ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ИНТЕНСИВНОСТИ ИЗНОСА СТВОЛА 9 ММ ПИСТОЛЕТА ПРИ ИСПОЛЬЗОВАНИИ БОЕПРИПАСОВ ДЛИТЕЛЬНЫХ СРОКОВ ХРАНЕНИЯ

Бирюков А. И., Бирюков И. Ю., Гурнович А. В.

1. Введение

Задача обеспечения надежной и безопасной эксплуатации вооружения и боеприпасов в любое время являлась и является одной из приоритетных. На сегодняшний же день, при продолжающейся уже не один год на территории восточных областей Украины антитеррористической операции, задачи гарантирования эффективного, безотказного и безопасного боевого применения вооружения актуальны как никогда [1, 2].

В этой ситуации используемое вооружение само по себе отвечает требованиям соответствующей эксплуатационной документации. Оно либо не использовалось ранее (хранилось на складах, базах и арсеналах), либо прошло капитальный ремонт или модернизацию, либо новое (украинского или зарубежного изготовителя). Такое соотношение можно представить в процентах, как 50 % на 25 % и на 25 % соответственно. То есть 75 % вооружения в основном используют боеприпасы длительных или послегарантийных сроков хранения и только 25 % поступает на вооружение личного состава вооруженных сил Украины в комплекте с новыми боеприпасами.

В тоже время научные, теоретические и экспериментальные исследования влияния использования таких боеприпасов проводились разрозненно и лишь по отдельно взятым образцам вооружения.

На основании указанного можно утверждать, что научные исследования, эксперименты и прогнозы в данном направлении продолжать важно и крайне необходимо.

2. Объект исследования и его технологический аудит

Объектом исследования является процесс изменения состояния канала ствола пистолета вследствие его износа при использовании боеприпасов длительных сроков хранения.

Предметом исследования являются баллистические характеристики пистолета при использовании боеприпасов длительных сроков хранения.

Процесс ухудшения баллистических характеристик любого ствольного вооружения в целом и пистолетов в частности прямо пропорционален процессу износа канала ствола. Рассмотрим эксплуатацию образца вооружения с исключением нарушений периодичности и порядка проведения его технического обслуживания, а его хранение и применение — в строгом соответствии с требованиями технической документации. В таком случае основным фактором, который влияет на износ канала ствола, является процесс стрельбы. А именно такие основные параметры внутренней баллистики, как максимальное давление по-

роховых газов (P_{max}), температура (T), скорость горения (u) и т. д. Пренебрежение увеличением интенсивности такого износа недопустимо как при выполнении учебных стрельб, так и при выполнении служебно-боевых и боевых задач. Тем более на территории проведения антитеррористической операции в условиях непосредственного и постоянного огневого контакта с противником.

В исследовании использованы:

- -9 мм пистолеты Макарова (ПМ) -6 шт. (по 3 шт. 1988 и 1990 годов выпуска соответственно);
- 9 мм пистолетные патроны с пулей со стальным сердечником (57-Н-181С) 1969, 1986 и 2002 годов выпуска;
 - цифровой хронометр ProChrono Digital CEI-3800 (США);
 - бароскоп Hawkeye® Pro Slim (США);
 - штангенциркуль;
 - уровень;
 - проходной и непроходной калибры 9 мм пистолета ПМ (рис. 1).

Рис. 1. Калибры для 9 мм пистолета ПМ: а – непроходной; б – проходной

При отборе образцов вооружения и боеприпасов были учтены рекомендации предыдущих работ [3, 4].

Эксперимент проводился на протяжении 2016 года в открытом и закрытом тирах на территории и с использованием материально-техничной базы воинских частей Национальной гвардии Украины.

3. Цель и задачи исследования

Целью исследования является экспериментальное определение влияния баллистических характеристик при использовании боеприпасов длительных сроков хранения на повышение интенсивности износа канала ствола 9 мм пистолета.

Для достижения поставленной цели необходимо решить следующие задачи:

1. Провести экспериментальное исследование влияния использования боеприпасов длительных сроков хранения на интенсивность износа канала ствола 9 мм пистолета.

- 2. Дать оценку интенсивности изменения ресурса ствола пистолета при использовании боеприпасов длительных сроков хранения на основе сравнительного анализа полученных теоретических и экспериментальных данных.
- 3. Спрогнозировать влияние использования боеприпасов длительных сроков хранения на интенсивность износа канала ствола 9 мм пистолета.
- 4. Получить зависимости изменения начальной скорости пули и износа канала ствола ПМ при стрельбе боеприпасами длительных сроков хранения от величины этих сроков.
- 5. Выявить закономерности между начальной скоростью пули и износом канала ствола при использовании боеприпасов длительных сроков хранения.

4. Анализ литературных данных

На сегодняшний день имеется большое количество научных работ на данную тематику по стрелковому и артиллерийскому вооружению. Из них можно выделить работы, в которых исследуется влияние использования боеприпасов длительного срока хранения на баллистические характеристики вооружения [5–7] и на интенсивность износа канала ствола [3, 8–10]. Также есть ряд работ, в которых влияние использования боеприпасов длительных сроков хранения на полученные результаты вообще не учитывается [11–13].

Отдельно стоит отметить серию научных работ [4, 14–16], в которых данные исследования конкретизированы на различных пистолетах калибром 9 мм. В них описаны теоретические и экспериментальные научные исследования связанные с изменением баллистических характеристик при стрельбе патронами длительного срока хранения.

Влияние использования таких боеприпасов на износ канала ствола 9 мм пистолетов в приведённых выше и других аналогичных работах не раскрыт. В то же время, применение к пистолетам соответствующих методик и моделей, разработанных для других видов стрелкового (автомат, пулемёт, снайперская винтовка) и тем более артиллерийского вооружения, невозможно. Основная причина этому – серьёзные конструктивные отличия между ними.

Следовательно, экспериментальное исследование интенсивности износа канала ствола 9 мм пистолета при использовании боеприпасов длительных сроков хранения представляется является логичным продолжением целой серии научных работ. Также оно может стать «надёжным плацдармом» для последующей научно-исследовательской деятельности.

5. Методы исследования

Учитывая методику предыдущей работы [4], отобранные пистолеты разделены на 3 группы по 2 пистолета в каждой для экспериментальной стрельбы 9 мм пистолетными патронами с пулей со стальным сердечником (57-H-181C) только одного конкретного года выпуска [15]:

I экспериментальная группа — патроны партии 38-69, 1969 года выпуска, 47-летнего срока хранения (T_1) ;

II экспериментальная группа — патроны партии 38-86, 1986 года выпуска, 30-летнего срока хранения (T_2);

III контрольная группа — патроны партии 270-02, 2002 года выпуска, 14-летнего срока хранения (T_3) .

В начале эксперимента проведён контрольный замер износа канала ствола (L_{30}) каждого пистолета непроходным калибром [17]. Для этого пистолет закрепляется дульным срезом ствола вертикально вверх. Непроходной калибр опускается в ствол (без усилия, под действием своего веса). Глубина, на которую калибр опускается в ствол пистолета, измеряется штангенциркулем (рис. 2). Измерения повторяются 10 раз подряд, после чего, по полученным результатам, определяется среднее значение износа, которое и заносится в табл. 1. Последующие же значения износа (L_{31} , L_{32} , L_{33} и L_{34}) определяются и заносятся в табл. 1 после каждой последующей тысячи выстрелов соответственно и аналогично. Параллельно с этим проводился визуальный осмотр состояния стволов пистолетов с помощью бароскопа.

Рис. 2. Измерение износа канала ствола пистолета: a — установка и закрепление пистолета на платформе с помощью уровня; δ — проверка износа ствола с помощью непроходного калибра; ϵ — замер величины износа с помощью штангенциркуля

Таблица 1 Экспериментальные результаты измерения износа канала ствола 9 мм пистолетов

		Износ канала ствола пистолета, м									
Группы	Пистолеты	0	1000		2000		3000		4000		
		L_{90}	L_{91} – L_{90}	L_{91}	$L_{92}-L_{91}$	L_{92}	L_{93} – L_{92}	L_{93}	$L_{94}-L_{93}$	L_{94}	
1	2	3	4	5	6	7	8	9	10	11	
I гр. 47 лет	ΠM № 1 88	0,0001	0,0007	0,0008	0,002	0,0028	0,0039	0,007	0,0054	0,0121	
	ΠM № 2 90	0,0001	0,0011	0,0012	0,0019	0,0031	0,0044	0,008	0,0057	0,0132	
	Среднее	0,0001	0,0009	0,001	0,002	0,003	0,0042	0,007	0,0056	0,0127	

1	2	3	4	5	6	7	8	9	10	11
II гр. 30 лет	ПМ № 3 88	0,0001	0,0005	0,0006	0,0012	0,0018	0,0014	0,003	0,0046	0,0078
	ΠM № 4 90	0,0001	0,0007	0,0008	0,0006	0,0014	0,0012	0,003	0,0041	0,0067
	Среднее	0,0001	0,0006	0,0007	0,0009	0,0016	0,0013	0,003	0,0044	0,0073
III гр. 14 лет	ΠM № 5 88	0,0001	0	0,0001	0,0005	0,0006	0,0005	0,001	0,0012	0,0023
	ΠM № 6 90	0,0001	0,0004	0,0005	0,0003	0,0008	0,0007	0,002	0,001	0,0025
	Среднее	0,0001	0,0002	0,0003	0,0004	0,0007	0,0006	0,001	0,0011	0,0024

На аналогичных этапах эксперимента (0, 1, 2, 3 и 4 тыс. выстрелов) проводилась контрольная стрельба патронами контрольной группы для определения по методике [4] начальной скорости полёта пули (V_{30} , V_{31} , V_{32} , V_{33} и V_{34}). Полученные результаты занесены в табл. 2. На основе полученных результатов (V_{30}) спрогнозирована начальная скорость пули этих патронов (V_{np4}) на момент окончания эксперимента (по завершении 4000 выстрелов), как сниженная на 5 % (V_{30}) [4].

Таблица 2 Экспериментальные результаты измерения начальной скорости пули 9 мм пистолетов

1111011010												
Группы	Пистолеты	Начальная скорость пули, м/с										
		0	1000		2000		3000		4000			
		V_{90}	$V_{\mathfrak{s}0}$ - $V_{\mathfrak{s}1}$	V_{i1}	$V_{\mathfrak{I}}$ - $V_{\mathfrak{I}}$ -	V_{92}	V_{92} - V_{93}	V_{93}	V ₃₃ - V ₃₄	V_{94}	V_{np4}	
I гр. 47 лет	ΠM № 1 88	318,30	1,10	317,20	3,14	314,06	7,90	306,16	23,28	282,88	302,39	
	ПМ № 2 90	317,50	1,40	316,10	2,96	313,14	9,55	303,59	25,60	277,99	301,63	
	Среднее	317,90	1,25	316,65	3,05	313,60	8,73	304,88	24,44	280,44	302,01	
II гр. 30 лет	ПМ № 3 88	316,90	0,90	316,00	1,70	314,30	4,25	310,05	12,41	297,64	301,06	
	ПМ № 4 90	318,70	0,65	318,05	1,20	316,85	3,32	313,53	13,24	300,29	302,77	
	Среднее	317,80	0,77	317,03	1,45	315,58	3,79	311,79	12,83	298,97	301,91	
III гр. 14 лет	ΠM № 5 88	318,60	0,72	317,88	1,10	316,78	1,19	315,59	3,61	311,98	302,67	
	ΠM № 6 90	317,10	0,54	316,56	0,55	316,01	1,53	314,48	3,26	311,22	301,25	
	Среднее	317,85	0,63	317,22	0,83	316,40	1,36	315,04	3,44	311,60	301,96	

На основе полученных экспериментальных данных соответствующих величин каждого из пистолетов одной группы, находим среднее значение этой величины и заносим его в табл. 1, 2.

В промежутках между контрольными стрельбами из отобранных пистолетов проводились плановые стрельбы в одинаковых временных и погодных условиях, с идентичным объёмом и периодичностью технического обслуживания. После чего осуществлялся визуальный осмотр состояния канала ствола при помощи бароскопа на предмет его эрозии [18] и других дефектов.

6. Результаты исследований

На основе результатов экспериментальных исследований построены соответствующие графики и установлены две группы закономерностей:

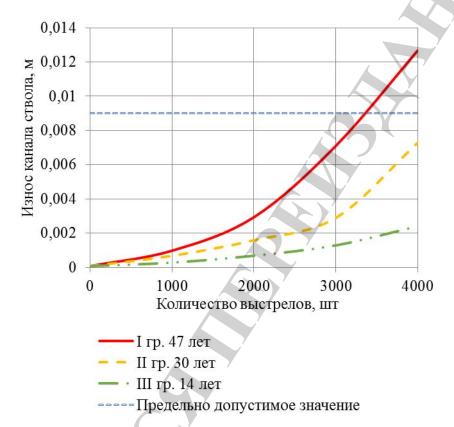
Первая – увеличение износа канала ствола пистолета от количества произведённых из него выстрелов (рис. 3). Эти закономерности описывают функции

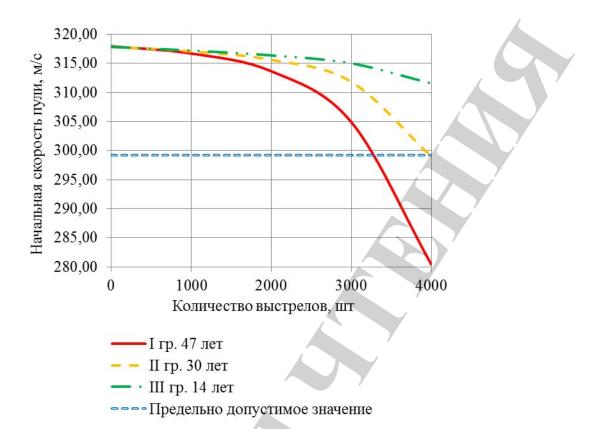
L(N), которые рассчитаны в программе «Excel 2016» как полиномиальные линии тренда 3-й степени [19] и представлены в виде (1).

$$L(N)_{Irp} = 0.3 \cdot 10^{-13} \cdot N^{3} + 0.6 \cdot 10^{-9} \cdot N^{2} + 0.9 \cdot 10^{-7} \cdot N + 0.1 \cdot 10^{-3},$$

$$L(N)_{Irp} = 0.2 \cdot 10^{-12} \cdot N^{3} - 0.8 \cdot 10^{-9} \cdot N^{2} + 0.1 \cdot 10^{-5} \cdot N + 0.6 \cdot 10^{-4},$$

$$L(N)_{IIrp} = 0.2 \cdot 10^{-13} \cdot N^{3} - 0.7 \cdot 10^{-11} \cdot N^{2} + 0.2 \cdot 10^{-6} \cdot N + 0.1 \cdot 10^{-3}.$$
(1)




Рис. 3. Зависимость изменения износа канала ствола от количества выстрелов

Вторая — падение начальной скорости пули от количества произведённых из пистолета выстрелов (рис. 4). Эти закономерности описывают функции V(N), которые аналогично рассчитаны в программе «Excel 2016» как полиномиальные линии тренда 3-й степени [19] и представлены в виде (2).

$$V(N)_{Irp} = -0.2 \cdot 10^{-9} \cdot N^{3} + 0.5 \cdot 10^{-6} \cdot N^{2} - 0.0011 \cdot N + 317.87,$$

$$V(N)_{Irp} = -0.7 \cdot 10^{-9} \cdot N^{3} + 0.2 \cdot 10^{-5} \cdot N^{2} - 0.0027 \cdot N + 317.87,$$

$$V(N)_{Irp} = -0.1 \cdot 10^{-8} \cdot N^{3} + 0.3 \cdot 10^{-5} \cdot N^{2} - 0.0038 \cdot N + 317.99.$$
(2)

Рис. 4. Зависимость изменения начальной скорости пули от количества выстрелов

Сравнительный анализ соответственных спрогнозированных (V_{np4}) и экспериментальных (V_{34}) значений начальных скоростей пули (табл. 2) показал, что для I и II экспериментальных групп выполняется неравенство $V_{34} < V_{np4}$, а для III экспериментальной группы — наоборот: $V_{34} > V_{np4}$. Следовательно, использованный при этом прогнозе метод свою действенность не оправдал.

На основе полученных средних значений износа канала ствола пистолета (L_{34}) для патронов соответственного срока хранения $(T_1, T_2 \text{ и } T_3)$ построен график (рис. 5). Установлена зависимость (3) увеличения этого износа от срока хранения используемых для стрельбы боеприпасов. Эту зависимость описывает функция L(T), которая рассчитана по указанной выше методике и представлена в виде:

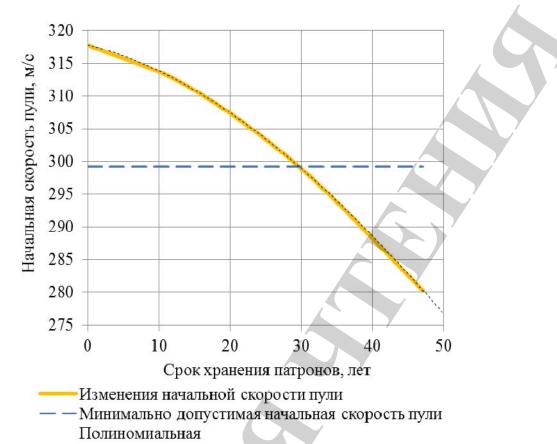

$$L(\mathcal{T}) = -0.9 \cdot 10^{-7} \cdot \mathcal{T}^3 + 0.9 \cdot 10^{-5} \cdot \mathcal{T}^2 + 0.6 \cdot 10^{-4} \cdot \mathcal{T} + 0.1 \cdot 10^{-3}.$$
 (3)

Рис. 5. Зависимость изменения износа канала ствола от срока хранения боеприпасов

На основе полученных средних значений начальной скорости пули (V_{34}) для патронов сроком хранения $(T_1, T_2 \text{ и } T_3)$ построен график и установлена зависимость (4) уменьшения скорости пули от срока хранения боеприпасов (рис. 6). Эту зависимость описывает функция V(T). Она рассчитана аналогично выше указанной, с тем лишь дополнением, что значение общей средней начальной скорости пули (V_0) принято, как среднее значение средних начальных скоростей всех трёх групп пистолетов $(V_{30 Irp}, V_{30 IIrp})$. Зависимость представлена в виде:

$$V(\tau) = 0.5 \cdot 10^{-4} \cdot \tau^3 - 0.0136 \cdot \tau^2 - 0.2656 \cdot \tau + 317.85. \tag{4}$$

Рис. 6. Зависимость изменения начальной скорости пули от срока хранения боеприпасов

На основании приведённых выше графиков (рис. 3, 5) спрогнозирован максимальный срок хранения боеприпасов в 33,97 года. При использовании таких боеприпасов не будет превышен максимально допустимый износ канала ствола пистолета (0,009 м) в пределах заложенного в него ресурса (4000 выстрелов).

Аналогично (рис. 4, 6) спрогнозирован максимальный срок хранения боеприпасов в 28,92 года, использование которых не приведёт к снижению минимально допустимой начальной скорости пули (299,25 м/с) в пределах указанного выше ресурса.

В полученных закономерностях (3), (4) срок хранения боеприпасов уже заложен как параметр. Из графиков (рис. 3, 4), видно, что падение начальной скорости пули наступает быстрее, чем соответственный этому износ ствола. Поэтому в качестве определяющего фактора нужно брать не износ ствола (рис. 3), а именно падение начальной скорости. Это подтверждается тем, что именно падение скорости определяет достижение гранично-допустимого значения по количеству выстрелов (рис. 4) для боеприпасов сроком хранения в 30 лет.

Что же касается погрешности, то во время эксперимента интенсивной (скоростной) стрельбы и, соответственно, перегрева ствола не допускалось, хотя и полностью исключить такое воздействие нельзя. Так для подразделений Национальной гвардии Украины большинство упражнений учебных стрельб из стрелкового вооружения в целом, и 50 % упражнений из пистолетов в частно-

сти включают в себя стрельбу в ограниченное время [20]. Это в свою очередь влечёт к перегреву оружия и дополнительному его износу. Научная задача по исследованию влияния интенсивности стрельбы боеприпасами длительных сроков хранения в данной работе не ставилась, а поэтому её решение может стать основой дополнительных научных исследований.

В этой же работе перегрев пистолетов, как в ходе стрельбы, так и под действием прямых солнечных лучей, можно учесть в качестве 5 % погрешности полученных результатов.

Кроме того, следует учесть погрешность, связанную, как с точностью навески пороха, так и его начальное качественное состояние. А добавив сюда неточное производство самих пуль, приводящее в первую очередь при выстреле к неодинаковому действию силы трения, получаем ещё одну погрешность экспериментальных результатов примерно в 5 %.

Если же учитывать изменения интенсивности истощения пороховых зарядов под влиянием изменений температуры окружающей среды, суточных, месячных и сезонных температурных колебаний [16], то общая погрешность может вырасти ещё на 15,2 %. В результате общая погрешность этого и аналогичных исследований может составлять до 25,2 %.

С учётом таких погрешностей определённые выше максимальные сроки хранения боеприпасов могут сократиться с 28,92 до 21,63 и с 33,97 до 25,41 лет соответственно. И то: при условии пренебрежения остальными условно не учтёнными, но возможно допущенными, погрешностями. Следовательно, для боеприпасов сроком хранения более 21,63 года износ ствола уже может не позволить полностью использовать заложенный в него ресурс на 4000 выстрелов.

Контрольные измерения начальной скорости пули при стрельбе непосредственно экспериментальными боеприпасами после каждой тысячи выстрелов хоть и проводились, но в данной работе они не приводятся и не учитываются. Это сделано для исключения влияния на полученные результаты физикохимических процессов, которые происходят в порохах при их старении, а, следовательно, — фактора влияния внутренней баллистики боеприпасов длительных сроков хранения. В то же время эти данные могут быть использованы для дальнейших исследований по аналогичной тематике.

Также в ходе эксперимента наблюдалась тенденция увеличения количества как задержек (утыкание патрона в патронник, не выбрасывание гильзы из затвора и др.), так и поломок (излом боевой и возвратной пружин, износ шептала и др.). Тенденция усиливалась не только по мере увеличения настрела с этих пистолетов, но и при стрельбе более старыми боеприпасами по отношению к стрельбе более новыми. Изучение влияния использования боеприпасов длительных сроков хранения на техническое состояние и безаварийную эксплуатацию 9 мм пистолетов не входило в цели и задачи данной научной работы. Поэтому обобщение такой информации в ходе эксперимента не проводилось. Тем не менее, такие процессы могут стать объектом последующих экспериментальных исследований и других научных работ.

7. SWOT-анализ результатов исследований

Strengths. Преимущества исследования:

- установлены зависимости падения начальной скорости пули и увеличения износа ствола ПМ при стрельбе боеприпасами длительных сроков хранения от величин этих сроков;
- спрогнозирован износ канала ствола ПМ при стрельбе боеприпасами сроком хранения до 50 лет;
- спрогнозирован максимальный срок хранения боеприпасов, превышение которого может привести к снижению минимально допустимой начальной скорости пули в пределах ресурса ствола ПМ;
- доказано, что падение начальной скорости пули является определяющим фактором влияния использования боеприпасов длительных сроков хранения на интенсивность износа канала ствола;
- получены ряд закономерностей, которые могут быть применены при аналогичных исследованиях не только других пистолетов, но и других видов стрелкового оружия.

Weaknesses. Недостатки исследования:

- увеличение погрешности исследования на 15,2 %, которое связано с отсутствием информации о способе хранения боеприпасов;
- предположительная 5 % погрешность, которая связана с отсутствием научных работ с исследованиями влияния перегрева пистолета при стрельбе, на его баллистические характеристики.

Opportunities. Перспективы исследования:

- применение полученных закономерностей для других короткоствольных систем;
- пересмотр как сроков гарантийного хранения боеприпасов, так и ресурсов оружия в целом, а их частей и механизмов в частности;
- проведение исследований о влиянии использования боеприпасов длительных сроков хранения на техническое состояние вооружения;
- проведение исследования влияния интенсивности стрельбы на износ и ресурс вооружения;
- изучение с экономической точки зрения целесообразности использования боеприпасов длительного срока хранения, которое приводит к преждевременному исчерпанию ресурса ствола ПМ и, следовательно, к его ремонту или списанию;
- продолжение ряда исследований, связанных с использованием боеприпасов длительных сроков хранения в целом и 9 мм пистолетных патронов в частности.

Threats. Внешние угрозы исследования:

- полное или частичное исчерпание ресурса ствола в частности и оружия в целом при проведение аналогичных экспериментальных работ с использованием боеприпасов длительных сроков хранения;
- из-за возможных задержек и полом при стрельбе такими боеприпасами увеличивается вероятность срыва, задержки или не выполнения не только упражнений учебных стрельб, но и служебных и служебно-боевых задач.

8. Выводы

- 1. Полученные в ходе экспериментального исследования функции могут служить для прогнозирования износа канала ствола 9 мм пистолета ПМ при использовании боеприпасов сроком хранения до 50 лет.
- 2. Экспериментальным путём получены зависимости интенсивности изменения износа канала ствола и начальной скорости пули от количества выстрелов боеприпасами длительных сроков хранения для различных таких сроков.
- 3. Спрогнозирован максимальный срок хранения боеприпасов в 28,92 (с учётом возможных погрешностей 21,63) года, превышение которого может привести к снижению минимально допустимой начальной скорости пули в пределах указанного выше ресурса.
- 4. Получены зависимости изменения начальной скорости пули и износа канала ствола ПМ от сроков хранения боеприпасов.
- 5. В ходе экспериментального исследования выявлены следующие закономерности:
- падение начальной скорости пули от количества произведённых выстрелов происходит быстрее, чем увеличение износа канала ствола пистолета от того же количества выстрелов;
- интенсивность падения начальной скорости пули обратно пропорциональна увеличению срока хранения боеприпасов;
- интенсивность увеличения износа канала ствола прямо пропорциональна увеличению срока хранения боеприпасов.

Литература

- 1. Pro rishennia Rady natsionalnoi bezpeky i oborony Ukrainy vid 2 veresnia 2015 roku «Pro novu redaktsiiu Voiennoi doktryny Ukrainy» [Electronic resource]: Decree of the President of Ukraine from 24.09.2015 № 555/2015. Available at: \www/URL: http://zakon5.rada.gov.ua/laws/show/555/2015
- 2. Pro Natsionalnu hvardiiu Ukrainy [Electronic resource]: Law of Ukraine from 13.03.2014 № 876-VII. Available at: \www/URL: http://zakon0.rada.gov.ua/laws/show/876-18
- 3. Anipko, O. B. Eksperimental'noe issledovanie iznosa stvola 5,45 mm avtomata Kalashnikova AK-74 pri strel'be boepripasami dlitel'nyh srokov hraneniia [Text] / O. B. Anipko, A. O. Mulenko, A. A. Demchenko // Integrated Technologies and Energy Conservation. -2013. N = 2. P. 121-126.
- 4. Biryukov, A. I. Formulation of the problem and experimental study of wear barrel 9 mm Makarov when firing ammunition storage periods [Text] / A. I. Biryukov, I. Yu. Biryukov // Systems of Arms and Military Equipment. − 2014. − № 3 (39). − P. 12–17.
- 5. Anipko, O. B. Osoblyvosti kharakterystyk vnutrishnoi balistyky porokhovykh zariadiv boieprypasiv, yaki znakhodiatsiaza mezhamy harantiinykh strokiv zberihannia [Text] / O. B. Anipko, I. Yu. Biryukov, D. S. Baulin, V. I. Vorobiov. Kharkiv: Academy of Internal Troops of Ukraine, Ministry of Internal Affairs of Ukraine, 2008. 40 p.

- 6. Anipko, O. B. Vnutrenniaia ballistika stvol'nyh sistem pri primenenii boepripasov dlitel'nyh srokov hraneniia [Text]: Monograph / O. B. Anipko, Yu. M. Busiak. Kharkiv: Academy of Internal Troops of Ukraine, Ministry of Internal Affairs of Ukraine, 2010. 128 p.
- 7. Anipko, O. B. Vliianie dlitel'nosti hraneniia boepripasov na ballisticheskie harakteristiki strelkovogo oruzhiia [Text] / O. B. Anipko, D. S. Baulin, I. Yu. Biryukov // Integrated Technologies and Energy Conservation. − 2007. − № 2. − P. 97–100.
- 8. Biryukov, I. Yu. Ekspluatatsiini kharakterystyky striletskoho ozbroiennia pry vykorystanni boieprypasiv dovhotryvaloho zberihannia [Text] / I. Yu. Biryukov, D. S. Baulin // Integrated Technologies and Energy Conservation. − 2008. − № 2. − P. 113–117.
- 9. Anipko, O. B. Problem of survivability of barrels small arms in a case use of ammunition after a guarante periods of storage [Text] / O. B. Anipko, A. O. Mulenko, D. S. Baulin, A. D. Cherkashyn // Integrated Technologies and Energy Conservation. $-2010. N_2 3. P. 80-83$.
- 10. Anipko, O. B. Zhivuchest' nareznyh i gladkih stvolov pri ispol'zovanii boepripasov poslegarantiinyh srokov hraneniia [Text] / O. B. Anipko, Yu. M. Busiak, P. D. Goncharenko, V. L. Haikov. Sevastopol, 2012. 107 p.
- 11. Ding, C. A mesh generation method for worn gun barrel and its application in projectile-barrel interaction analysis [Text] / C. Ding, N. Liu, X. Zhang // Finite Elements in Analysis and Design 2017. Vol. 124. P. 22–32. doi: 10.1016/j.finel.2016.10.003
- 12. Deng, S. Transient finite element for in-bore analysis of 9mm pistols [Text] / S. Deng, H. K. Sun, C.-J. Chiu, K.-C. Chen // Applied Mathematical Modelling. 2014. Vol. 38, № 9–10. P. 2673–2688. doi:10.1016/j.apm.2013.10.071
- 13. Deng, S. Rifles in-bore finite element transient analysis [Text] / S. Deng, H. K. Sun, C.-J. Chiu // International conference on mechanical, production and materials engineering (ICMPME'2012). Bangkok, 2012. P. 58–62.
- 14. Biryukov, A. I. Features of operation of guns with free return of the lock when using ammunition after-guarantee periods of storage [Text] / A. I. Biryukov // Integrated Technologies and Energy Conservation. -2013. -N 2. -P. 80–85.
- 15. Biryukov, A. Experimental investigations influence of lengths barrel pistol on ballistic characteristics by use of long-term storage ammunition [Text] / A. Biryukov // Technology Audit and Production Reserves. − 2016. − № 4/1 (30). − P. 9–21. doi:10.15587/2312-8372.2016.74846
- 16. Biryukov, A. Analysis of ambient temperature change on depletion intensity of powder charges during long-term storage of ammunition [Text] / A. Biryukov, I. Biryukov // Technology Audit and Production Reserves. − 2016. − № 6/2 (32). − P. 28–35. doi:10.15587/2312-8372.2016.85462
- 17. Rukovodstvo po ekspluatatsii voiskovyh kalibrov i priborov dlia raketno-artilleriiskogo vooruzheniia [Text]. Moscow: Voennoe izdanie Ministerstvo oborony SSSR, 1983. 79 p.
- 18. Johnston, A. Understanding and Predicting Gun Barrel Erosion [Text] / A. Johnston. Department of Defence Australian Government, 2005. 52 p.

19. Lambert, J. Microsoft Office 2016. Step by Step [Text] / J. Lambert, C. Frye. – Microsoft, Press, 2016. – 564 p.

20. Kurs strilb [Text]: Order of the National Guard of Ukraine from 28.01.2017

