ГЛАДКИХ ИССЛЕДОВАНИЕ АЛГОРИТМА КОНСТРУИРОВАНИЯ ЗАДАНИЯ ПРОСТРАНСТВЕННЫХ КРИВЫХ С ВОЗМОЖНОСТЬЮ КРИВИЗНЫ И КРУЧЕНИЯ В УЗЛОВЫХ ТОЧКАХ

Ковтун А. М.

1. Введение

Известны и имеют применение такие варианты аналитического представления кривых линий (обводов):

а) на основе функции Фергюссона (1);

- б) на основе функции Безье (2), (3);
- в) на основе рациональных функций (4), (5).

Кубические параметрические кривые в форме Фергюссона записываются в виде (рис. 1):

$$r = r(u) = r(0)\alpha_0(u) + r(1)\alpha_1(u) + r'(0)\beta_0(u) + r'(1)\beta_1(u),$$
(1)

где r(0), r(1) – векторы заданных двух точек;

r'(0), r'(1) – векторы касательных в заданных точках;

и – параметр, в пределах от точки 0 до точки 1 изменяющийся от 0 до 1; $\alpha_0(u), \alpha_1(u), \beta_0(u), \beta_1(u) - функции третей степени от параметра <math>u$:

Рис. 1. Кубическая параметрическая кривая в форме Фергюссона

Как видно на рис. 1, управляющими факторами здесь есть две точки и векторы касательных в них. На основе кривой в форме Фергюссона строятся векторно-параметрические кубические сплайны.

В практике конструирования криволинейных обводов не всегда можно определить касательные векторы, а, тем более, определить необходимую их длину, что влияет на форму кривой. Как правило, в машиностроении первичными данными является точечный ряд точек без касательных.

Кубические кривые в форме Безье (рис. 2) имеют вид:

$$r = r_0 (1-u)^3 + 3r_1 u (1-u)^2 + 3r_2 u^2 (1-u) + r_3 u^3,$$
(2)

где *r*₀, *r*₁, *r*₂, *r*₃ – векторы точек 0, 1, 2, 3;

и – параметр, в пределах от 1 до 3 изменяющийся от 0 до 1.

Как видно на рис. 2, точки 1 и 2 не лежат на кривой, а векторы 01 и 23 являются касательными к кривой в точках 0 и 3.

Этот вид кривой также не всегда удовлетворяет конструкторским требованиям в том случае, когда нет касательных к кривой.

Кроме кубической кривой еще известны кривые полиномов Бернштейна-Безье:

$$r = r(u) = \sum_{i=0}^{n} \frac{n!}{(n-i)! \, i!} \, u^{i} (1-u)^{n-i} \, r^{i}.$$
(3)

Эти кривые обобщают кубическую кривую Безье на более высокие степени, но также нет простого и надежного способа получения кривой с наперед заданной кривизной и кручением, что осложняет проектирование каналовых поверхностей.

Кроме того, на основе кривых Безье создан метод FFD (Free Form Deformation) – метод произвольной деформации формы, где управляющими факторами для образования геометрического тела есть точки, которые не все лежат на поверхности тела.

Обобщением кривой Безье являются рациональные кривые. Приведем формулы для кривой 2-го и 3-го порядков:

$$r = \frac{W_0 r_0 (1-u)^2 + 2 W_1 r_1 u (1-u) + W_2 r_2 u^2}{W_0 (1-u)^2 + 2 W_1 u (1-u) + W_2 u^2}.$$
(4)

$$r = \frac{W_0 r_0 (1-u)^3 + 3 W_1 r_1 u (1-u)^2 + 3 W_2 r_2 u^2 (1-u) + W_3 r_3 u^3}{W_0 (1-u)^3 + 3 W_1 u (1-u)^2 + 3 W_2 u^2 (1-u) + W_3 u^3}.$$
(5)

В этих кривых, в отличие от кривых Безье, есть возможность руководить «весами» w_i , что обеспечивает форму кривой. В целом они имеют такой же вид, как и кривые Безье, и тоже не всегда являются удобными для конструктора.

Таким образом, видим, что актуальным является последующее исследование в разработке других вариантов представления алгебраических кривых, а именно: с помощью заданных двух точек с известными *кривизной и кручением*. Это дает возможность более удобно конструировать реальный объект. Причем можно руководить кривизной, кручением и гладкостью. Что дает дополнительные преимущества в проектировании гладких каналовых поверхностей.

2. Объект исследования и его технологический аудит

Объект исследования – математический аппарат для описания гладких сплайновых пространственных кривых, заданных двумя точками с известными в них величинами кривизны и кручения. Одним из наиболее проблемных мест в данном аппарате является несовершенство алгоритмов, применяемых для конструирования гладких обводов – склонность существующих сплайнов к осцилляциям (волнообразованию). Причиной этого является недостаточное количество работ и исследований (в особенности по сплайнам с наперед заданным графиком кривизны и кручения), позволяющих улучшить положение.

Для выявления особенностей разработки сплайн-функций с заданными в опорных точках величинами кривизны и кручения проводился технологический аудит. Целью аудита является исследование способности такого вида сплайнов давать форму, пригодную для проектирования путепроводов для сыпучих и жидких объектов, выпускных коллекторов двигателей внутреннего сгорания и т. д. Существенную помощь разработчику может оказать возможность задания дополнительных условий: графика кривизны и кручения, для корректировки формы сплайна в соответствии с решаемой задачей. Исследование имеет уклон в сторону практического применения специальных сплайн-функций и в большей степени связан с запросами пользователей САПР, предлагая дополнительные возможности конструктору.

3. Цель и задачи исследования

Цель исследования – развитие и усовершенствование имеющегося математического аппарата, который позволит более корректно и «адекватно» поставленной задаче отобразить объекты реального мира. Особенно это важно для описания каналовых поверхностей при проектировании продуктопроводов, проводящих сыпучие и жидкие массы, выпускных коллекторов двигателей внутреннего сгорания, газотурбинных двигателей и т. д. То есть для описания реальных объектов, к которым предъявляются повышенные требования по соответствию графику кривизны и кручения.

Для достижения поставленной цели необходимо выполнить такие задачи:

1. Получить формулу для расчета векторно-параметрического сегмента седьмой степени (по двум конечным точкам, двум первым, вторым и третьим производным в них).

2. По заданным точкам, значениям *гладкости*, *кривизны* и *кручения* в них (все они являются функцией соответствующей, либо смешанной производной) получить векторно-параметрический сегмент с нужными разработчику свойствами.

4. Исследование существующих решений проблемы

Среди основных направлений конструирования гладких каналовых поверхностей в ресурсах мировой периодики выявлены следующие направления, применяемые для аналитического представления гладких поверхностей, также использована «классическая» литература по аналитической геометрии. Могут быть выделены такие подходы к решению проблемы [Ошибка! Источник ссылки не найден.–Ошибка! Источник ссылки не найден.]:

- аналитические поверхности;
- поверхности Кунса;
- поверхности Безье;
- сплайновые поверхности;
- поверхности Эрмита;
- поверхности Гордона;
- поверхности перехода;
- рациональные поверхности;
- NURBS поверхности.

Каждый из этого далеко не полного списка приведенных методов обладает своими недостатками и преимуществами, не изобретено универсального, «волшебного» метода. Обычно приходится «платить» за каждое из преимуществ, выбирая из существующих алгоритмов наиболее подходящий инструментарий.

В [Ошибка! Источник ссылки не найден.–Ошибка! Источник ссылки не найден.] приведены исследования, в которых делаются попытки построения векторно-параметрических сегментов (а на их основе и порций поверхностей) с «особыми свойствами». Успешных попыток получения гладкой кривой с необ-

ходимыми свойствами, увязывая свойства сегмента со значениями кривизны и кручения сделано не было. С таким же успехом были проведены исследования для трубопроводов [Ошибка! Источник ссылки не найден.]. Делались попытки управлять кривизной и кручением при проектировании NURBS.

В работе предлагается новый алгоритм управления кривизной и кручением кривой еще на этапе разработки. Это даст возможность конструктору проще и точнее выполнить техническое задание.

5. Методы исследования

Векторно-параметрические кривые задаются в виде r=r(u), что означает: по каждой координате существуют отдельные кривые, а именно:

$$x = x(u), y = y(u), z = z(u).$$

При задании точечного ряда в каждой точке назначаются произвольным образом конкретные значения параметра u. Наиболее простым способом является назначение значений u, которые равняются порядковому номеру точки, то есть $u_i = i$, i = 0, 1, ..., N. При этом уравнения сплайнов значительно упрощаются, т. к. точки по параметру u размещаются равномерно (это не означает, что они равномерно размещаются в пространстве). Кроме того, дистанция между точками по параметру u равняется единице, то есть:

 $u_{i+1}-u_i=(i+1)-i=1.$

Но более адекватным является назначение параметра *u*, который равен реальной дистанции в пространстве, то есть:

$$u_{i+1} - u_i = \sqrt{\left(X_{i+1} - X_i\right)^2 + \left(Y_{i+1} - Y_i\right)^2 + \left(Z_{i+1} - Z_i\right)^2},$$

где: u_i и u_{i+1} – параметры в точке i u i+1;

 x_i , x_{i+1} , y_i , y_{i+1} – координаты узловых точек.

В этом случае необходимо решать системы уравнений для сплайнов с учетом неравномерности расположения точек.

6. Результаты исследования

Очевидно, что полином седьмой степени задается восемью коэффициентами, или восьмью геометрическими условиями.

Можно предложить вариант описания этих условий, для чего будем искать полиномиальную функцию седьмой степени в виде:

$$y = \alpha_{\theta}(u)y_{\theta} + \alpha_{1}(u)y_{1} + h \left[\beta_{\theta}(u)y_{\theta}' + \beta_{1}(u)y_{1}'\right] + h^{2}\left[\gamma_{\theta}(u)y_{\theta}'' + \gamma_{1}(u)y_{1}''\right] + h^{3}\left[\delta_{\theta}(u)y_{\theta}'' + \delta_{1}(u)y_{1}'''\right],$$
(6)

где y_0 , y_1 – заданные ординаты точек 0, 1;

 y_{θ}', y_{1}' – заданные первые производные в точках $\theta, 1$; $y_{\theta_{u}}$, $y_{I_{u}}$ – заданные вторые производные в точках θ , 1; y_{θ} , y_{1} – заданные третьи производные в точках θ , 1; $h = (x_1 - x_0) -$ разница между абсциссами точек 0, 1; $u = (x - x_0)/(x_1 - x_0)$ – параметр, рис. 1.

 $\alpha_0(u)$, $\alpha_1(u)$, $\beta_0(u)$, $\beta_1(u)$, $\gamma_0(u)$, $\gamma_1(u)$, $\delta_0(u)$, $\delta_1(u)$ – функции седьмой степени от параметра и.

Будем искать функции седьмой степени в виде:

 $\alpha_0(u) = a + bu + cu^2 + du^3 + eu^4 + fu^5 + ju^6 + ku^7$. $\alpha_1(u) = a + bu + cu^2 + du^3 + eu^4 + fu^5 + ju^6 + ku^7$. $\beta_0(u) = a + bu + cu^2 + du^3 + eu^4 + fu^5 + ju^6 + ku^7.$ $\beta_1(u) = a + bu + cu^2 + du^3 + eu^4 + fu^5 + ju^6 + ku^7$. $\gamma_0(u) = a + bu + cu^2 + du^3 + eu^4 + fu^5 + ju^6 + ku^7.$ $\gamma_1(u) = a + bu + cu^2 + du^3 + eu^4 + fu^5 + ju^6 + ku^7.$ $\delta_0(u) = a + bu + cu^2 + du^3 + eu^4 + fu^5 + ju^6 + ku^7$ $\delta_1(u) = a + bu + cu^2 + du^3 + eu^4 + fu^5 + ju^6 + ku^7.$

Для нахождения функций седьмой степени, подставив значения полиномов в узловых точках, получим:

0

0

$\alpha_0(0) = 1$	$\alpha_0(1) = 0$	$\alpha'_{0}(0) = 0$	$\alpha'_0(1$	() = 0
$\alpha_1(0) = 0$	$\alpha_1(1) = 1$	$\alpha'_{1}(0) = 0$	$\alpha'_1(1$)=0
$\beta_0(0) = 0$	$\beta_0(1) = 0$	$\beta'_{0}(0) = 1$	$\beta'_0(1$) = 0
$\beta_1(0) = 0$	$\beta_1(1) = 0$	$\beta'_{1}(0) = 0$	$\beta'_1(1$)=1
$\gamma_0(0) = 0$	$\gamma_0(1) = 0$	$\gamma'_0(0) = 0$	$\gamma'_0(1$) = 0
$\gamma_1(0) = 0$	$\gamma_1(1) = 0$	$\gamma'_1(0) = 0$	$\gamma'_1(1)$) = 0
$\delta_0(0) = 0$	$\delta_0(1) = 0$	$\delta'_0(0) = 0$	$\delta'_0(1$) = 0
$\delta_1(0) = 0$	$\delta_1(1) = 0$	$\delta'_1(0) = 0$	$\delta'_1(1$) = 0
$\alpha''_{0}(0) = 0$	$\alpha'''_{0}(0) =$	$0 \alpha''_{0}(1)$	= 0	$\alpha'''_{0}(1) = 0$
$\alpha''_{1}(0) = 0$	$\alpha'''_{1}(0) =$	$0 \alpha''_{1}(1) =$	= 0 a	$\alpha'''_{1}(1) = 0$
$\beta''_{0}(0) = 0$	$\beta^{\prime\prime\prime}_{0}(0) =$	$0 \beta''_{0}(1)$	= 0	$\beta^{\prime\prime\prime}_{0}(1) = 0$
$\beta''_{1}(0) = 0$	$\beta'''_{1}(0) =$	$0 \beta''_{1}(1) =$	= 0	$\beta^{\prime\prime\prime}_{1}(1) = 0$
$\gamma''_{0}(0) = 1$	$\gamma'''_{0}(0) =$	$1 \gamma''_{0}(1) =$	= 0	$\gamma'''_{0}(1) = 1$
$\gamma_1(0) = 0$	$\gamma'''_{1}(0) =$	$0 \gamma''_{1}(1) =$	=1	$\gamma'''_{1}(1) = 0$
$\delta''_{0}(0) = 0$	$\delta'''_{0}(0) =$	$1 \delta''_{0}(1) =$	= 0	$\delta^{\prime\prime\prime}_{0}(1) = 0$
$\delta''_{1}(0) = 0$	$\delta^{\prime\prime\prime}_{1}(0) =$	$0 \delta''_{1}(1) =$	= 0	$\delta'''_{1}(1) = 1$

Если перегруппировать все α_0 , то получим систему для ее нахождения, аналогично найдем α_1 , β_0 , β_1 , γ_0 , γ_1 , δ_0 , δ_1 . Для чего выберем:

$$\begin{aligned} \alpha_{0}(0) &= 1 & \alpha_{1}(0) = 0 & \beta_{0}(0) = 0 & \beta_{1}(0) = 0 \\ \alpha_{0}(1) &= 0 & \alpha_{1}(1) = 1 & \beta_{0}(1) = 0 & \beta_{1}(1) = 0 \\ \alpha'_{0}(0) &= 0 & \alpha'_{1}(0) = 0 & \beta'_{0}(0) = 1 & \beta'_{1}(0) = 0 \\ \alpha'_{0}(1) &= 0 & \alpha'_{1}(1) = 0 & \beta'_{0}(1) = 0 & \beta'_{1}(1) = 1 \\ \alpha''_{0}(0) &= 0 & \alpha''_{1}(0) = 0 & \beta''_{0}(0) = 0 & \beta''_{1}(0) = 0 \\ \alpha''_{0}(1) &= 0 & \alpha''_{1}(1) = 0 & \beta''_{0}(1) = 0 & \beta''_{1}(1) = 0 \\ \alpha''_{0}(0) &= 0 & \alpha''_{1}(0) = 0 & \beta''_{0}(0) = 0 & \beta''_{1}(0) = 0 \\ \alpha''_{0}(1) &= 0 & \alpha'''_{1}(1) = 0 & \beta'''_{0}(1) = 0 & \beta'''_{1}(1) = 0 \end{aligned}$$

$\gamma_0(0) = 0$	$\gamma_1(0) = 0$	$\delta_0(0) = 0$	$\delta_1(0) = 0$
$\gamma_0(1) = 0$	$\gamma_1(1) = 0$	$\delta_0(1) = 0$	$\delta_1(1) = 0$
$\gamma'_0(0) = 0$	$\gamma'_1(0) = 0$	$\delta'_0(0)=0$	$\delta'_1(0) = 0$
$\gamma'_0(1) = 0$	$\gamma'_1(1) = 0$	$\delta'_0(1) = 0$	$\delta'_{1}(1) = 0$
$\gamma''_0(0) = 1$	$\gamma''_{1}(0) = 0$	$\delta''_{0}(0) = 0$	$\delta''_{1}(0) = 0$
$\gamma''_0(1) = 0$	$\gamma''_{1}(1) = 1$	$\delta''_{0}(1) = 0$	$\delta''_{1}(1) = 0$
$\gamma^{\prime\prime\prime}_{0}(0)=0$	$\gamma'''_1(0) = 0$	$\delta'''_{0}(0) = 1$	$\delta^{\prime\prime\prime}_{1}(0) = 0$
$\gamma^{\prime\prime\prime}_{0}(1)=0$	$\gamma^{\prime\prime\prime}_{1}(1) = 0$	$\delta^{\prime\prime\prime}_{0}(1) = 0$	$\delta'''_{1}(1) = 1$
			7

Решив системы методом Крамера, определим:

$$\begin{aligned} \alpha_0 &= 1.0 - 35u^4 + 84u^5 - 70u^6 + 20u^7; \\ \alpha_1 &= 35u^4 - 84u^5 + 70u^6 - 20u^7; \\ \beta_0 &= -20u^4 + 45u^5 - 36u^6 + 10u^7; \\ \beta_1 &= 35u^4 - 84u^5 + 70u^6 - 20u^7; \\ \gamma_0 &= -5u^4 + 10u^5 - 7.5u^6 + 2u^7; \\ \gamma_1 &= 2.5u^4 - 7u^5 + 6.5u^6 - 2u^7; \\ \varphi_0 &= 0.1666667u^3 - 0.6666667u^4 + u^5 - 0.6666667u^6 + 0.166667u^7; \\ \varphi_1 &= -0.166667u^4 + 0.5u^5 - 0.5u^6 + 0.166667u^7. \end{aligned}$$

Таким образом, найден векторно-параметрический сегмент, определяемый по 2-м точкам и заданным 1-м, 2-м и 3-м производным в них:

$$r(t) = \alpha_0 r_0 + \alpha_1 r_1 + \beta_0 r'_0 + \beta_1 r'_1 + \gamma_0 r''_0 + \gamma_1 r''_1 + f_0 r'''_0 + f_1 r'''_1,$$
(7)

где r_0, r_1 – векторы точек 0, 1;

 $\alpha_0(u)$, $\alpha_1(u)$, $\beta_0(u)$, $\beta_1(u)$, $\gamma_0(u)$, $\gamma_1(u)$, $\delta_0(u)$, $\delta_1(u)$ – функции седьмой степени от параметра u.

Из дифференциальной геометрии, для векторно-параметрической кривой в виде:

$$r = r(t); [x = x(t); y = y(t); z = z(t)],$$

кривизна задается формулой:

$$k^{2}_{I}(t) = \frac{\begin{vmatrix} x'' y'' \\ x' y' \end{vmatrix}^{2} + \begin{vmatrix} y'' z'' \\ y' z' \end{vmatrix}^{2} + \begin{vmatrix} z'' x'' \\ z' x' \end{vmatrix}^{2}}{(x'^{2} + y'^{2} + z'^{2})}$$

Кручение определяется формулой:

$$k_2 = \frac{(r'r''r''')}{(r' \times r'')^2},$$

где (r'r''r'') – смешанное произведение; $(r' \times r'')$ – векторное произведение.

Очевидно, кручение реально только для трехмерной кривой, что соответствует нашему случаю (построению гладких каналовых векторнопараметрических поверхностей).

Применим алгоритм:

1. Задаем две точки r_0 и r_1 и первые производные в них r_0' (x_0' , y_0' , z_0') и r_1' (x_1' , y_1' , z_1').

2. Далее задаем кривизны в этих точках k_0 и k_1 . Задаем вторые производные $x_0'', y_0'', x_1'', y_1''$. Из формулы (7) находим z_0'' и z_1'' .

3. Задаем величины кручения в этих двух точках kr_0 и kr_1 . Далее, задаем величины третьих производных по двум координатам x_0''' и y_0''' , x_1''' и y_1''' . И, наконец, из формулы (8) находим z_0''' и z_1''' .

4. Все необходимые входные данные получены, подставляем в формулу (6).

По выполнению: имеем векторно-параметрический сегмент (7), причем можно задать, на усмотрение разработчика первые, вторые и третьи производные (что автоматически дает кривую третьего порядка гладкости). К тому же возможен контроль значений кривизны и кручения еще на этапе конструирования пространственной кривой.

7. SWOT-анализ результатов исследований

Strengths. К сильным сторонам можно отнести полученные результаты: найден векторно-параметрический сегмент, определяемый по 2-м точкам и заданным 1-м, 2-м и 3-м производным в них. Также разработан алгоритм для векторно-параметрического сегмента, причем на усмотрение разработчика задаются первые, вторые и третьи производные (что автоматически дает кривую третьего порядка гладкости). К тому же возможен контроль значений *кривизны* и *кручения* еще на этапе конструирования пространственной кривой.

Произведено исследование *нового* алгоритма описания гладких каналовых векторно-параметрических поверхностей, полезные свойства которых можно применять при построении объектов реального мира.

Weaknesses. Слабые стороны данного исследования обусловлены малым количеством завершенных готовых моделей, выполненных с применением метода, что объясняется его новизной.

Opportunities. К дополнительным возможностям, обеспечивающим достижение цели исследования могут быть отнесены и вероятные внешние факторы:

– повышающийся спрос на специализированное программное обеспечение;

– разработка гладких каналовых векторно-параметрических поверхностей является передовым направлением исследований, промышленность, особенно «наукоемкая» требует все более совершенных подходов и алгоритмов;

– результаты исследования могут быть интегрированы в пакеты САПР, которые востребованы как в Украине, так и за ее пределами.

Threats. Сложности во внедрении полученных результатов исследования связаны с нынешней политико-экономической ситуацией, что обусловлено недостатком финансирования, медленным обновлением машинно-станочного парка, слабым внедрением тяжелого САПР и т. д.

Затраты для предприятий обещают быть небольшими в силу некоммерческого вида разработки.

Про точные аналоги не известно, по крайней мере, в открытых источниках.

Таким образом, SWOT-анализ результатов исследований позволяет обозначить основные направления для дальнейшей разработки более совершенных алгоритмов и программного обеспечения, продвижения их на вновь открывающиеся внешние и внутренние рынки IT.

8. Выводы

1. Получена формула для расчета векторно-параметрического сегмента седьмой степени (7) (по двум конечным точкам, двум первым, вторым и третьим производным в них). Формула позволяет более гибко управлять формой искомого сплайна, произвольно задавая исходные данные.

2. По заданным точкам 0, 1, по значениям *кривизны* k_1 и *кручения* k_2 в них получен векторно-параметрический сегмент (7) с нужными разработчику свойствами. Причем гладкость третьего порядка обеспечивается автоматически (в силу равенства производных, вплоть до третьей, на концах сегмента). Значе-

ния *кривизны* k_1 и *кручения* k_2 являются функцией соответствующей, либо смешанной производной: r', r'', r'''.

Литература

1. Голованов, Н. Н. Геометрическое моделирование [Текст] / Н. Н. Голованов. – М.: Издательство Физико-математической литературы, 2002. – 472 с.

2. Rogers, D. F. Mathematical Elements for Computer Graphics [Text] / D. F. Rogers, J. A. Adams. – Ed. 2. – McGraw-Hill Science, 1989. – 512 p.

3. Faux, I. D. Computational Geometry for Design and Manufacture [Text] / I. D. Faux, M. J. Pratt. – Ellis Horwood Ltd, 1980. – 329 p.

4. Завьялов, Ю. С. Методы сплайн-функций [Текст] / Ю. С. Завьялов, Б. И. Квасов, В. Л. Мирошниченко. – Москва: Наука, 1982. – 352 с.

5. Fu, Y. L. Simultaneous Measurement of Torsion and Curvature Using Curvature Fiber Optic Sensor [Text] / Y. L. Fu, H. T. Di // Key Engineering Materials. – 2009. – Vol. 392–394. – P. 448–453. doi:10.4028/www.scientific.net/kem.392-394.448

6. Rovenski, V. Geometry of Curves and Surfaces with MAPLE [Text] / V. Rovenski. – Birkhäuser Basel, 2000. – 310 p. doi:<u>10.1007/978-1-4612-2128-9</u>

7. Погорелов, А. В. Геометрия [Текст] / А. В. Погорелов. – М.: Наука, Матгиз, 1983. – 288 с.

8. Heller, H. R. Internationaler Handel [Text] / H. R. Heller. – Physica-Verlag HD, 1975. – 250 p. doi:<u>10.1007/978-3-642-93617-3</u>

9. Lambek, J. Torsion Theories, Additive Semantics, and Rings of Quotients [Text] / J. Lambek // Lecture Notes in Mathematics. – Berlin, Heidelberg: Springer, 1971. – 94 p. doi:10.1007/bfb0061029

10. Yaremenko, N. Derivation of Field Equations in Space with the Geometric Structure Generated by Metric and Torsion [Text] / N. Yaremenko // Journal of Gravity. – 2014. – Vol. 2014. – P. 1–13. doi:<u>10.1155/2014/420123</u>

11. Vasudevaiah, M. Effect of torsion in a helical pipe flow [Text] / M. Vasudevaiah, R. Patturaj // International Journal of Mathematics and Mathematical Sciences. – 1994. – Vol. 17, № 3. – P. 553–560. doi:10.1155/s0161171294000803