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The brain targeting drug delivery system is the technique and process to deliver the drug into brain or central nerves 

system (CNS). The main problem arise during brain targeting in case of several brain related diseases and disorders 

such as CNS malignancy, brain abscess, multiple sclerosis, schizophrenia etc. selective and limiting permeation nature 

of barriers i.e. blood brain barrier (BBB) and blood cerebrospinal fluid barrier (BCSF), these two barriers only allow 

highly lipophilic molecule enters into brain and is one of the greatest clinical impediment of treatment of brain and 

CNS diseases and disorders.  To treated this type of diseases and disorders drugs are targeted into brain and drug must 

be cross these two barriers they’re by different types of approaches are used to delivered drug molecules.  

Aim of research. The main aim of this review paper is to compile all the approaches, strategies and techniques used for 

brain targeted drug delivery in a single paper/ article.  

Material and method. To prepare this manuscript, various keywords were searched in different engines such as 

Google, Yahoo and Bing etc. The available information in public domain was collected and classified according to 

brain drug delivery system. This review deals with approaches and current strategies used to enhance the brain target-

ed drug delivery system. The approaches for brain targeting – invasive, non- invasive and miscellaneous techniques, by 

using these approaches enhance the drugs delivery and drugs are easily across BBB and BCSF. 

Result. The different type of approaches and strategies used to enhance the drug delivery into brain and CNS. All these 

techniques described in this paper are applied for overcoming the problems that arises during treatment of brain relat-

ed diseases. This review paper has a list of different types of models (In-vitro and In-vivo) used in study of brain and 

CNS drug delivery. 

Conclusions. Drug delivery to brain for treating a various diseases and disorders are very difficult and challenging 

because the delivery of drug molecules must be pass through the BBB and BCSF. Overcome this difficulties and chal-

lenges certain approaches and technique such as invasive, non-invasive, intranasal delivery of drug, ocular delivery of 

drug and focused ultrasound technique are used to brain targeting. They are help to penetrate the drug molecule 

through BBB and CSF very easily and enhance the efficacy of treatment. This review article covered current approach-

es and strategies of brain targeting drug delivery in past five to ten years. These approaches and strategies are used to 

the brain delivery of drug, proteins, peptides, amino acids, etc.  

Keywords: blood brain barrier (BBB); blood cerebrospinal fluid barriers (BCSF) of central nerves system; brain tar-

geted drug delivery 
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1. Introduction 

The brain targeted drug delivery system is the 

process of passing active drug molecules across the 

blood brain barrier (BBB) and blood cerebrospinal fluid 

(CSF) [1], for the purpose of targeting brain disease and 

disorders like CNS disorder, CNS malignancy and vari-

ous brain disorders as Parkinson’s, Alzheimer’s, brain 

abscess, epilepsy, multiple sclerosis, sleeping sickness 

(late-stage neurological trypanosomiasis)
 
[1–3]. 

Blood brain barrier acts as a big stumbling block 

in the allocation of drugs in to the CNS. BBB plays vital 

role in the selectivity of many drugs, furthermore, it is 

well known that the hydrophilic drugs possess low affini-

ty towards the BBB as compare to hydrophobic drugs 

[4]. Brain targeting drug must cross the BBB or bypass 

the barrier, which will affect brain in well-organized 

manner [5]. The BBB and BCSFB do not only defend the 

CNS against communicable agents and toxic agents, but 

also make a consequence to the systemic drug delivery 

into the CNS [6, 7]. BBB and BCSFB also control trans-

fer of molecules among the blood, brain parenchyma and 

CSF. They help in transporting water and lipid soluble 

substances from blood circulation into CNS [5]. 

 

1.1. Blood brain barrier 
The BBB is an almost resistant, highly demand-

ed and energetic specialize barrier system of capillary 

endothelial cells that defends the brain against organ-

isms and unwanted and harmful substances
 
[8, 4]. It 

consists of capillary endothelial cell which are con-

nected with each other by continuous tight intercellu-

lar junction [6].  
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Fig. 1. Blood brain barrier 

 

A solute cross to brain via only two pathways. 

Passive diffusion through the lipoidal barrier: - That is 

confined to small molecules with a molecular weight 

about 450 Daltons, and having extreme o/w partition 

coefficient
 
[9]. 

Active transport: for essential nutrients such as 

sugars and amino acids
 
[9]. 

 

1.2. Blood -cerebrospinal fluid barrier (BCSF) 
BCSFB acts as barrier to drugs entering the CNS. 

The cerebrospinal fluid is formed mainly by the choroid 

plexus of the lateral, 3
rd

 and 4
th

 ventricles and is similar 

to the ECF of brain. Same as blood brain barrier, only 

highly lipid soluble drug can cross the blood-CSF barrier
 

[7, 10, 11]. 

 

 
Fig. 2. Blood cerebrospinal fluid barrier 

 

Factor affecting drug transport across BBB 

[12, 13]: 

– concentration gradient of drug; 

– molecular weight of drug; 

– lipophilicity of the drug components; 

– cerebral blood movement; 

– cellular enzymatic solidity; 

– pathological station. 

Physiological factors affecting drug delivery to 

CNS [14] 

– passive diffusion; 

– carrier-mediated (active) transport; 

– amino acid transporters; 

– glucose transporters; 

– monocarboxylic acid transporter; 

– peptide transport systems; 

– vesicular transport; 

– transferrin; 

– insulin. 

 

2. Approaches for brain targeted drug delivery 

system 

Essentially, two methods have been designated to 

actively improve drug delivered to the brain after system-

ic administration: either an introductory of the neuropro-

tective BBB by osmotic imbalance and ultrasound or 
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vasoactive of compounds (e.g., bradykinin or P-

glycoprotein inhibitors)
 
[10]. The approaches for brain 

targeting have been divided into invasive and non-

invasive categories. The invasive approaches include 

momentary increase of BBB permeability, while non-

invasive approach involves modification of drug mole-

cule via physiological, chemical or colloidal carrier sys-

tem approach
 
[15]. 

 

 
Fig. 3. Approaches for brain targeted drug delivery 

 

 
Fig. 4. Non-invasive techniques for brain targeted drug delivery 

 

Advantages of approaches
 
[15]: 

1. The BBB disruption approach using osmotic 

opening is invasive and may allow the entry of unwanted 

components into the brain. 

2. The infusion of hypertonic mannitol leads to 

eversible shrinkage of the cerebrovascular endothelial 

cells and subsequently increase in permeability of the 

drug. 

3. The colloidal delivery systems take the ad-

vantage of already existing biochemical transport systems 

(like, LDL system, insulin receptor system, etc.) of the 

brain as the brain is dependent on blood for delivery of 

useful substrates as well as removal of metabolic wastes. 

4. Various types of nanoparticular drug delivery 

systems have been exploited for brain-targeted delivery. 

This system enhanced the brain uptake. 
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2.1. Invasive approach 

• Merits of invasive approach 

Broad range of formulations can be given by this 

approach either IC /ICV route. This type of approach can 

be applicable for the delivering small as well as large 

molecules and it is also given in combination or alone 

itself [16]. 

• Demerits of invasive approach 

It requires high cost hospitalization and anesthetic 

condition. Disruption of Blood brain barrier results in 

spreading of cancerous cells. It may be possible the en-

tering of unwanted blood components. Neurons can be 

lastingly damaged after applying this approach [16]. 

 

2.1.1. Intracerebral implants (IC) or injection  

Both are bolus injection of active-

chemotherapeutic agents and it is a placement of a bio-

degradable compounds, active-chemotherapeutic im-

pregnated, wafer into a tumor resection cavity and it is 

based on the principle of diffusion to drive the drug into 

the infiltrated brain
 
[17, 18]. The drugs directly delivered 

into the brain parenchymal space or surrounding the 

spinal cord and drugs can be administered by
 
[1, 19]: 

1. Direct injection via intrathecal catheter route.  

2. Control release matrices.  

3. Microencapsulated chemicals.  

 

2.1.2. Intracerebral ventricular infusion (ICV)  

The described concentration of a drug in the brain 

is only 1–2 % of the CSF concentration at just 1–2 mm 

from the surface. Drugs are easily distributed to the sur-

face of the brain via an ICV but drugs are not properly 

delivered to the brain parenchyma
 
[20]. The pharmaco-

logical effects can be seen after ICV administration, if 

the target receptors of the drugs (for example, opioid, 

peptides) are located near the ependymal surface of the 

brain
 
[17, 21]. 

• Limitations: 

– very low parenchymal diffusion of drug [20]; 

– unless the target is close to the ventricles it is not 

an effective method of brain targeted drug delivery [17]. 

 

2.1.3. Convection-enhanced delivery (CED)  

In this type of approach, by applying surgical ex-

posure of brain, direct placement or insertion of a small 

diameter catheters into the brain parenchyma takes place. 

Through this catheter drug is actively pumped into brain 

for several days and drug is an eventually penetrated in 

the interstitial spaces [22, 23]. Convection-enhanced 

delivery have been performed in laboratory experiments 

for delivery of high molecular weight proteins 2 cm from 

the injection site of the brain parenchyma after 2 h of 

continuous infusion
 
[17, 20]. 

 

2.1.4. Polymer or microchip 

The number of biodegradable polymers has been 

used to formulate interstitial wafers and microchips for local 

delivery to the brain and natural and synthetic polymers like 

chitosan, gelatin, human serum albumin, polycaprolactone, 

polylactic acid and poly lactic-co-glycolic acid are used to 

controlled drug delivery to the brain [24]. The combined 

drug is released by a combination of polymer degradation 

and diffusion mechanism. It can be controlled by modifying 

the composition of the polymer. Microchips hold each drug 

containing its own reservoirs and in divergence to interstitial 

wafers, they can be used to deliver either single or multiple 

drugs, each drug has its unique release profile to the sur-

rounding parenchyma [25–27]. 

 

2.1.5. BBB disruption 

Neuwelt discovered this technique in year 1989
 

[10], it was used for humans. Disruption of the BBB can 

open access of the brain to components in the blood by 

making the tight junction between the endothelial cells of 

the brain capillaries leaky
 
[17, 28]. According to this 

approach the temporary disruption of barrier by injecting 

mannitol sugar solution into neck arteries so that brain 

capillaries possess a high sugar concentration with water 

oozing out of endothelial cells, thereby shrinking them 

and opening the tight junction
 
[10, 29]. 

Some of the important techniques for disrupting 

BBB are: 

Osmotic disruption 

These BBB disruption techniques allow the open-

ing of CNS for delivery of a several drugs and it is en-

hanced the BBB permeation of drugs molecules [30]. 

Endothelial cells shrink due to osmotic shock arise, there 

by disrupting of the tight junctions. Intracarotid admin-

istration of a hypertonic mannitol solution with subse-

quent administration of drugs can increase drug concen-

tration in brain and tumor tissue to reach therapeutic 

concentration
 
[20, 31].  

 
Fig. 5. Representation of osmotic disruption 
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MRI-guided focused ultrasound BBB disrup-

tion technique 

Ultrasound has been shown to be capable of BBB 

disruption [32]. The combination of microbubbles (pre-

formed microbubbles of ultrasound contrast agent, with a 

diameter of 2–6 μm which is injected into the blood 

stream before exposures to ultrasound). This technique 

has been shown to increase the distribution of Herceptin 

in brain tissue by 50 % in a mice model
 
[17, 33]. 

Side effects: some side effects cause by BBB dis-

ruption approach
 
[10]: 

1. Unwanted delivery of anticancer agents to 

normal brain tissue. 

2. Transient increase in intracranial pressure. 

3. Physiological stress. 

 

2.2. Non-invasive techniques 

The non-invasive approaches mainly contain ad-

sorption mediated drug transport mechanism (AMT), 

carrier mediated drug transport mechanism (CMT) and 

receptor mediated drug transport mechanism (RMT). The 

carrier mediated drug transport (CMT) mechanism can 

mediate the entrance of main nutrients like amino acid, 

glucose, monocarboxylic acid, nucleotides and vitamins 

into the brain
 
[34]. Different variation of non-invasive 

technique of brain targeted drug delivery methods have 

been investigated, that make use of the brain blood vessel 

networking system for drug distribution [20]. 

2.2.1. Physiological approach  

Receptor mediated delivery  

RMT is comprised of three steps
 
[35, 36] 

• Receptor – mediated endocytosis at the luminal 

membrane of the capillary endothelial cell. 

• Movement through the 300 nm of endothelial 

cytoplasm. 

• Exocytosis across the abluminal endothelial 

membrane into the brain interstitial fluid. 

 

Transferrin receptor (TR) mediated transcytosis  

The TfR might be the most well-known RMT sys-

tem, which might mediate the delivery of iron to the 

brain by bonding of the transferrin (Tf). Human TfR is a 

transmembrane glycoprotein, containing of two identical 

monomers with 90-kDa linked by intermolecular disul-

fide bonds [37]. The TfR is highly expressed on the 

BCECs, and has a high affinity toward the Tf. Sufficient-

ly studies have been shown that the TfR-Tf conjugated 

mechanism could mediate the targeting delivery of drug 

to the brain
 
[10-36]. 

Insulin receptor mediated  

Insulin receptor (IR) has been extensively stud-

ied as a part of RMT system. It could mediate the 

transport of blood-borne insulin into the brain paren-

chyma. IR is a transmembrane glycosylated protein, 

which consists of two α and two β chains linked by 

disulfide bonds [38]. The so-called insulin molecular 

pocket is formed by the two α subunits. This results in 

an increase in tyrosine phosphorylation of the β subu-

nit, and induce a conformational change of the insulin 

receptor to form a channel (that could allow trans-

membrane transport of molecule). The application of 

insulin as an RMT-targeting vector is limited in vivo, 

due to the short serum half-life of insulin (10 minutes) 

and hypoglycemia caused by exogenous administra-

tion of insulin
 
[35, 39]. 

Biological approach  

Biological approaches of CNS drug delivery pri-

marily emanate from the understanding of the physiolog-

ical and anatomical nuances of the BBB transportation. 

Of the many available approaches, conjugation of a drug 

with antibodies is an important mechanism. Other bio-

logical methods for targeting exploit ligands in the form 

of sugar or lectins, which can be directed to specific 

receptors found on cell surfaces. The antibody-drug con-

jugate is directed towards an antigen residing on or with-

in the target tissues. Antibodies are particularly well 

suited for targeting BBB receptor-mediated transcytosis 

systems given their high affinity and specificity for their 

ligands
 
[38, 40]. 

Chemical approach  

In non-invasive techniques, chemical structure of 

drugs is transformed to improve physicochemical proper-

ties and functionalities. The prodrug method is used in 

chemical modification, where drug modified in to the 

more lipophilic drug. In chemical method, molecular 

packaging is used to increase the penetration of peptides 

through the BBB
 
[5-41]. In molecular packaging three 

steps are followed: 

1. Increased lipophilicity to enhance passive 

transport. 

2. Prevention of premature degradation by in-

creasing enzymatic stability. 

3. Exploitation of the lock to provide targeted. 

Prodrug 
Prodrugs are defined as compounds that, on ad-

ministration, must undergo chemical conversion by met-

abolic processes before becoming an active pharmaco-

logical agent, with chemical modification, the prodrug 

method is used to make a drug more lipophilic [42, 43]. 

For example, morphine cannot enter the CNS by itself. 

After latentiation via acetylation of both hydroxyl 

groups, morphine can easily traverse the BBB and reach 

an effective concentration in brain
 
[44, 45].  

Prodrug delivery in brain/CNS: 

a. Lipidization approach [46]. 

b. Endogenous transporters in CNS Prodrug De-

livery [46]. 

c. Receptor-mediated Prodrug Delivery [46]. 

d. Antibody and gene directed Prodrug Thera-

pies [46]. 

e. Neuropeptides delivery in CNS by Prodrug Ap-

proach [47].  
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Fig. 6. Representation of prodrug approach for brain delivery 

 

2.2.4. Colloidal approach 

Colloidal drug carriers such as liposomes and NPs 

are able to modify the distribution of an associated sub-

stance. They can therefore be used to improve the thera-

peutic index of drugs by increasing their efficacy and/or 

reducing their toxicity. If these delivery systems are 

carefully designed with respect to the target, they may 

provide one solution to some of the delivery problems 

posed by new classes of active molecules such as pep-

tides, proteins, genes, and oligonucleotides [48]. Colloi-

dal drug delivery vehicles have been studied for almost 

30 years, but the few liposome-based formulations al-

ready on the market are mainly concerned with reducing 

the side effects of the encapsulated drugs. Now that the 

interactions between particles and biological milieu are 

better understood, “stealth” liposomes and NPs which 

show diminished phagocytosis have been developed and 

the range of sites which can be reached has been extend-

ed
 
[48, 49]. 

Vesicular system. Liposome  

Liposomes are self-assembling vesicular struc-

tures based on one or more lipid bilayers encapsulating 

an aqueous core [50]. The major lipidic components of 

liposomes are usually phospholipids, which are am-

phiphilic moieties with a hydrophilic head group and two 

hydrophobic chains [51, 52]. On the basis of their size 

and their number of lipid bilayers, liposomes are general-

ly classified into multilamellar vesicles (MLVs, diameter 

> 200 nm), large unilamellar vesicles (diameter 100–

1000 nm) and small unilamellar vesicles (diameter < 100 

nm) [48, 53, 54]. Although liposomes have been reported 

to enhance the uptake of certain drugs into the brain after 

intravenous injection. Liposomes are sterically stabilized 

by attaching ligands to the surface of the liposomes. A 

recent application of transferrin surface-conjugated lipo-

somes includes the delivery of the anticancer drug 5-

fluorouracil (5-FU) to brain. 5-FU is one of the most 

powerful anticancer agents
 
[55]. Various liposomal for-

mulations have been used to transport peptide and pro-

tein drugs across the BBB. For example, the intraperito-

neal administration of liposomes entrapping GABA led 

to a decrease of the epileptic activity in rat models of the 

disease, in contrast to that observed with the free drug. 

Immunoliposomes bearing an OX26 antibody on their 

surface have been successfully used to deliver digoxin to 

the CNS [48]. 

 

 
Fig. 7. Generalized structure of liposome 

 

Niosomes  
Niosomes are vesicular nanocarriers and have 

gained much attention as novel drug delivery systems in 

the last three decades due to their unique characteristics 

for transdermal application. Niosome are self–

assembling non–ionic surfactants also called as non–

ionic liposomes formed from non-ionic surfactants in an 

aqueous environment [56, 57]. It has high potential to act 

as carriers for poorly soluble drugs. Liposomes and nio-

somes are same in structure [58]. 

One of the key advantages of liposomes and nio-

somes is the possibility that they could be targeted to the 

brain by exploiting receptor-mediated transcytosis, by 

incorporating a targeting moiety on their surface. For 

example, glucose bearing niosomes, encapsulating VIP, 

have been shown to deliver VIP to the brain after intra-

venous administration thus demonstrating that the glu-

cose transporter GLUT1 is a useful carrier for efficient 

drug delivery to the CNS [48]. 

 

Nanocarrier systems. Nanoparticles  

Nanoparticles are solid, colloidal particles con-

sisting of macromolecular substances that vary in size 

from 10 nm to 1000 nm [59, 60]. The drug of interest 

is either dissolved, entrapped, adsorbed, attached or 
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encapsulated into them nanoparticle matrix. Depend-

ing on the method of preparation, nanoparticles, nano-

spheres or nano capsules can be obtained with differ-

ent properties and release characteristics for the en-

capsulated therapeutic agent [61]. NPs possess the 

advantage of a high drug loading capacity and can 

provide protection against chemical and enzymatic 

degradation. Examples of synthetic polymers used to 

prepare NPs are poly (alkyl cyanoacrylate) (PACA), 

acrylic copolymers, poly D, L-lactide-co-glycolide), 

and poly(lactide). NPs have also been prepared from 

natural proteins (albumin and gelatin) and polysaccha-

rides, starch and chitosan [48]. 

 

 
Fig. 8. Generalized structure of nanoparticle 

 

Solid lipid nanoparticles  
Solid lipid nanoparticles (SLN) are colloidal par-

ticles composed of biocompatible/biodegradable lipid 

matrix that is solid at body temperature and exhibit size 

in a range of 100 to 400 nm. SLN offer several ad-

vantages such as controlled drug release, targeted deliv-

ery, increased drug stability, high drug payload, least 

biotoxicity, large scale production and ease of steriliza-

tion [62 – 64]. General ingredients used in the prepara-

tion of SLN are solid lipid(s), emulsifier(s) 

and water. The term “lipid” has a broader 

sense here and includes triglycerides (e.g. 

tristearin), fatty acids (e.g. stearic acid), 

partial glycerides (e.g. Imwitor), steroids 

(e.g. cholesterol) and waxes (e.g. acetyl 

palmitate)
 
[65]. SLN are widely used for the 

delivery of active pharmaceutical ingredients 

to the brain because of the advantages men-

tioned above and its enhanced ability to cross 

BBB. A higher affinity of the SLN to the 

porcine brain capillary endothelial cells 

(BCEC) was shown in comparison to macro-

phages. In vivo studies in rats showed that 

fluorescent labelled SLN were detected high-

ly in the brain after i.v. administration
 
[66]. 

In particular, delivery to the brain of anti-

tumor drugs, including camptothecin, doxo-

rubicin and paclitaxel, incorporated into 

SLNs and PEGylated SLNs is studied. In comparison 

with surfactant coated polymeric NPs (specifically useful 

in bypassing BBB), SLN have also been evaluated for 

brain delivery of the potent and frequently used HIV 

protease inhibitor (PI), atazanavir, that, like other PIs 

exhibits low brain permeability
 
[55]. 

 

 
Fig. 9. Generalized Structure of Solid-Lipid  

Nanoparticle 

 

Nanoemulsion 
Nanoemulsion (NEs) are oil-in-water (O/W) or 

water-in-oil (W/O) coarse dispersions system of two 

immiscible liquids stabilized by using appropriate amount 

of surfactant(s), with a mean droplet diameter of about 100 

nm, even if in literature upper size limits of Nanoemulsion 

up to 300 nm have been reported. As the size of the drop-

lets is expressively smaller than the wavelength of visible 

light. Visible appearance of NEs are transparent or from 

transparent-to-milky-white [67, 68]. Nanoemulsion by 

virtue of their lipophilic nature and low globule sizes are 

significantly absorbed by intranasal delivery due to in-

creased uptake by nasal mucosa. Nanoemulsion are modi-

fied to nano gelling systems (in-situ gelling system), coat-

ed particulate system or mucoadhesive systems to over-

come issues arise during fast nasal clearance and to im-

prove mucosal absorption [69, 70]. 

 

Microemulsion  
MEs are pseudo ternary systems including oil, 

water and surfactant, frequently used in combination 

with co-surfactants which exhibit specific physicochemi-

cal properties like clarity, thermodynamic stability, low 

 
Fig. 10. Generalized structure of nanoemulsion 
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viscosity and isotropic nature [71]. They are fundamen-

tally stable, single-phase swollen micellar solutions 

which form spontaneously and offer the benefit of incor-

poration of large amount of lipophilic and/or hydrophilic 

drugs [72, 73].  

The droplets in a microemulsion are in the range 

of 0.1–1.0μm [74]. 

Types of microemulsions: 

1. o/w microemulsion 

2. w/o microemulsion 

 

 
Fig. 11. Generalized structure of microemulsion 

 

2.3. Miscellaneous techniques 

Iontophoretic delivery  

Recently, there has been an increased interested 

area in using the iontophoretic technique for CNS drug 

targeted delivery. Iontophoresis is a method to deliver 

ionized molecules across the BBB by applying external 

electric filed (current) [75]. Iontophoretic devices using 

the olfactory pathway have been designed for drug deliv-

ery to the CNS and brain. Devices have also been pre-

sented for enhancing delivery of macromolecule agents 

to the brain and CNS. With programmable transportation, 

these devices allow ions to enhanced drug delivery into 

the brain under controlled manipulation
 
[76, 77]. Ionto-

phoretic technique is used to deliver the protein and pep-

tide into brain [78]. 

 
 

Fig. 12. Schematic representation of iontophoretic delivery 

 

Focused Ultrasound (FUS) Technique  
Technological advancement with FUS has been 

demonstrated the capability to use the ultrasound in 

combination with gas microbubbles to momentarily and 

reversibly enhancing BBB permeability, aiding in drug 

delivery into the brain [79, 33]. FUS concentrates sound 

energy and deposits it in a small target volume in the 

brain with minimal or no consequences to the surround-

ing tissue. The focal spot (area of highest energy) is con-

tained within a small area at a targeted distance from the 

transducer surface [80]. When electronic power is ap-

plied, the piezoelectric material of the transducer con-

verts that energy into mechanical motion
 
[20, 81]. Thus, 

generating ultrasound, which spreads through the skull 

and brain [82]. 

 

 
 

Fig. 13. Schematic representation of focused ultrasound 

(FUS) approach 
 

Intranasal delivery 
Nasal delivery also known as olfactory delivery of 

drug. The nasal pathway is administration route of active 

pharmaceutical ingredients for local action, systemic 

action and direct targeting to brain and CNS [83]. For 

some time, the BBB has delayed the advance of many 

exciting CNS drug applicants due to their less distribu-

tion into the CNS. Due to the different connection of the 

nose and the CNS, the olfactory route can deliver phar-

macological active agents into the brain by crossing the 

BBB. The absorption of drug across the olfactory area of 

the nose offers a different feature and greater option to 

targeting drugs into brain [84, 85]. Drug administered 

through intranasal route of administration is absorbed by 

the systemic circulation. Drug absorption through nasal 

respiratory epithelium follows paracellular, transcellular 

absorption, carrier-mediated transport, and transcytosis 

mechanism [86, 87]. Administration of drug cavernous 

into the nasal cavity to nasal mucosa, it is led to direct 

transfer of drug into brain via olfactory pathway. Olfac-

tory region consists of olfactory neurons that transmit the 

drugs from olfactory mucosa to the brain and it is a slow 

process of drug transfer [88]. Olfactory epithelium path-

way is affective way of drug transportation [89, 90]. 

Drug is passed through olfactory epithelium pathway via 

paracellular drug transport mechanism into perineural 

space and transferred directly to the brain [97, 92]. 

Intranasal drug delivery pathway. Olfactory 

neural pathway 

Drug material is moving from the olfactory region 

in the nasal cavity to CSF or brain parenchyma, it is also 
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transverse to the nasal olfactory epithelium. In this path-

way, the arachnoid membrane surrounding the subarach-

noid space having three different pathways across the 

olfactory epithelium, first is transcellular pathways 

Second is a paracellular pathway in which, the tight 

junctions between Sustentacular cells having the clefts 

between Sustentacular cells and olfactory neurons 

[93]. Nasal absorption of hydrophilic drugs under go 

diffusion mechanism through aqueous channels or 

pores. The passive diffusion for the lipophilic drugs is 

mediated rapidly and at a high rate. This route is main-

ly responsible for the transport of lipophilic drug mol-

ecules and the transport rate is depended in their lipo-

philicity [93, 94]. 

Terminal neural pathway 
Trigeminal nerve pathways are the largest nerve 

pathway among all cranial nerve pathways in which, 

innervates the respiratory and olfactory epithelium of the 

nasal passages and enters the central nervous system 

(CNS). The trigeminal nerve is communicating the sen-

sory information from the nasal cavity, oral cavity, eye-

lids and the cornea to CNS via ocular, maxillary and the 

mandibular divisions of trigeminal nerves. The ocular 

and maxillary nerve is important for nose to brain deliv-

ery as neurons from these branches passed directly 

through the nasal mucosa [95]. 

Glymphatic pathway  

Glymphatic system deals with CSF-ISF exchange, 

including transport of solutes and clearance of accumu-

lated metabolites as well as solutes. Impairment of glym-

phatic system increases CSF influx without increase in 

ISF efflux causing accumulation of extracellular solutes 

which leads to cognitive decline. Altering CSF-ISF ex-

change promotes solute and metabolite clearance and this 

may be important in management of CNS related diseas-

es [93]. 

Factors affecting nasal drug delivery [96]: 

– molecular weight and solubility; 

– osmolality and volume; 

– blood flow and pH; 

– pharmaceutical dosage forms; 

– mucociliary clearance; 

– transport systems. 

 

 
Fig. 14. Olfactory Region of Brain 

 

 
Fig. 15. Schematic representation of intranasal drug delivery 
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3. Name of models used for study of brain de-

livery and investigation of brain problems 

In vitro models [97]: 

– Human stem cell-derived BBB models 

– Immortalized cell lines model 

– Primary cells model 

– Dynamic in vitro BBB models 

– Monocultured cocultured, static and dynamic 

models 

– Endothelial monocultured 

– Cocultured of BECs with astrocytes 

– Cocultured of BECs with pericytes 

– Tri-culture models of BBB 

– Testing of biomimetic BBB models 

– Microfluidic models 

– BBB-on-chip 

3D cultured multicellular spheroid tumor models 

in tumor-targeted drug delivery [98, 99]. 

Brain organoids: human 3D models [100]: 

– organoid-on-a-chip: a platform for system biology; 

– gene-regulatory logic of the human cortex mod-

elled in brain organoids; 

– the epigenetic landscape of brain organoids; 

– single-cell transcriptional maps of brain organoids; 

– sliced cerebral organoid cultures; 

– long-term brain organoid culture-to-model cir-

cuit formation; 

– engineered cortical organoids vascularization. 

Zebrafish – In vivo model [101]. 

 

4. Conclusion 
Drug delivery to brain for treating a various dis-

eases and disorders are very difficult and challenging 

because the delivery of drug molecules must be pass 

through the BBB and BCSF. Overcome this difficulties 

and challenges certain approaches and technique such as 

invasive, non-invasive, intranasal delivery of drug, ocular 

delivery of drug and focused ultrasound technique are 

used to brain targeting. They are help to penetrate the 

drug molecule through BBB and CSF very easily and 

enhance the efficacy of treatment.  

This review article covered current approaches 

and strategies of brain targeting drug delivery in past five 

to ten years. These approaches and strategies are used to 

the brain delivery of drug, proteins, peptides, amino 

acids, etc.  
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