimicrobial resistance
requires the consolidation of the work of various industries
and should be based on the following areas: the development
of partnership programs to optimize the use of antibiotics,
the introduction of effective intelligent control and preven-
tion systems; financing programs for the development of new
antimicrobial drugs and alternative treatment methods; in-
creased control and intensification of monitoring of the de-
velopment and spread of resistant microorganisms.
Conclusions. The main reservoirs of antibiotic-resistant bac-
teria and resistance genes are livestock farms, hospitals, sew-
age treatment plants and agricultural lands, so the strategy
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to combat antibiotic resistance should be based primarily on
One Health approaches. The solutions proposed by scientists
to combat antimicrobial resistance — new antibiotics, pro-,
pre-, symbiotic drugs, enzymes for the destruction of biofilms,
adhesion inhibitors and associated therapy with adjuvants or
phages — have a positive effect, but currently still require reg-
ulatory intervention for large-scale use. Effective control of
antimicrobial resistance requires investment, training of spe-
cialists, raising public awareness, comprehensive policies
and regulatory systems that ensure a balance between public
health protection and the appropriate use of antibiotics
Keywords: antimicrobial drugs, antibiotic resistance, «One
Healthy, resistant bacteria, biofilms, adjuvants, CRISPR-Cas
system
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XAPAKTEPUCTHUKA CTPYKTYPHU TA CKJAAY MIKPOBIOTH POTOIVIOTKHA Y HAIIIEHTIB 13
I'OCTPUM TOH3UJIITOM 3AJIEKHO BIJI CTATYCY KYPIHH/I (C. 4-9)

H. 5. Kpasens

Mema 0ocnioxncenHs — NOPIGHAHHA IHOEKCI8 albpa- ma 6ema-pisHOMAHIMmMSA, OYiHKA 3a2albHOI CMpYKmMypu ma ioenmuixayis
MAaKcoHie MiKpoOiomu pomo2iomKu y nayicHmis 3 20Cmpum MoOH3ULIMoM ni0 GNIUBOM KYDIHHSL.

Mamepianu i memoou. [Ipogedeno ananiz 54 3paszxie MasKié 3 pOMO2LOMKU NAYIEHMIE 3 2OCMPUM MOHZULIMOM, Ki OYIuU
po3oineni na epynu, a came Ipyna 1 (26 ocio), saxi kypuau, ma Ipyna 2 (28 oci6), axi ne kypunu. /{na oyinku anega-piznoma-
nimms euxopucmosysanu inoexcu [llennona, Cimncona, Ilieny, @iwepa ma Yao-1, ons 6ema-pisnomanimmsi, indexkcu Bimme-
xepa, Tappicona, Bincona-IlImiou ma bpes-Kepmica. Buxopucmosgysanu npoecpamy PAST v.4.03 3 euxopucmauHam aumanizie
PERMANOVA, ANOSIM (9999 nepmymauyiii) ma cmamucmuunuii ananiz SIMPER.

Pesynomamu. Ananiz pesyivmamie iHOeKci6é anb@a-pisHOMAHIMmMs He 8UABUE CMAMUCIMUYHO 3HAYYWUX GIOMIHHOCMEU
mioe epynamu (p > 0,05).Pesynomamu iHOexcie bOema-pi3HOMAHIMmMA NPOOEMOHCMPY8AU OiNbuy DPISHOMAHIMHICMb
MiKpoOHUX cninbHom y epyni 1 (kypyi) (indexcu Bimmexepa 3,59 npomu 3,05, indexcu Iappicona 0,33 npomu 0,28).
Pesynemamu npoeedenoco mynemusapianmuux auanizsie (PERMANOVA, ANOSIM) ne gusagunu cmamucmuyHo 3HA-
uywux GIOMIHHOCMEN Yy cmpyKmypi Mikpobiomy nayienmis xeopux na mouzunim (p > 0,05). SIMPER-ananizom npode-
MoOHCmpYy8as, wo a-cemonimuuni cmpenmoxoku (20,28%), Neisseria spp. (19,59%) nanescamv 00 maxcouie, wjo 6io-
nogioaroms 3a 74,58% zacanvnoi misxcepynoseoi oughepenyiayii pomoenomku , 00HaK, 0eMOHCMPYIOMb PIZHY WINbHICMb
xonownizayii (5,15 y kypyie npomu 4,96 y nexypyie 015 a-eemonimuyunozo Streptococcus spp. ma 1,50 y kypyie npomu 2,21
v Hekypyie Onst Neisseria spp.).

Bucnosku. Heszanexcno 6i0 cmamycy KypinHs, MIKpobioma pomo2nomsu nayieHmia 3 20Cmpum moH3ULnoMm XapaKmepusyento-
¢ cxooicicmio makcoHis. [lpome, y nayienmis ,ujo Kypsams Cnocmepicaemvp s NiOBUUeHa 8apiabenbHICmb MIKPOOHUX CRIbHOM,
30KpeMa 3MeHen s KoMencanvHux 6axmepii pooy Corynebacterium spp., menoenyis 00 30inblueHHs B-2eMOMTMUUHUX cmpen-
moxoxie ma nosisa epubis pody Candida spp., Ki MOX*CYNb GNAUHYMU HA XI0 3ANATIbHO20 NPOYecy

Kniouogi cnosa: monsunim, mikpobioma pomoenomku, KypiHHs, aib@a-pizHomanimms, OGema-pisHomManimms, oucoios,
PERMANOVA, SIMPER-ananiz
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EBOJIIONIS TEXHOJIOT T BAPOBHUILITBA THCYJIIHY: BIJI ICTOPUYHMX BIZIKPUTTIB CTPYKTYPH
MOJIEKYJIN 10 CYYACHUX THHOBAIIIH (c. 10-31)

0. C. Kamoxnas, H. B. XoxsienkoBa

Memoro 0ocniodicents € OYIHKA CYUACHO20 CMAHY (apMayesmuiHo20 PUHKY IHCYILIHIB, BKII0UAIOYLU ICMOPUYHI emany 6UBYEeHH s
CmpyKmypu Monexyau incyainy ma ii enacmugocmet, sKi 182U 6 OCHOY pO3POOKU KOMepYIliHUX npenapamie ma ananoeis, a
MAKoNHC AHANI3 NEPCNEKMUBHUX OIOMEXHONO2IYHUX NIOX00I8 0I5k NOKPaUeH S TIKV8AHHS YYKpoeo2o diabemy (L1/]).

Mamepianu ma memoou. Mamepiaramu ciy2ysanu Haykoei nyonikayii oQiyitini caumu xomnanit-eupobHnuxis, 6azu FDA
ma EMA, peccmpu xniniunux oocniodcenv. 3acmocogysanucs memoou KOHmeHm-ananizy, NOpieHAIbHO20, AHATTMUYHO20
ma y3aeanbHeHHs iHpopmayii.

Pesynomamu i 062060penns. Pezynomamu ceiouams, wo pekomMOiHanmui npenapamu iHCyniny (610 ueuoKooiiouux ananloie
0o mpueanux) 3abesneuyiomv Kpawuil KOHMpons 2uikemii, ane 00MedceHi 8UCOKOI0 8apmicmio po3pooKu ma eupoOHUYmMed.
Innosayii exarouaromes komodinosani npenapamu 3 aconicmamu GLP-1, entoko3o-uymausi incyninu ma nepopanvti ghopmu, axi
CMUKAOMbCsl 3 GUKIUKAMU OI000CMYNHOCTII.

Bucnogku. Ananiz éxazye na egonoyilo mexHoa0eitl GUpoOHUYMEa iHCcyIiny 6i0 6U3HAUEHH CIPYKNYPU MONEKYIU ma 6npoea-
Ooicers mexnonoziu pexomoinanmuoi JJHK, wo 3a6esneuuno nepexio 00 a00CbKux peKoMOIHARMHUX NPenapamie ma aHaio2is.
Punox npononye npenapamu 3 piznumu npo@inamu (8i0 yibmpausuoKux 00 yYiempampueanux), ekuouaryu oighasui cymiui,
Wo nokpawyrome KOHmpons euikemii. Kombinayii incyniny 3 aconicmamu GLP-1, ananoeamu amininy (npamninmud) ma pos-
POOKA 2NHOKO30-YYMAUGUX THCYIIHIB, MAIOMb NOMEHYIAN 01 NEPCOHANIZ08AHOI mepanii, ane 0OMelceHi MeXHIYHUMU GUKIUKAMU
(cmabinvuicmy, biocymicHicmy). Ilepopanvhi popmu cmukaromscsa 3 HU3bKO 0i000CmMynHicmio, aie UKOPUCHAHHA HAHOMeX-
HONO2II Ma eheKMUSHUX OONOMINCHUX PEUOGUH 8IOKPUBAIOMb NEPCHEKMUBL 00 NOKPAUeHHsL OOCTYNHOCMI Ma epekmugHocni
nikyeannsa L]

Knwowuoei cnosa. Incynin, mexunonoeii pexombinanmnux JHK, Oiocuminapu, ananoeu incyniny, nepopanvHi cucmemu 0o-
cmagxu
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CTPATEI'Ti BOPOTbhBM 3 PE3UCTEHTHICTIO 10 AHTUBIOTUKIB: MOIIYK HOBUX PIILIEHb (c. 32-39)

€. B. Bamuxk, O. O. umepman, O. B. Jlagoryoens, K. A. [lyuenko, A. B. 3axap’es, O. B. [llanoBasioBa

Mema: usueHHs IHHOBAYIUHUX C8IMOBUX cmpamezitl O0OpomvoOU 3 AHMUOIOMUKOPEZUCEHMHICIIO

Mamepianu ma memoou. /[ocnioxcenns nposedeHo Memooom aHalizy 00CMynHoI HAYKO8oI aimepamypu, 8iOKpUMUX 0xcepeil 6
bazax oanux Google Scholar, PubMed, Clarivate, Web of Science, Scopus ma in., a maxoic pe3yniomamis 61acHux 00CIONCEHD.
Pesynomamu. Inobaneruii nian Oill wo0o cmitukocmi 00 aHmumikpoOHux npenapamis, pospoorenuii BOO3, Oye cxsanenuil
6 2015 poyi, a y 2023 poyi ecmanosneno, wo 134 3i 194 kpain, 6 momy uucni it Ykpaina, wo cmanosums 69% kpain ceimy,
0QiyitiHO NPULIHAIU HAYIOHATbHI NAAHU OTll. Ale Ha Cb020OHI € CKIAOHOWI Y eqheKMUBHIL KOMYHIKayii Midc 6cima Kpainamu ma
NOBHOYIHHOMY BUKOHAHHI I 100aIbHO20 NIAHY, HAYIOHATLHUX NIAHIE Olll uepe3 me, Wo Y KPainax, wo po36usaromocs, 0OMexHceHi
pecypcu 0nst HeoOXionux 3ax00ie. Cmiliki 00 anmubiomukie 6axmepii ma eenu aHmudIOMUKOPE3UCTEHMHOCMI € HAO38UUALIHO
Hebe3neyHUMU 015 300P06)5L IOCMEBA, W0 MONMCHA NOPIBHAMU 3 60MO0I0 ynosiibHeHoi 0ii. Tomy bopomvba 3 AaHMUMIKPOOHOIO
pesucmenmuicmio nompebye KOHconioayii podomu pisnux eanyzeil ma NOSUHHA IPYHIMYSAMUCS HA MAKUX HANPIMAX: PO36U-
MOK NAPMHEPCLKUX NPOSPAM 3 ONMUMIZAYIT 3ACMOCYBAHHS AHMUOIOMUKIB, 66€0eHH s eheKMUBHUX CUCTNEM IHMELEKMYANbHO20
KOHMPONIO ma npoQinakmuxu, QiHaHcy8ants npocpam po3pooKu HOBUX NPOMUMIKDOOHUX Npenapamie ma aibmepHamueHux
MemoOi NIKYBAHHS, NIOGUWEHHS. KOHMPOIO Mda IHMEHCUDIKAYist MOHIMOPUHEY PO3GUMKY Md NOWUPEHHS Pe3UCEHMHUX Mi-
KpOOp2aHizmie.

Bucnosku. Ilepesasicno peszepgyapamu cmitikux 00 anmubiomukie 6akmepitl ma 2eHie pesucmeHmHoCmi € meapuHHUYbKI
nionpuemcmeda, KapHi, OYUCHI cnopyou ma CilbCbKO20CHOOApCyKI y2ioos, momy cmpameis 6opomeOU 3 aHmudiomrkopesuc-
MEHMHICMIO NOBUHHA TPYHMYBAMUCS 6 neputy yepey 32i0HO nioxodie «E€oune 300pos’ay. 3anponoHoami eueHuMu cnocoou
piuiennst 01151 6opomvbOU 3 AHMUMIKPOOHOIO CIMIUKICMIO — HOBL AHMUOIOMUKU, NPO-, Npe-, CUMOIOMUYHI npenapamu, hepmermu
015 pyliHYy6anHs OIONIIBOK, iHeIbimopu adeesii ma acoyitiosana mepanis 3 ao)eanmamu abo azamu, mMarOMs NOIUMUSHUL
eghexm, ane na Oanuil yac we NOmpedyIoms pe2yisimopHo20 6MpyuanHs 05 WUPOKOMacumaonozo sacmocyeanns. Egexmusna
60pomvba 3 AHMUMIKPOOHOK Pe3UCTEHMHICII0 BUMASAE THBECIYBAHHS, HABUAHHS (DaXieyis, Ni0suueHHs 00ISHAHOCMI HacCe-
JI€HHL, KOMIIIEKCHOT NONIMUKU Ma Pe2yIamopHUX CUCeM, SKI 3a0e3nedams 6aNanc MidC 3aXUCIOM 2POMAOCHKO20 300P06)si Md
O0YLIbHUM 3ACMOCYBAHHAM AHMUOIOMUKIG

Knrwuosi cnoea: anmumikpooni sacobu, awmubiomuxopesucmeHmuicms, « €oune 300po6’sy, cmiliki 6axkmepii, 0IONAIBKU,
aorioeanmu, cucmema CRISPR-Cas
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