ОЦЕНКА ЭФФЕКТИВНОСТИ АДАПТИВНОЙ АНТЕННОЙ РЕШЕТКИ ПРИ ДИСКРЕТИЗАЦИИ ВЕСОВЫХ КОЭФФИЦИЕНТОВ

Москалец Н. В.

1. Введение

В многоканальных системах приема сигналов на фоне помех в настоящее время находит применение пространственная фильтрация, основанная на весовом суммировании выходных колебаний пространственно разнесенных приемных каналов. Одним из факторов, снижающих эффективность пространственной фильтрации по сравнению с потенциальной, является дискретность управления весовыми коэффициентами пространственного фильтра (ПФ) (квантование весовых коэффициентов). В ряде задач представляет интерес оценка эффективности пространственной фильтрации в том случае, когда источники помех расположены случайно в области боковых лепестков характеристики направленности согласованного ПФ. Дискретизизации квадратурных составляющих комплексных весовых коэффициентов w_i предшествует их нормировка на величину:

 $W_{\max} = \max_{i} (|\operatorname{Re} W_{i}|, |\operatorname{Im} W_{i}|).$

Исследованию влияния погрешности установки весовых коэффициентов на эффективность пространственной фильтрации посвящен целый ряд работ [1–6], однако представляет интерес получения аналитического решения задачи в такой постановке.

2. Объект исследования и его технологический аудит

То или иное свойство ААР (адаптивная антенная решетка) достигается соответствующим выбором комплексных весовых коэффициентов (ВК) w_i, i=1,2,..N, включенных на выходе приемных антенных элементов (АЭ) и перед общим сумматором (рис. 1).

Объектом данного исследования является процесс дискретизации весовых коэффициентов в адаптивной антенной решетке.

С помощью адаптивного процессора ВК обеспечивают соответствующее формирование суммарной ДН (диаграммы направленности) и поляризационной диаграммы, т. е. ВК вместе с общим сумматором представляют собой диаграммообразующую схему.

В то же время определение назначения ВК можно интерпретировать как задачу формирования таких соотношений между принимаемыми N-реализациями полезного сигнала $S_i(t)$ на N-антенных элементах, суммой j узкополосных анизотроп-

ных помех $\sum_{j=1}^{J} n_j(t)$ и шумом u(t).

После их сложения на общем сумматоре стремятся обеспечить максимум от-

ношения сигнал/(помеха+шум), минимум среднеквадратического отклонения принятого сигнала от заданного или другой критерий:

(1)

$$y(t) = \sum_{i=1}^{N} W_i X_i(t),$$

где

Рис. 1. Включение вектора весовых коэффициентов в адаптивной антенной решетке

С помощью ВК формируются их векторы (ВВК):

$$W^{\mathcal{T}}(t) = (w_1(t), w_2(t), ..., w_N(t)).$$
(3)

В общем случае BBK w(t) должен обладать возможностью изменять как амплитуды, так и фазы принимаемых сигналов, т. е. он должен быть комплексным. Скорость этих изменений должна быть согласована со скоростью изменения сигнально-помеховой ситуации. Диапазон изменений согласовывается с динамическим диапазоном изменений уровней сигналов и помех, а также фазовых соотношений в различных элементах ААР.

Очевидно идеальной является ситуация, когда скорость изменений BBK бесконечно велика, а динамический диапазон изменений амплитудно-фазовых характеристик неограничен. Однако на практике, исходя из возможностей технической реализуемости и других причин, приходится ограничивать эти характеристики, что, вообще говоря, приводит к соответствующему снижению эффективности ААР. В этом смысле говорят об ААР с ограничениями.

В ряде проблем антенной техники конечным результатом решаемых задач является синтез ДН при различных ограничениях на конструкцию, габариты, спектральный состав сигналов и помех и другие параметры. Вместе с тем, конечная цель использования ААР состоит в том, чтобы обеспечить необходимые качественные характеристики (максимизировать их) полезных сигналов на выходе антенны, т. е. получить выходное соотношение:

$$y(t) = y(w_t, t) = (w(t), x^*(t)) = W^T(t) x^*(t) =$$

= $w_1(t) x_1(t) + w_2(t) x_2(t) + ... + w_N(t) x_N(t),$ (4)

где выражение в скобках обозначает скалярное произведение векторов, удовлетворяющее заранее выбранному критерию; звездой обозначает комплексное сопряжение. При этом суммарная ДН ААР, как таковая, может вообще не рассматриваться, хотя как промежуточная характеристика она безусловно представляет интерес. Так, ДН ААР может быть получена с помощью скалярного произведения BBK w(t)на вектор $f(\theta)$:

$$F(\theta) = (W^{\mathcal{T}}(t), f^*(\theta)), \tag{5}$$

где $f^{T}(\theta) = (f_{1}(\theta), f_{2}(\theta)e^{i\phi_{0}\theta_{1}}, ..., f_{N}(\theta)e^{i\phi_{N}\theta_{1}}); f_{i}(\theta)$ – ненормированные ДН приемных элементов ААР; $\phi_{i\theta l}$ – фазы огибающей волны единичной амплитуды, отсчитываемые от фазы сигнала с выхода 1-го элемента (при $\phi_{i\theta l}=0$), зафиксированные на выходах приемных элементов за счет пространственных различий.

Обнаружение и оценка многомерных сигналов, требует исчерпывающей априорной информации о пространственных и временных характеристиках сигналов, шума и помех. Однако фактически имеются сведения лишь о некоторых из этих характеристик, и поэтому недостающая информация должна быть получена в процессе функционирования системы. Широкое использование для этой цели методов адаптации привело к созданию систем адаптивной пространственно-временной обработкой сигналов (ПВОС), при синтезе которых применяется весь арсенал адаптивных методов: расширение числа оцениваемых параметров, использование итеративных процедур, эмпирических оценок и др.

Реализация сопоставления произвольно искаженного сигнала с произвольными характеристиками АР осуществимо только статистически за счет использования матричного взвешивания входных данных, адаптирующегося к характеристикам принятого сигнала. Это принято называть статистически оптимальным формированием ДН, где выбор весовых векторов базируется на статистике принятого сигнала на фоне действующего шума и помех. С целью оптимизации отклика выбор весовых коэффициентов формирователя ДН осуществляется слежующим образом. Выход решетки должен содержать минимальные шумовые составляющие и сигналы, поступающие с направлений, отличных от направления на источник полезного сигнала. Поэтому основным направленим анализа качества ААР является получение аналитической оценки среднего коэффициента потерь из-за дискретизации квадратурных составляющих нормированных весовых коэффициентов.

3. Цель изадачи исследования

Цель исследования – получение аналитической оценки среднего коэффициента потерь при дискретизации весовых коэффициентов ААР с учетом случайного расположения помех в области боковых лепестков характеристики направленности. Это даст возможность для потенциальной оценки ограничений ААР при осуществлении процедуры дискретизации весовых коэффициентов для действующих условий сигнально-помеховых ситуаций.

Для достижения поставленной цели необходимо:

1. Определение требуемой разрядности весовых коэффициентов, исходя из допустимой величины уменьшения среднего выходного отношения сигнал/помеха+шум (с/п+ш), в зависимости от отношения суммарной мощности помех к мощности внутреннего шума (отношения п/ш) на входе ПФ.

2. Получение оценки зависимости среднего коэффициента потерь от входного отношения помеха/шум и разрядности квантователя при наличии и отсутствии дискретизации.

3. Оценка требуемой разрядности квантователя.

4. Исследование существующих решений проблемы

Среди основных направлений анализа эффективности функционирования ААР по выбранному критерию оценки весовых коэффициентов при квантовании, могут быть выделены следующие работы:

В [1] на математической модели получены статистические характеристики нормированного отношения сигнал/(помеха+шум), определяющего эффективность пространственной фильтрации в условиях действия множества случайно расположенных источников помех.

Автором работы [2] получены аналитические соотношения, обеспечивающие расчет параметров, необходимых для выбора оптимальной величины регуляризатора.

В работе [3] рассматривается оптимальное взвешивание весовых коэффцииентов с целью использования для адаптивного увеличения отношения сигнала к помехе (SIR signal-to-interference ratio) в сигнальных процессорах. Оценивается точность, необходимая для вычисления весов. Показано, что для адаптивности антенны требуемая точность весового коэффициента возрастает с увеличением значений достижимого улучшения SIR и количества вспомогательных элементов.

В работе [4] показана необходимая точность вычисления расчетных оптимальных весов адаптивного процессора, которая проанализирована путем изучения эффектов ошибок при вычислении обратной матрицы. Показано, что требуемая точность зависит от размера матрицы и получено уравнение для общего случая.

В [5] сообщается о результатах исследования влияния квантования весовых коэффициентов на производительность адаптивного процессора антенной решетки, который использует методы возмущений для получения градиента, требуемого в алгоритме наименьших квадратов. В работе представлены аналитические, иммитационные результаты по влиянию квантования на весовые коэффициенты.

Анализируя ряд публикаций по данной тематике [6–10], отметим, что актуальность проблематики данных задач не уменьшается, поскольку в настоящее время возникает острая необходимость в применении высокопроизводительной адаптивной пространственно-временной обработки сигналов в ААР.

В перечисленных работах предлагаются различные подходы по нахождению аналитической оценки эффективности функционирования ААР с квантованием весовых коэффициентов. Вместе с тем, многие из посвященных данной тематике работ носят частный и прикладной характер с рядом ограничений по воздействию окружающей сигнально-помеховой обстановки.

В рамках исследуемой проблематики, автором данной работы проводится общий анализ эффективности функционировании ААР при использовании методов квантования весовых.

5. Методы исследования

Квантование весовых коэффициентов в общем случае приводит к изменению выходной мощности полезного сигнала на величину, а суммарной мощности помех и шума на величину $\Delta P_{n+\mu}$. Поэтому с учетом того, что квантованию предшествует нормировка весового вектора на w_{max}, имеют место соотношения:

$$P_{c_{\kappa B}} = P_c / W_{\max}^2 + \Delta P_c,$$

$$P_{n+\omega \kappa B} = P_{n+\omega} / W_{\max}^2 + \Delta P_{n+\omega},$$
(6)

где P_c , ΔP_{n+u} – соответственно мощность сигнала и суммы помех и внутреннего шума на выходе ПФ с неквантованными весовыми коэффициентами (весовым вектором W); $P_{c\kappa_{\theta}}$, $\Delta P_{n+u_{\kappa_{\theta}}}$ – аналогичные мощности на выходе ПФ с квантованными весовыми коэффициентами (весовым вектором $W_{\kappa_{\theta}}$).

В случае действия помех в области боковых лепестков характеристики направленности согласованного с полезным сигналом пространственного фильтра положение максимума главного лепестка практически совпадает с направлением прихода полезного сигнала [6]. А поскольку изменение главного лепестка вблизи максимума из-за квантования незначительно, то при оценке коэффициента потерь можно принять:

$$\Delta P_c \approx 0. \tag{7}$$

Кроме того:

$$P_{n+\omega} \approx \Delta P_{\omega},$$

так как при оптимальной пространственной фильтрации в случае, когда число помех M меньше числа каналов ПФ N, происходит практически полное подавление помех [7].

Уменьшение отношения с/п+ш из-за квантования весовых коэффициентов характеризуется коэффициентом потерь:

$$K = \frac{Q_{_{\kappa_B}}}{Q} = \frac{P_{_{c\kappa_B}} / P_{_{n+\omega_{\kappa_B}}}}{P_{_c} / P_{_{n+\omega}}}.$$
(9)

С учетом (6)-(9):

$$K \approx \left(1 + \frac{\Delta P_{n+w}}{P_{w} / w_{\max}^{2}}\right)^{-1} = (1 + \xi)^{-1},$$

(10)

где $\xi = \Delta P_{n+\omega} / (P_{\omega} / w_{\max}^2).$

Найдем оценку среднего коэффициента потерь \overline{K} при усреднении по положениям источников помех. Функция $(1+\xi)^{-1}$ является выпуклой (с учетом того, что $\xi \ge 0$). Поэтому в соответствии с неравенством Йенсена [8] для среднего коэффициента потерь справедлива следующая оценка снизу:

$$\overline{K} \approx E\left\{\left(1 + \frac{\Delta P_{n+\omega}}{P_{\omega} / w_{\max}^{2}}\right)^{-1}\right\} \ge \left(1 + \left\{\frac{\Delta P_{n+\omega}}{P_{\omega} / w_{\max}^{2}}\right\}\right)^{-1},\tag{11}$$

где Е-символ математического ожидания.

Для случая квантования с постоянным шагом оценим среднее приращение мощности помех ΔP_{n+u} , используя методику, примененную в [9]. Приращение мощности помех равно:

$$\Delta P_{n+\omega} = P_{n+\omega,\kappa_B} - P_{n+\omega} = W_{\kappa_B}^* R W_{\kappa_B} - W^* R W =$$

$$= (W + \Delta W)^* R(W + \Delta W) - W^* R W =$$

$$= \Delta W^* R \Delta W + 2 \operatorname{Re}(\Delta W^* R \Delta W) =$$

$$tr(\Delta W \Delta W^* R) + 2 \operatorname{Re}[tr(W \Delta W^* R)], \qquad (12)$$

где $\Delta W = W - W$ – вектор ошибок квантования весовых коэффициентов;

 $R = \frac{1}{2} E\{XX^*\}$ – ковариационная матрица вектора X комплексных огибающих

суммы помех и шума;

* – знак эрмитова сопряжения; $tr(\cdot)$ – след матрицы.

Усредним (12), учитывая, что при достаточно большом числе разрядов квантователя (большем шести [5]) можно считать статистически независимыми следующие случайные величины: векторы ΔW и W; компоненты ΔW_i вектора ΔW ; матрицы $\Delta W \Delta W^*$ и R.

Среднее приращение мощности помех равно:

$$\Delta P_{n+\omega} = tr(E\{\Delta W \Delta W^*\}E\{R\}) = tr(2R_{\Delta W}E\{R\}), \qquad (13)$$

где ковариационная матрица вектора ошибок квантования ΔW :

$$R_{\Delta W} = \frac{1}{2} E\{\Delta W \Delta W^*\}; \tag{14}$$

 $\sigma^2_{\Delta W}$ – дисперсия компонентов вектора ΔW ; *I* – единичная матрица.

Подставляя (14) в (13) и используя то, что след ковариационной матрицы помех tr(R) не зависит от расположения источников помех и равен $N \Delta P_{n+u_ex}$ [6], получим:

$$\Delta P_{n+\mu} = \sigma_{\Delta W}^2 P_{n+\mu Bx} \mathcal{N}.$$
(15)

В большинстве задач пространственной фильтрации $P_{n BX} >> P_{w BX}$, поэтому среднее приращение мощности помех приближенно равно:

$$\Delta P_{n+\omega} = \sigma_{\Delta W}^2 P_{n B x} N.$$
(16)

Следует отметить, что известна и другая оценка среднего приращения мощности помех, обусловленного квантованием, которая превышает оценку (16) в N раз [3, 6]:

$$\Delta P_{n+\mu} < \sigma_{\Delta W}^2 P_{nBx} N^2.$$
(17)

Оценка (17) получена усреднением известного неравенства для эрмитовых форм:

$$\Delta P_{n+\omega} = \Delta W^* R \Delta W \leq \lambda_{\max} \left\| \Delta W \right\|^2,$$

с учетом того, что для положительно определенной коваоиапионкой матрицы наи-

большее собственное число:

$$\lambda_{\max} < tr(R) = N\Delta P_{n \, BX}, \text{ a } \lambda_{\max} E\left\{\left\|\Delta W\right\|^{2}\right\} = N\sigma_{\Delta W}^{2}$$

Вернемся к оценке среднего коэффициента потерь (11). Примем, что мощности внутренних шумов в каналах ПФ одинаковы и равны ΔP_{uu} _{вх}. Тогда:

$$\frac{P_{\mu}}{W_{\text{max}}^2} = \frac{1}{W_{\text{max}}^2} \sum_{i=1}^N P_{\mu} |w_i|^2 = P_{\mu} \frac{\|W\|^2}{W_{\text{max}}^2} = P_{\mu} |W_{\mu o p M}|^2, \qquad (18)$$

где W_{hopm} – нормированный весовой вектор. Вектор W_{hopm} статистически независим с вектором ошибок квантования ΔW , поэтому (с учетом (16) и (21)) независимы и случайные величиныи P_{μ} / w_{max}^2 . Следовательно, $\Delta P_{n+\mu}$:

$$E\left\{\frac{\Delta P_{n+\mu}}{P_{\mu} / w_{\max}^{2}}\right\} = \overline{\Delta P}_{n+\mu} E\left\{\frac{1}{P_{\mu} / w_{\max}^{2}}\right\}.$$
(19)

Подставляя (18) и (19) в (11), получим неравенство:

$$\overline{K} \ge \left(1 + \sigma_{\Delta W}^2 Q_{n_{BX}} NE\left\{\frac{1}{\|W_{HOPM}\|^2}\right\}\right)^{-1}, \qquad (20)$$

где $Q_{n_{Bx}} = P_{n_{Bx}} / P_{w_{Bx}}$ – отношение п/ш на входе ПФ. Как показывает моделирование:

$$\sqrt{D\left\{\left\|W_{\scriptscriptstyle HOPM}\right\|^2\right\}} / E\left\{\left\|W_{\scriptscriptstyle HOPM}\right\|^2\right\} << 1,$$

в частности, при N=10 и $Q_{nex}=20...50 \ \partial E$ эта величина не превышает 0.15. Поэтому:

$$E\left\{1\left\|W_{HOPM}\right\|^{2}\right\}\approx1\left|E\left\{\left\|W_{HOPM}\right\|^{2}\right\},$$

а оценку (20) можно переписать в виде:

$$\overline{K} \ge \left(1 + \sigma_{\Delta W}^2 Q_{n_{BX}} / \overline{\alpha}\right)^{-1}$$
где $\overline{\alpha} = E\left\{ \left\| W_{_{nopm}} \right\|^2 \right\} / N.$

Для получения оценки среднего коэффициента потерь в законченном виде нужно определить величины $\sigma^2_{_{\Lambda W}}$ и $\overline{\alpha}$

Определим дисперсию компонентов вектора ошибок квантования $\sigma_{\Delta W}^2$. Квадратурные составляющие компонентов ΔW_i распределены равномерно в интервале:

$$[-d/2, d/2],$$

где а – величина шага квантования. Поэтому:

$$\sigma_{\Delta W}^2 = E\{(\operatorname{Re}\Delta W_i)^2\} + E\{(\operatorname{Im}\Delta W_i)^2\} = \frac{d^2}{6}.$$
(21)

В рассматриваемом ПФ границами линейного участка характеристики квантователя нормированных квадратурных составляющих весовых коэффициентов являються –I и +I, поэтому шаг квантования равен:

$$d = 2 / 2^{n_{\kappa B}}, \tag{22}$$

где *n_{кв}*-число разрядов квантователя. Подставляя (22) в (21), получим:

$$\sigma_{\Delta W}^{2} = \frac{1}{6} \left(\frac{2}{2^{n_{KB}}} \right)^{2} = \frac{1}{3 \cdot 2^{2_{n_{KB}}-1}}.$$
(23)

Величину $\bar{\alpha}$, входящую в (21) I определить аналитически не удается, поэтому она оценена на математической модели ПФ.

6. Результаты исследований

На рис. 2 показаны значения $\overline{\alpha}$ в зависимости от M, полученные усреднением 100 реализаций при N=10 и 20 для значений $Q_{n\kappa_{\theta}}$ 20 дБ и 50 дБ. На рис. 2 видно, что $\overline{\alpha}$ зависит главным образом от числа помех и практически не зависит от отношения помеха/шум и числа каналов. Если принять, что количество помех, представляющее практический интерес, не превышает 20, то зависимость $\overline{\alpha}(M)$ достаточно хорошо аппроксимируется функцией:

$$\tilde{\alpha}(M) = 0.48 + 0.52 \exp(-0.17M), \tag{24}$$

график которой также приведен на рис. 2.

Рис. 2. Зависимость значения $\overline{\alpha}$ от M

Подставляя (23) и (24) в (21), получим окончательное выражение для оценки снизу среднего коэффициента потерь:

$$\overline{K} \ge \widetilde{K} = \left(1 + \frac{Q_{n_{Bx}}}{3 \cdot 2^{n_{KB}-1} \cdot \widetilde{\alpha}(M)}\right)^{-1},$$
(25)

которое справедливо по крайней мере при N=10...20, $M \le N$, $Q_{nex}=20...50$ дБ.

Если величину \overline{K} нужно оненить лишь ориентировочно, то (25) можно упростить, заменив функцию $\tilde{\alpha}(M)$ ее средним значением, приблизительно равным 0.7:

$$\overline{K} \ge \widetilde{K} = \left(1 + Q_{n_{\delta x}} / 2^{n_{\kappa B}}\right)^{-1} = \widetilde{\widetilde{K}}.$$
(26)

Сопоставим оценки (25) и (26) с полученными на модели значениями среднего коэффициента потерь при следующих условиях:

 Q_{nex} =30 дБ, $n_{\kappa e}$ =5...8, N=10...20.

На рис. 3 сплошной линией показаны зависимости оценки \tilde{K} от M, штриховой линией изображена оценка $\tilde{\tilde{K}}$, отдельными символами показаны значения среднего коэффициента потерь, полученные на модели.

Рис. 3. Зависимость оценки \tilde{K} от M

На рис. 3 видно, что при большой разрядности квантователя ($n_{\kappa 6}=6...8$), когда $\overline{K} > 0,8$ оценка \tilde{K} и результаты моделирования совпадают, а погрешность оценки $\tilde{\tilde{K}}$ не превышает 5 % при $n_{\kappa 6}=5$, когда соотношение:

$$E\left\{\Delta P_{n+\omega} / (P_{\omega} / w_{\max}^2)\right\} << 1,$$

не выполняется, рассчитанные значения меньше полученных на модели, что объясняется тем, что \tilde{K} является оценкой снизу. Отметим, что если $n_{\kappa B}$ и $Q_{n B x}$ таковы, что $\bar{K} > 0,8$, то \bar{K} практически не зависит от M и в качестве оценки среднего козффициента потерь вполне можно использовать величину \tilde{K} .

На рис. 4 приведено семейство зависимостей от Q_{nex} среднего коэффициента потерь, полученного на модели при N=10, M=5, $n_{\kappa e}=5...11$, $Q_{nex}=10...80$ дБ (сплошная линия), а также его оценки \tilde{K} , рассчитанной по формуле (23) (штриховая линия). На рис. 4 видно, что во всем этом широком диапазоне значений разрядности квантователя и отношения помеха/шум результаты расчета и моделирования практически совпадают, если $\bar{K} > 0,5$. И отличаются не более чем на 0.1 при меньших значениях \bar{K} .

Рис. 4. Зависимость \overline{K} от Q_{nex}

Оценка (26) позволяет получить простое аналитическое выражение для требуемой разрядности квантователя:

$$n_{_{KB}}^{^{mp}} \approx \frac{1}{2} \log_2 \frac{Q_{_{BK}}}{1/\bar{K}^{_{A^{on}}} - 1},$$
(27)

где $\overline{K}^{A^{on}}$ – допустимая величина среднего коэффициента потерь. Если величину допустимого относительного уменьшения среднего коэффициента потерь $\delta \overline{K}^{A^{on}} = 1 / \overline{K}^{A^{on}} - 1$ и отношения помеха/шум $Q_{n_{Bx}}$ выразить в децибелах, то требуемая разрядность весов будет равна:

$$n_{W}^{mp} \approx \frac{1}{6} (Q_{n_{BX}[A\mathcal{F}]} - \delta \ \overline{K}_{[A\mathcal{F}]}^{Aon}).$$
⁽²⁸⁾

Определим требуемую разрядность весовых коэффициентов для двух типичных значений допустимого среднего коэффициента потерь.

При
$$\overline{K}^{A^{on}} = 0,8$$
:
 $n_{\kappa B}^{m p} \approx (Q_{n B x [A B]} + 6) / 6.$
(29)

При $\overline{K}^{A^{on}} = 0,9$:

 $n_{_{\kappa B}}^{^{mp}} \approx \left(Q_{_{n BX}[_{A}S]} + 10 \right) / 6.$

Из приведенных соотношений следует, что независимо от величины допустимых потерь требуемая разрядность квантователя увеличивается на 1 бит при увеличении входного отношения помеха/шум на 6 дБ. Аналогичное соотношение, как известно, имеет место между разрядностью и динамическим диапазоном квантователя при квантовании колебаний в различных задачах цифровой обработки сигналов [9].

7. SWOT-анализ результатов исследований

Strengths. Среди сильных сторон данного исследования необходимо отметить полученные результаты аналитической оценки среднего коэффициента потерь для пространственного фильтра с квантованием квадратурных составляющих нормированных весовых коэффициентов ААР при случайном расположении помех. В результате этого удалось показать, что коэффициент потерь зависит только от входного соотношения п/ш и разрядности квантователя. При увеличении соотношения п/ш необходимым требованием по обеспечению требуемого показателя коээфиицента потерь является повышение разрядности квантователя. При использовании квантователя с большой разрядностью $n_{\kappa 6}$ =6...8 при K>0.8.

результаты имитационного моделирования совпадают с математической моделью ПФ с погрешностью оценки 5 %.

По сравнению с аналогами это даст возможность оптимизировать скорость вычисления изменяющегося объема обрабатываемой информации.

Weaknesses. Слабые стороны данного исследования связаны с тем обстоятельством, что при реализации пространственно-временного доступа (ПВД) существуют определенные ограничения. Эти ограничения, как правило, связаны в основном с характеристиками ААР и реализуемости алгоритмов адаптивной пространственновременной обработки (ПВОС) синтезированных по различным критериям.

Характеристики ААР зависят не только от алгоритма управления ВВК, но и от параметров собственно антенной решетки:

- числа антенных элементов (АЭ);

- характеристики направленности (XH);
- поляризационных характеристик АЭ;
- взаимного влияния АЭ;

- конфигурации решетки и др.

При этом все эти факторы в различной степени приводят к снижению реально достижимого отношения сигнал/помеха+шум (ОСПШ), а некоторые могут вызывать также и уменьшение скорости сходимости процесса адаптации.

В данной постановке актуальными для исследований остаются вопросы комплексной оценки различных воздействующих ограничивающих факторов характеристик ПВОС ААР и оценка её эффективности с учетом рассматривае-

(30)

мых ограничений.

Отрицательным внутренним фактором присущим данному исследованию в конечном итоге будет являеться увеличение стоимости при его внедрении на производстве.

Оррогилітіеs. Дополнительные возможности, обеспечивающие достижение цели исследования, кроются в следующих системных подходах. Для систем ПВОС, предназначенных для решения задач оптимального обнаружения и оценки параметров сигналов, характерна совместная реализация оптимальной пространственной и временной фильтрации сигналов. При этом оптимизация пространственной фильтрации осуществляется с помощью многомерного фильтра, учитывающего пространственные свойства полей сигнала и шума. Многомерный фильтр оптимальной системы ПВОС реализует на элементах АР оптимальное амплитуднофазовое частотно-зависимое распределение, с помощью которого осуществляется управление характеристикой направленности АР и тем самым оптимизируется, процедура пространственной фильтрации. Следовательно, различным сигнальнопомеховым ситуациям должны соответствовать свои комплексные частотные характеристики многомерного фильтра.

В случае, если шум является изотропным, а реализации его поля на элементах АР будут коррелированными, то пространственная фильтрация сводится лишь к традиционному фазированию АР. Фазированию АР будет осуществляться в направлении прихода сигнала и оценкой коэффициента потерь дискретизации весовых коэффициентов.

При внедрении данного объекта исследования на практике основной дополнительной возможностью будет повышение параметров качества функционирования ААР.

Threats. Сложности во внедрении полученных результатов исследования связаны со следующими основными факторами. Для реализации рассмотренных выше оптимальных систем ПВОС, обеспечивающих обнаружение и оценку многомерных сигналов, требуется исчерпывающая априорная информация о пространственных и временных характеристиках полей сигнала, шума и помех. Однако фактически имеются сведения лишь о некоторых из этих характеристик, и поэтому недостающая информация должна быть получена в процессе функционирования системы.

Широкое использование для этой цели методов адаптации привело к созданию систем адаптивной ПВОС (АПВОС). При синтезе систем АПВОС применяется весь арсенал адаптивных методов: расширение числа оцениваемых параметров, использование итеративных процедур, эмпирических оценок и др.

Процедура квантования весовых коэффциентов ААР и другие факторы в различной степени приводят к снижению реально достижимого отношения сигнал/помеха+шум (ОСПШ), а некоторые могут вызывать также и уменьшение скорости сходимости процесса адаптации. С учетом вышеизложенного, стоит отметить, что основная сложность при внедрении результатов исследования заключается в производительности цифрового вычислителя реализующего алгоритм пространственно-временную обработку, включающую процедуры дискретизации ВК и управления диаграммой направленности ААР. Как показывают аналогичные исследования данной проблематики для формирования одного парциального луча ААР необходимо выполнение 1436·10³) операций, а для формирования трехлучевой ДН понадобится 1759 10⁸·операций.

8. Выводы

1. Для пространственного фильтра с квантованием квадратурных составляющих нормированных весовых коэффициентов получена аналитическая оценка снизу среднего коэффициента потерь из-за квантования при случайном расположении помех в области боковых лепестков характеристики направленности. Полученное аналитическое выражение (22) справделиво при $Q_{nex}=20...50$ дБ и N=10...20.

2. Показано, что в первом приближении средний коэффициент потерь зависит только от входного отношения помеха/шум Q_{nex} и разрядности квантователя $n_{\kappa e}$:

$$\overline{K} = E\{Q_{KB} / Q\} \approx (1 + Q_{NBX} / 2^{NKB})^{-1},$$

где $Q_{\kappa g}$ и Q – соответственно выходное отношение сигнал/помеха+шум при наличии и при отсутствии квантования. Для представляющих наибольший практический интерес значений $\overline{K} > 0,8$ погрешность этой оценки не превышает 5 %.

3. На основе полученной оценки предложена приближенная формула для требуемой разрядности квантователя:

$$n_{KB}^{mp} \approx (Q_{NBX[AB]} - \delta \bar{K}_{[AB]}^{AON}) / 6$$

где $Q_{n\kappa B}$ – входное отношение помеха/шум в дБ; $\delta \bar{K}_{[A^{\delta}]}^{A^{\delta}n}$ – величина допустимого относительного-уменьшения среднего коэффициента потерь $(1 - \bar{K}) / \bar{K}$, выраженная в дБ. Показано, что независимо от величины допустимых потерь требуемая разрядность квантователя увеличивается на 1 бит при увеличении входного отношения помеха/шум на 6 дБ.

Литература

1. Genefiko, T. A. Sravnitel'nyi analiz tsifrovyh algoritmov adaptivnoi prostranstvennoi fil'tratsii [Text] / T. A. Genefiko, M. Yu. Lishak // Radiotehnicheskie tetradi. $-2009. - N_{2} 38. - P. 33-37.$

2. Ratynskii, M. V. Vybor reguliarizatora v zadache adaptivnoi prostranstvennoi fil'tratsii [Text] / M. V. Ratynskii // Uspehi sovremennoi radioelektroniki. – 2016. – N_{2} 7. – P. 53–63.

3. Nitzberg, R. Effect of Errors in Adaptive Weights [Text] / R. Nitzberg // IEEE Transactions on Aerospace and Electronic Systems. – 1976. – Vol. AES-12, № 3. – P. 369–373. doi:10.1109/taes.1976.308238

4. Nitzberg, R. Effect of Errors in Adaptive Weights Weights [Text] / R. Nitzberg // IEEE Transactions on Aerospace and Electronic Systems. – 1976. – Vol. AES-12, № 3. – P. 369–373. doi:10.1109/taes.1980.308969

5. Ivandich, S. Quantisation error modelling of narrowband adaptive arrays using projected perturbation sequences [Text] / S. Ivandich // Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing. – 1994. – Vol. 2. – P. 309–312. doi:10.1109/icassp.1994.389658

6. Monzingo, R. A. Introduction to Adaptive Arrays [Text] / R. A. Monzingo, R. L. Haupt, T. W. Miller. – Ed. 2. – SciTech Publishing, 2011. – 530 p. doi:10.1049/sbew046e

7. Gabidulin, E. M. Ob effektivnosti adaptivnogo kompensatora meshaiushchih signalov [Text] / E. M. Gabidulin, V. P. Liovshin, N. I. Pilipchuk // Trudy Radiotehnicheskogo instituta AN SSSR. – $1982. - N_{2} 44. - P. 236-249.$

8. Whittle, P. Probability [Text] / P. Whittle // Springer Texts in Statistics. – New York: Springer, 2000. – P. 39–50. doi:10.1007/978-1-4612-0509-8_3

9. Hudson, J. E. The Effects of Signal and Weight Coefficient Quantisation in Adaptive Array Processors [Text] / J. E. Hudson // Aspects of Signal Processing With Emphasis on Underwater Acoustics. – 1977. – Part 2. – P. 423–428. doi:10.1007/978-94-011-3036-3 3

10. Yu, S.-J. Effect of random weight errors on the performance of partially adaptive array beamformers [Text] / S.-J. Yu, J.-H. Lee // Signal Processing. -1994. - Vol. 37, No 3. -P.365-380. doi:10.1016/0165-1684(94)90005-1