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The aim of the study was to compare alpha and beta diversity 
indices, assess the overall structure and identify taxa of the 
oropharyngeal microbiota in patients with acute tonsillitis 
under the influence of smoking.
Materials and methods. 54 samples of oropharyngeal swabs 
from patients with acute tonsillitis were analyzed, which 
were divided into groups, namely Group 1 (26 people), who 
smoked, and Group 2 (28 people), who did not smoke. To as-
sess alpha diversity, the Shannon, Simpson, Pielu, Fisher and 
Chao-1 indices were used, for beta diversity, the Whittaker, 
Harrison, Wilson-Schmidt and Bray-Curtis indices. The 
PAST v.4.03 program was used with PERMANOVA, ANOSIM 
(9999 permutations) and SIMPER statistical analysis.
Results. Analysis of the results of alpha-diversity indices 
did not reveal statistically significant differences between 
groups  (p > 0.05). The results of beta-diversity indices 
demonstrated a greater diversity of microbial communi-
ties in group 1 (smokers) (Whittaker indices 3.59 vs. 3.05; 
Harrison indices 0.33 vs. 0.28). The results of multivariate 
analyses (PERMANOVA, ANOSIM) did not reveal statisti-
cally significant differences in the structure of the microbi-
ome of patients with tonsillitis (p > 0.05). SIMPER analysis 
demonstrated that α-hemolytic streptococci (20.28%), Neis-
seria spp.  (19.59%) belong to taxa responsible for 74.58% of 
the total intergroup differentiation of the oropharynx, howev-
er, they show different colonization densities (5.15 in smokers 
vs. 4.96 in non-smokers for α-hemolytic Streptococcus spp. 
and 1.50 in smokers vs. 2.21 in non-smokers for Neisse-
ria spp.)
Conclusion. Regardless of smoking status, the oropharyn-
geal microbiota of patients with acute tonsillitis is charac-
terized by taxa similarity. However, in patients who smoke, 
increased variability of microbial communities is observed, 
in particular, a decrease in commensal bacteria of the ge-
nus Corynebacterium spp., a tendency to increase β-hemo-
lytic streptococci and the appearance of fungi of the genus 
Candida spp., which may affect the course of the inflamma-
tory process
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The aim of the study is to assess the current state of the phar-
maceutical market for insulins, including historical stages of 
studying the structure of the insulin molecule and its proper-
ties, which formed the basis for the development of commer-
cial preparations and analogs, as well as analysis of promis-
ing biotechnological approaches to improve the treatment of 
diabetes mellitus (DM).
Materials and methods. The materials used were scientific 
publications, official websites of manufacturing companies, 
FDA and EMA databases, clinical trial registries. Methods 
of content analysis, comparative, analytical, and generaliza-
tion of information were applied.
Results and discussion. The results indicate that recombi-
nant insulin preparations (from rapid-acting analogs to 
long-acting ones) provide better glycemic control but are 
limited by high development and production costs. Innova-
tions include combined preparations with GLP-1 agonists, 
glucose-sensitive insulins, and oral forms, which face bio-
availability challenges.
Conclusions. The analysis points to the evolution of insu-
lin production technologies from determining the molecule 
structure and implementing recombinant DNA technologies, 
which enabled the transition to human recombinant prepara-
tions and analogs. The market offers preparations with var-
ious profiles (from ultra-rapid to ultra-long), including bi-
phasic mixtures, improving glycemic control. Combinations 
of insulin with GLP-1 agonists, amylin analogs (pramlintide), 
and the development of glucose-sensitive insulins have po-
tential for personalized therapy but are limited by technical 
challenges (stability, biocompatibility). Oral forms face low 
bioavailability, but the use of nanotechnology and effective 
excipients opens prospects for improving accessibility and 
effectiveness of DM treatment
Keywords: Insulin, recombinant DNA technologies, biosimi-
lars, insulin analogs, oral delivery systems
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The aim: study of innovative world strategies of fight with 
antibiotic resistance.
Materials and methods. The study was conducted by ana-
lyzing available scientific literature, open sources in the da-
tabases Google Scholar, PubMed, Clarivate, Web of Science, 
Scopus, etc., as well as the results of our own research.
The results. The Global Action Plan on Antimicrobial Re-
sistance, developed by WHO, was approved in 2015, and in 
2023, it was found that 134 out of 194 countries, including 
Ukraine, which is 69% of the world’s countries, had officially 
adopted national action plans. However, today there are diffi-
culties in effective communication between all countries and 
the full implementation of the Global Plan, national action 
plans due to the fact that developing countries have limited 
resources for the necessary measures. Antibiotic-resistant 
bacteria and antibiotic resistance genes are extremely dan-
gerous for human health, which can be compared to a time 
bomb. Therefore, the fight against antimicrobial resistance 
requires the consolidation of the work of various industries 
and should be based on the following areas: the development 
of partnership programs to optimize the use of antibiotics; 
the introduction of effective intelligent control and preven-
tion systems; financing programs for the development of new 
antimicrobial drugs and alternative treatment methods; in-
creased control and intensification of monitoring of the de-
velopment and spread of resistant microorganisms.
Conclusions. The main reservoirs of antibiotic-resistant bac-
teria and resistance genes are livestock farms, hospitals, sew-
age treatment plants and agricultural lands, so the strategy 

to combat antibiotic resistance should be based primarily on 
One Health approaches. The solutions proposed by scientists 
to combat antimicrobial resistance – new antibiotics; pro-, 
pre-, symbiotic drugs; enzymes for the destruction of biofilms, 
adhesion inhibitors and associated therapy with adjuvants or 
phages – have a positive effect, but currently still require reg-
ulatory intervention for large-scale use. Effective control of 
antimicrobial resistance requires investment, training of spe-
cialists, raising public awareness, comprehensive policies 
and regulatory systems that ensure a balance between public 
health protection and the appropriate use of antibiotics
Keywords: antimicrobial drugs, antibiotic resistance, «One 
Health», resistant bacteria, biofilms, adjuvants, CRISPR-Cas 
system
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ХАРАКТЕРИСТИКА СТРУКТУРИ ТА СКЛАДУ МІКРОБІОТИ РОТОГЛОТКИ У ПАЦІЄНТІВ ІЗ 
ГОСТРИМ ТОНЗИЛІТОМ ЗАЛЕЖНО ВІД СТАТУСУ КУРІННЯ (C. 4–9)

Н. Я. Кравець

Мета дослідження – порівняння індексів альфа- та бета-різноманіття, оцінка загальної структури та ідентифікація 
таксонів мікробіоти ротоглотки у пацієнтів з гострим тонзилітом під впливом куріння.
Матеріали і методи. Проведено аналіз 54 зразків мазків з ротоглотки пацієнтів з гострим тонзилітом, які були 
розділені на групи, а саме Група 1 (26 осіб), які курили, та Група 2 (28 осіб), які не курили. Для оцінки альфа-різнома-
ніття використовували індекси Шеннона, Сімпсона, Пієлу, Фішера та Чао-1, для бета-різноманіття, індекси Вітте-
кера, Гаррісона, Вілсона-Шміди та Брея-Кертіса. Використовували програму PAST v.4.03 з використанням аналізів 
PERMANOVA, ANOSIM (9999 пермутацій) та статистичний аналіз SIMPER. 
Результати. Аналіз результатів індексів альфа-різноманіття не виявив статистично значущих відмінностей 
між групами (p > 0,05).Результати індексів бета-різноманіття продемонстрували більшу різноманітність 
мікробних спільнот у групі 1 (курці) (індекси Віттекера 3,59 проти 3,05; індекси Гаррісона 0,33 проти 0,28). 
Результати проведеного мультиваріантних аналізів (PERMANOVA, ANOSIM) не виявили статистично зна-
чущих відмінностей у структурі мікробіому пацієнтів хворих на тонзиліт (p > 0,05). SIMPER-аналізом проде-
монстрував, що α-гемолітичні стрептококи (20,28%), Neisseria spp. (19,59%) належать до таксонів, що від-
повідають за 74,58% загальної міжгрупової диференціації ротоглотки , однак, демонструють різну щільність  
колонізації (5,15 у курців проти 4,96 у некурців для α-гемолітичного Streptococcus spp. та 1,50 у курців проти 2,21 
у некурців для Neisseria spp.).
Висновки. Незалежно від статусу куріння, мікробіота ротоглотки пацієнтів з гострим тонзилітом характеризуєть-
ся схожістю таксонів. Проте, у пацієнтів ,що курять спостерігається підвищена варіабельність мікробних спільнот, 
зокрема зменшення коменсальних бактерій роду Corynebacterium spp., тенденція до збільшення β-гемолітичних стреп-
тококів та поява грибів роду Candida spp., які можуть вплинути на хід запального процесу
Ключові слова: тонзиліт, мікробіота ротоглотки, куріння, альфа-різноманіття, бета-різноманіття, дисбіоз, 
PERMANOVA, SIMPER-аналіз
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ЕВОЛЮЦІЯ ТЕХНОЛОГІЙ ВИРОБНИЦТВА ІНСУЛІНУ: ВІД ІСТОРИЧНИХ ВІДКРИТТІВ СТРУКТУРИ 
МОЛЕКУЛИ ДО СУЧАСНИХ ІННОВАЦІЙ (c. 10–31)

О. С. Калюжная, Н. В. Хохленкова

Метою дослідження є оцінка сучасного стану фармацевтичного ринку інсулінів, включаючи історичні етапи вивчення 
структури молекули інсуліну та її властивостей, які лягли в основу розробки комерційних препаратів та аналогів, а 
також аналіз перспективних біотехнологічних підходів для покращення лікування цукрового діабету (ЦД).
Матеріали та методи. Матеріалами слугували наукові публікації офіційні сайти компаній-виробників, бази FDA 
та EMA, реєстри клінічних досліджень. Застосовувалися методи контент-аналізу, порівняльного, аналітичного 
та узагальнення інформації.
Результати і обговорення. Результати свідчать, що рекомбінантні препарати інсуліну (від швидкодіючих аналогів 
до тривалих) забезпечують кращий контроль глікемії, але обмежені високою вартістю розробки та виробництва. 
Інновації включають комбіновані препарати з агоністами GLP-1, глюкозо-чутливі інсуліни та пероральні форми, які 
стикаються з викликами біодоступності. 
Висновки. Аналіз вказує на еволюцію технологій виробництва інсуліну від визначення структури молекули та впрова-
дження технологій рекомбінантної ДНК, що забезпечило перехід до людських рекомбінантних препаратів та аналогів. 
Ринок пропонує препарати з різними профілями (від ультрашвидких до ультратривалих), включаючи біфазні суміші, 
що покращують контроль глікемії. Комбінації інсуліну з агоністами GLP-1, аналогами аміліну (прамлінтид) та роз-
робка глюкозо-чутливих інсулінів, мають потенціал для персоналізованої терапії, але обмежені технічними викликами 
(стабільність, біосумісність). Пероральні форми стикаються з низькою біодоступністю, але використання нанотех-
нологій та ефективних допоміжних речовин відкривають перспективи до покращення доступності та ефективності 
лікування ЦД
Ключові слова. Інсулін, технології рекомбінантних ДНК, біосиміляри, аналоги інсуліну, пероральні системи до-
ставки
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СТРАТЕГІЇ БОРОТЬБИ З РЕЗИСТЕНТНІСТЮ ДО АНТИБІОТИКІВ: ПОШУК НОВИХ РІШЕНЬ (c. 32–39)

Є. В. Ващик, О. О. Цимерман, О. В. Ладогубець, К. А. Дученко, А. В. Захар’єв, О. В. Шаповалова

Мета: вивчення інноваційних світових стратегій боротьби з антибіотикорезистентністю 
Матеріали та методи. Дослідження проведено методом аналізу доступної наукової літератури, відкритих джерел в 
базах даних Google Scholar, PubMed, Clarivate, Web of Science, Scopus та ін., а також результатів власних досліджень.
Результати. Глобальний план дій щодо стійкості до антимікробних препаратів, розроблений ВООЗ, був схвалений 
в 2015 році, а у 2023 році встановлено, що 134 зі 194 країн, в тому числі й Україна, що становить 69% країн світу, 
офіційно прийняли національні плани дій. Але на сьогодні є складнощі у ефективній комунікації між всіма країнами та 
повноцінному виконанні Глобального плану, національних планів дій через те, що у країнах, що розвиваються, обмежені 
ресурси для необхідних заходів. Стійкі до антибіотиків бактерії та гени антибіотикорезистентності є надзвичайно 
небезпечними для здоров›я людства, що можна порівняти з бомбою уповільненої дії. Тому боротьба з антимікробною 
резистентністю потребує консолідації роботи різних галузей та повинна ґрунтуватися на таких напрямах: розви-
ток партнерських програм з оптимізації застосування антибіотиків; введення ефективних систем інтелектуального 
контролю та профілактики; фінансування програм розробки нових протимікробних препаратів та альтернативних 
методів лікування; підвищення контролю та інтенсифікація моніторингу розвитку та поширення резистентних мі-
кроорганізмів.
Висновки. Переважно резервуарами стійких до антибіотиків бактерій та генів резистентності є тваринницькі 
підприємства, лікарні, очисні споруди та сільськогосподарські угіддя, тому стратегія боротьби з антибіоткорезис-
тентністю повинна ґрунтуватися в першу чергу згідно підходів «Єдине Здоров’я». Запропоновані вченими способи 
рішення для боротьби з антимікробною стійкістю – нові антибіотики; про-, пре-, симбіотичні препарати; ферменти 
для руйнування біоплівок, інгібітори адгезії та асоційована терапія з ад›ювантами або фагами, мають позитивний 
ефект, але на даний час ще потребують регуляторного втручання для широкомасштабного застосування. Ефективна 
боротьба з антимікробною резистентністю вимагає інвестування, навчання фахівців, підвищення обізнаності насе-
лення, комплексної політики та регуляторних систем, які забезпечать баланс між захистом громадського здоров›я та 
доцільним застосуванням антибіотиків
Ключові слова: антимікробні засоби, антибіотикорезистентність, «Єдине Здоров’я», стійкі бактерії, біоплівки, 
ад›юванти, система CRISPR-Cas


