ОПРЕДЕЛЕНИЕ МАКСИМАЛЬНЫХ ОХЛАЖДАЮЩИХ ВОЗМОЖНО-СТЕЙ ДВУХКАСКАДНЫХ ОХЛАДИТЕЛЕЙ ПРИ ВАРИАЦИИ ГЕО-МЕТРИИ ВЕТВЕЙ В КАСКАДАХ

Зайков В. П., Мещеряков В. И., Журавлев Ю. И.

1. Введение

Термоэлектрические охлаждающие устройства относятся к наиболее перспективным устройствам обеспечения тепловых режимов радиоэлектронной аппаратуры. Это обусловлено отсутствием перемещающихся компонентов, малыми габаритами, высоким быстродействием, механической и ударной прочностью. Недостатком термоэлектрических охладителей (ТЭУ) является более низкая холодопроизводительность по сравнению с компрессионными охлаждающими устройствами, что делает актуальными исследования, направленные на повышение их холодопроизводительности. Очевидно, что основным методом повышения холодопроизводительности ТЭУ является выбор материала термоэлементов ветвей с максимальным значением термоэлектрической эффективности. Однако выбор полупроводниковых материалов термоэлементов для промышленного применения достаточно ограничен, поэтому при существующей технологии и заданных материалах необходимы конструктивные приемы повышения холодопроизводительности термоэлектрических охладителей.

2. Объект исследования и его технологический аудит

Объектом исследования является аналитическая модель связи показателей надежности двухкаскадного термоэлектрического охладителя с геометрией ветвей термоэлементов и его охлаждающими возможностями.

Термоэлектрический охладитель представляет собой конструкцию из параллельно расположенных керамических холодного и горячего электродов, между которыми установлены термоэлементы, электрически последовательно соединенные между собой. Существующая модель термоэлектрического охлаждающего устройства основана на законе сохранения энергии, в частности, на балансе тепловых потоков за счет теплопроводности между нагрузкой, холодным электродом, термоэлементами, горячим электродом, радиатором и внешней средой.

Термоэлектрические охлаждающие устройства относятся к твердотельным охладителям, надежность и массогабаритные характеристики которых существенно превосходят компрессионные устройства данного назначения до мощности охлаждения 500 Вт [1]. Это особо важно для теплонагруженных радиоэлектронных бортовых элементов, работающих в широком диапазоне климатических и механических воздействий [2]. Спектр использования термоэлектрических преобразователей широк: от систем обеспечения тепловых режимов электронной аппаратуры, медицинских систем формирования температурных полей, бытовых холодильников и кондиционеров до генераторов электрической энергии [3]. Более низкая по сравнению с компрессионными холодопроизводительность термоэлектрических охлаждающих устройств сделала актуальной проблему повышения энергетических параметров ТЭУ, поскольку по иным показателям они находятся вне конкуренции.

Другой проблемой являются показатели надежности, поскольку современные теплонагруженные элементы работают в условиях, близких к критическим. В соответствующих условиях работают и термоэлектрические системы обеспечения их тепловых режимов [4]. Повышенная тепловая нагрузка существенно ухудшает показатели надежности ТЭУ [5], поэтому проектирование устройства по критерию максимума охлаждающих возможностей должно осуществляться с учетом данного обстоятельства. В [6] проанализировано влияние изменение геометрии термоэлементов на показатели надежности однокаскадных ТЭУ, однако двухкаскадные охладители обладают рядом особенностей, учет которых обязателен [7]. Целесообразность выявления связи показателей надежности при вариации геометрии ветвей каскадного термоэлектрического охлаждающего устройства обусловлена потенциальной возможностью повышения качества двухкаскадных охладителей. При этом остается неизменной существующая технология их изготовления.

3. Цель и задачи исследования

Целью работы является выявление связи охлаждающих возможностей и показателей надежности двухкаскадного термоэлектрического охладителя с геометрией ветвей термоэлементов при их последовательном электрическом соединении.

Для достижения этой цели необходимо решить следующие задачи:

1. Разработать модель связи интенсивности отказов с конструктивными параметрами и энергетическими показателями двухкаскадного термоэлектрического охлаждающего устройства.

2. Провести анализ результатов моделирования для определения условий достижения максимального перепада температур.

4. Исследование существующих решений проблемы

Среди основных направлений устранения проблемы повышения холодопроизводительности термоэлектрических охлаждающих устройств, выявленных в ресурсах мировой научной периодики, могут быть выделены:

– создание новых материалов с повышенной термоэлектрической эффективностью [8, 9];

 использование тонкопленочных технологий изготовления материала термоэлементов [10–12];

 переход на нано структурные технологии изготовления материала термоэлементов [13–15];

 привлечение внешних электромагнитных полей для управления переносом зарядов в материале термоэлемента [16];

– оптимизация теплообмена в термоэлектрическом устройстве [17, 18];

 привлечение элементов теории надежности в технологии изготовления термоэлектрических охладителей [19–21]. Как следует из подходов, представленных в мировой периодике, основным направлением является создание новых материалов с более высокими значениями термоэлектрической эффективности и технологий изготовления материалов, что непосредственно определяет холодопроизводительность термоэлектрического устройства. Вместе с тем, промышленно используемые термоэлектрические материалы уже в течение полусотни лет имеют весьма ограниченное значение термоэлектрической эффективности [4, 5]. Управление показателями термоэлектрического охладителя электромагнитными полями существенно усложняет систему обеспечения тепловых режимов, поэтому может быть рекомендовано только в специальных применениях.

Исследования термоэлектрических охладителей на эксплуатационные показатели надежности осуществляется либо на этапе подготовки технологии изготовления изделий, либо после изготовления [21]. Это ограничивает возможности влияния проектирования на результирующие показатели надежности термоэлектрического устройства.

Таким образом, результаты анализа позволяют сделать вывод о том, что определение связи между показателями надежности термоэлектрического устройства и конструктивными параметрами термоэлементами актуально.

5. Методы исследования

В качестве методов исследования воспользуемся методами математического моделирования, теории теплопередачи и надежности, которые позволяют получить аналитические выражения, используемые для анализа. С прикладной точки зрения данный подход позволяет сопоставлять проектные решения и проектировать каскадные термоэлектрические охлаждающие устройства с приоритетом критерию надежности. При этом учитываются конструктивные и энергетические показатели, удовлетворяющие требованиям технического задания при существующей технологии.

6. Результаты исследования

6.1. Разработка надежностно-ориентированной модели

В ряде случаев в распоряжении разработчика имеется ряд различных конструкций каскадных термоэлектрических устройств (КТЭУ). Эти устройства могут отличаться друг от друга количеством термоэлементов n_1 , n_2 в каскадах (отношением n_1/n_2) и геометрией их ветвей (отношения высоты *l* ветви каскада к площади ее поперечного сечения *S*). Возможны также ряды стандартных (унифицированных) модулей, на базе которых можно построить КТЭУ при $(l/S)_i$ =const либо $(l/S)_i$ =var.

В [6] рассмотрен режим максимального перепада температур ΔT_{max} двухкаскадных ТЭУ различных конструкций $(n_1/n_2=\text{var})$ при $(l/S)_1=(l/S)_2=10$ см⁻¹ и определены их максимальные охлаждающие возможности и показатели надежности. Проведены расчеты максимальных охлаждающих возможностей, а именно величины максимального перепада температуры ΔT_{max} , при $(l/S)_1=(l/S)_2=$ 40...2,0 см⁻¹ и различных значений n_1/n_2 . Анализ результатов показал, что ΔT_{max} не зависит от геометрии ветвей термоэлементов в каскадах, а зависит от эффективности исходных материалов.

Рассмотрим оценку охлаждающих возможностей и показателей надежности двухкаскадных ТЭУ различных конструкций $(n_1/n_2=var)$ при $(l/S)_1=var=20$; 15; 10; 4,5 см⁻¹ и $(l/S)_2=10$ см⁻¹ при последовательном электрическом соединении каскадов.

Для определения оптимальной геометрии ветвей термоэлементов в первом каскаде $(l/S)_{10nr}$, соответствующей наибольшему значению максимального перепада температуры ΔT_{max} двухкаскадного ТЭУ при заданной геометрии ветвей термо-элементов во втором каскаде $(l/S)_2$ =const, воспользуемся соотношениями [5].

Условие теплового сопряжения каскадов можно записать в виде:

$$Q_{01} + W_1 = Q_{02}, \tag{1}$$

где $Q_{01}=0$ при ΔT_{max} – тепловая нагрузка ТЭУ, Вт.

Входящие в это выражение мощность потребления первого каскада W_1 и холодопроизводительность второго каскада Q_{02} рассчитываются по формулам:

$$W_{1} = 2n_{1} \left[I^{2}R_{1} + \overline{e}_{1}I(T_{1} - T_{0}) \right] = 2n_{1} \left[I^{2} \frac{(I/S)_{1}}{\overline{\sigma}_{1}} + \overline{e}_{1}I(T_{1} - T_{0}) \right];$$
(2)

$$Q_{02} = 2n_2 \Big[\overline{e}_2 IT_1 - 0.5 I^2 R_2 - K_2 (T - T_1) \Big] = = -2n_2 \Big[\overline{e}_2 IT_1 - \frac{0.5 I^2 (I/S)_2}{\overline{\sigma}_2} - \frac{\overline{\chi}_2}{(I/S)_2} (T - T_1) \Big],$$
(3)

где *n*₁, *n*₂ – количество термоэлементов в каскадах, шт.;

I – величина рабочего тока, А;

 R_i – электрическое сопротивление ветви термоэлемента в *i*-м каскаде, Ом, $R_i = (l/S)_i / \bar{\sigma}_i;$

 $\bar{e}_i, \ \bar{\sigma}_i, \bar{\chi}_i$ – соответственно, усредненные значения коэффициента термо-ЭДС, В/К, электропроводности, См/см, и теплопроводности, Вт/(см·К), ветвей термоэлементов в *i*-м каскаде;

 T_0 – температура теплопоглощающего спая, К;

 T_1 – промежуточная температура, К;

Т – температура теплопоглощающего спая, К.

Подставим (2) и (3) в (1) и получим выражение для промежуточной температуры:

$$T_{1} = T_{0} \left(1 + \frac{\overline{e}_{1}I}{\overline{\chi}_{1}} (I/S)_{1} \right) - 0.5I^{2} \frac{(I/S)_{1}^{2}}{\overline{\sigma}_{1}\overline{\chi}_{1}}.$$
(4)

Подставив (2)–(4) в (1), получим выражение для определения температуры теплопоглощающего спая:

$$T_{0} = \frac{1}{\overline{e}_{2}I + \frac{\overline{\chi}_{2}}{(I/S)_{2}} + I\frac{\overline{e}_{1}(I/S)_{1}}{\overline{\chi}_{1}} \left(\overline{e}_{2}I + \frac{\overline{\chi}_{2}}{(I/S)_{2}}\right) - I^{2}\frac{n_{1}}{n_{2}}\frac{\overline{e}_{1}^{2}(I/S)_{1}}{\overline{\chi}_{1}} \left[\frac{\overline{\chi}_{2}}{(I/S)_{2}}T + 0.5I^{2}\frac{(I/S)_{1}}{\overline{\sigma}_{1}\overline{\chi}_{1}} \left(\overline{e}_{2}I + \frac{\overline{\chi}_{2}}{(I/S)_{2}}\right) + 0.5I^{2}\frac{(I/S)_{2}}{\overline{\sigma}_{2}} + I^{2}\frac{n_{1}}{n_{2}}\frac{(I/S)_{1}}{\overline{\sigma}_{1}} - 0.5I^{3}\frac{n_{1}}{n_{2}}\frac{\overline{e}_{1}(I/S)_{1}^{2}}{\overline{\sigma}_{1}\overline{\chi}_{1}}\right].$$
(5)

Введем следующие обозначения:

$$A = \frac{\overline{\chi}_{2}}{(l/S)_{2}} T; B = 0.5 I^{2} \frac{1}{\overline{\sigma}_{1} \overline{\chi}_{1}}; f = \overline{e}_{2} I + \frac{\overline{\chi}_{2}}{(l/S)_{2}};$$

$$C = 0.5 I^{2} \frac{(l/S)_{2}}{\overline{\sigma}_{2}}; D = I^{2} \frac{n_{1}}{n_{2} \overline{\sigma}_{1}};$$

$$E = 0.5 I^{3} \frac{n_{1}}{n_{2}} \frac{\overline{e}_{1}}{\sigma_{1} \overline{\chi}_{1}}; p = I \frac{\overline{e}_{1}}{\overline{\chi}_{1}}; K = I^{2} \frac{n_{1}}{n_{2}} \frac{\overline{e}_{1}^{2}}{\overline{\chi}_{1}}.$$

С учетом этого выражение (5) примет вид:

$$T_0 = \frac{A + Bf(l/S)_1^2 + C + D(l/S)_1 - E(l/S)_1^2}{f + (l/S)_1 (pf - K)}.$$
(6)

Из условия
$$\frac{dT_0}{d(l/S)_1} = 0$$
 получим:

$$(I/S)_{1\text{onm}} = \frac{f}{pf - K} \left(\sqrt{1 - \frac{D(pf - K)}{(Bf - E)f} + \frac{(A + C)(pf - K)^2}{(Bf - E)f^2}} - 1 \right).$$
(7)

Интенсивность отказов λ/λ_0 двухкаскадного ТЭУ можно определить из выражения:

$$\begin{split} \frac{\lambda}{\lambda_0} &= n_1 B_1^2 \left(\Theta_1 + C_1 \right) \left(\frac{B_1 + \frac{\Delta T_{\max 1}}{T_0} \Theta_1}{1 + \frac{\Delta T_{\max 1}}{T_0} \Theta_1} \right)^2 K_{T1} \\ &+ n_2 B_2^2 \left(\Theta_2 + C_2 \right) \left(\frac{B_2 + \frac{\Delta T_{\max 2}}{T_1} \Theta_2}{1 + \frac{\Delta T_{\max 2}}{T_1} \Theta_2} \right)^2 K_{T2}, \end{split}$$

(8)

где Θ_i – относительный перепад температуры в *i*-м каскаде, $\Theta_1 = (T_1 - T_0)/\Delta T_{\text{max1}}, \Theta_2 = (T - T_1)/\Delta T_{\text{max2}};$

 $\Delta T_{\max i}$ – максимальный перепад температуры в *i*-м каскаде, К, $\Delta T_{\max i} = 0.5 \overline{z}_i T_{i-1}^2$;

 C_i – относительная тепловая нагрузка в *i*-м каскаде, $C_1 = \frac{Q_{01}}{n_1 I_{\text{max}1}^2 R_1}$,

$$C_2 = \frac{W_1 + Q_{01}}{n_2 I_{\max 2}^2 R_2}$$

 B_i – относительный рабочий ток в *i*-м каскаде, $B_i = I/I_{\text{max}i}$;

 $I_{\text{max}i}$ – максимальный рабочий ток в *i*-м каскаде, A, $I_{\text{max}i} = \bar{e}_i T_{i-1}/R_i$;

 \overline{z}_i – усредненное значение эффективности материала ветвей термоэлементов *i*-го каскада, 1/К;

*K*_{*Ti*} – коэффициент значимости, учитывающий влияние пониженной температуры в *i*-м каскаде.

Вероятность безотказной работы *Р* двухкаскадного ТЭУ можно определить из выражения:

$$P = \exp(-\lambda t), \tag{9}$$

где *t* – назначенный ресурс, ч.

Падение напряжения двухкаскадного ТЭУ можно определить из выражения:

$$U_{\Sigma} = W_{\Sigma} / I. \tag{10}$$

Выражения являются основой для проведения расчетов параметров и показателей надежности двухкаскадного охладителя.

6.2. Анализ разработанной надежностно-ориентированной модели

Расчет основных параметров и показателей надежности проводился для различных конструкций двухкаскадного ТЭУ (n_2/n_2 =var) при фиксированном количестве термоэлементов во втором каскаде n_2 =27, оптимальном значении (l/S)₁ и (l/S)₂=10 см⁻¹. Для поиска оптимальной геометрии ветвей термоэлементов первого каскада (l/S)_{1опт} использовался параметр, учитывающий геометрию ветвей в двух каскадах:

$$a = \frac{\left(l/S\right)_1}{\left(l/S\right)_2}.$$

Результаты расчетов приведены в табл. 1 и на рис. 1-6.

Анализ расчетных данных показал, что при фиксированных значениях параметра а с уменьшением отношения n_1/n_2 :

– промежуточная температура *T*₁ уменьшается (рис. 1);

– относительный рабочий ток в каскадах B_1 и B_2 увеличивается (рис. 2);

– относительный перепад температуры в первом каскаде Θ_1 увеличивается для a=0,45 и a=1,0 и уменьшается, проходя через максимум для a=1,5 и a=2,0 (рис. 3, *a*). Во втором каскаде Θ_2 увеличивается для различных значений *a* (рис. 3, *б*);

- величина рабочего тока *I* увеличивается (рис. 4);

– оптимальное значение параметра геометрии ветвей термоэлементов $a_{\text{опт}}$ уменьшается, проходя через минимум при $n_1/n_2=0,5$ (рис. 4);

– максимальный перепад температуры ΔT_{max} увеличивается (рис. 5);

– интенсивность отказов λ/λ_0 увеличивается (рис. 6, *a*) за счет роста относительных рабочих токов B_1 и B_2 , а также роста относительных перепадов температуры Θ_1 и Θ_2 ;

– вероятность безотказной работы P уменьшается (рис. 6, δ).

Анализ расчетных данных показал, что *при фиксированных значениях от*ношения n_1/n_2 с увеличением параметра а:

– промежуточная температура T_1 увеличивается (рис. 1);

– относительный рабочий ток первого каскада B_1 растет, а второго каскада B_2 незначительно уменьшается (рис. 2);

– относительный перепад температуры во втором каскаде Θ_2 увеличивается (рис. 3, δ);

– вероятность безотказной работы P уменьшается (рис. 6, δ).

Таблица 1

	KOI U	UAJI	адин	U J171	при	1 50	υπ,	\mathcal{L}_0 1	,0 D1	, <i>Z</i> _M	2,т	10	1/.	ix, <i>n</i>	24	1, (1)	<i>J</i> ₂ ⁻¹⁰
см ⁻¹ и н	зарьи	ров	ании	пај	рамет	гра а	для ј	разли	ичных	х зна	чен	ий и	n_1/n_2	вр	ежи	име Δ	$T_{\rm max}$
Кон-																	
струк-		R_1 ·															
ция		10	$R_2 \cdot 1$	$I_{\rm ma}$	$I_{\rm max2}$					T	<u>л</u> т	W_{Σ}	TT	(1)	21	λ·10	
(мо-	a	3	0^{3} ,	x1,	,	B_1	B_2	Θ_1	Θ_2	$I_1,$	ΔI	,	U_{Σ}	(1/	\mathcal{N}	8	P
дули в		Ó	Ом	A	Á		_	-	_	К	max	Вт	, В	$(5)_1$	λ_0	1/ч	
каска-		М															
дах)																	
$n_1/n_2=1.0$; $n_1=27$; $I=2$ A																	
M4,5-																	
27/		3.8	10.1	1.1		0.10	0.40		0.40	261.	59.	3.8	1.9		0.6	1 0 0	0.999
M10-	0,45	8	10,1	1	5,02	0,18	0,40	0,33	0,48	0	6	7	4	4,5	3	1,89	81
27		-		_									-		-		-
M10-																	
27/		94	10.5				0 38			279	64	56	2.8		13		0 999
M10-	1,0	3	3	4,7	5,25	0,43	0	0,67	0,23	0	0	3	2	10	3	4,0	60
27		5	5				Ŭ			Ŭ	Ŭ	5	2		5		00
M13.8																	
_27/		12	10.4	35			0 37	0.82	0.17	283	66	62	31	13	35		0 998
$M10_{-}$	1,38	12,	2	J,J	5,38	0,57	2,37	5	1	205,	6	3	J,1	1 <i>3</i> ,	$\gamma^{j,j}$	10,6	9/
27		1	2	1				5	т	5	U	5	1	0	2		74
M15_																	
27/		13	10.6	3 1					0.12	287	66	6.6	2 2		53		0 008
M10	1,5	1 <i>5</i> ,	10,0	$^{3,1}_{2}$	5,41	0,64	0,37	0,87	0,12	207,	1	0,0 1	3,5	15	<i>J</i> , <i>J</i>	16,1	0,998 A
27		9	4	3					4	/	1	4	3		0		4
<u> </u>																	
$\frac{1}{27}$		10		22							67	07			11		0.005
	2,0	10,	11,1	2,5	5,40	0,84	0,37	0,95	0,0	300	02,	9,1	4,9	20	14,	44,2	0,995
MII0-		9									2	3			/		0
21						/10 -	-0 67	• 10 -	1 Q · <i>I</i> -	-26	<u>ــــــــــــــــــــــــــــــــــــ</u>						
M4.5		-				l_1/n_2	-0,07	$, n_1 - $	10,1-	-2,0 F	1						
1014,3-		2_0		10		0.24	0.52			255	60				2 1		0 000
10/ M10	0,45	3,0 1	10,0	10,	4,97	0,24	0,32	0,43	0,57	233,	$\frac{00}{7}$	6,2	2,4	4,5	2,1	6,32	0,999
M10-				0		Э	3			9	/				1	-	31
2/																	
M10-		0.4	10.4	1.0						200	74	7 4	•		2 5		0 000
18/	1.0	8,4	10,4	4,6	5.06	0.56	0.51	0.80	0.36	269,	/4,	/,4	2,8	10	3,5	10.7	0,998
M10-		1	2	5		, .				0	1	3	6		6	,	93
27		0 -	10.		<u> </u>	0	0 - 1			a < -	_				4.0		0.000
M11,3	1.13	9,5	10,4	4.1	5.04	0,63	0,51	0.81	0.38	267,	75,	7,7	3.0	11,	4,8	14,5	0,998
-18/	1,15	8	2	•,•	, , , , , , , , , , , , , , , , , , ,	4	6	5,01	5,50	7	7	3	2,0	3	5	5	55

Основные параметры и показатели надежности двухкаскадного термоэлектрического охладителя при *T*=300 К, Q_0 =1,0 Вт, \overline{Z}_{M} =2,4·10⁻³ 1/К, n_2 =27, (*l/S*)₂=10 см⁻¹ и вари ировании нараметра *а* иля различии и значений *n* /*n*. в региме ΔT

M10-																	
27																	
M15-															-		
18/	15	12,	10,4	3,1	5 77	0.83	0 40	0,98	0,22	279,	75,	8,4	3,2	15	10,	276	0,996
M10-	1,5	9	2	4	5,27	0,85	0,49	0	6	0	3	3	4	15	9	52,0	7
27																	
M20-																	
18/	2.0	18,	10.0	2,3	5 3 5	1 10	0 /0	0,98	0,08	291,	68,	9,7	3,7	20	27,	82.0	0,991
M10-	2,0	2	10,9	6	5,55	1,10	0,49	7	4	4	6	0	2	20	3	82,0	83
27																	
	$n_1/n_2=0,50; n_1=13,5; I=3,1 \text{ A}$																
M4,5-																	
13,5/	0.45	3,6	98	10,	1 95	0 30	0.63	0 50	0,65	251,	75,	80	26	15	4,5	13,7	0,998
M10-	0,75	9	7,0	47	т,75	0,50	0,05	0,50	6	3	4	0,0	2,0	т,Ј	8	5	62
27																	
M9,5-																	
13,5/	0.95	78	10.1	4,8	5 1 1	0.64	0.61	0.01	0 11	263,	82,	Q 1	2,9	95	6,2	188	0,998
M10-	0,95	7,0	10,1	3	$_{3,11}$	0,04	0,01	0,91	0,44	5	4	9,1	5	9,5	7	10,0	12
27																	
M10-																	
13,5/	1.0	8,2	10.1	16	5 10	0.67	0.61	0,89	0,45	262,	82,	02	3 0	10	6,7	20.2	0,998
M10-	1,0	0	10,1	ч,0	5,10	0,07	0,01	5	5	8	2	2,2	5,0	10	5	20,2	0
27							<u></u>										
M15-																	
13,5/	15	12,	10.1	3 1	53	1.0	0 59	10	0.32	272	79,	10,	3,2	15	17,	51 8	0,994
M10-	1,5	1	10,1	$^{_{J,1}}$	5,5	1,0	0,57	1,0	0,52		0	0	5	15	25	51,0	83
27																	
M20-																	
13,5/	2.0	17,	10.5	2,3	5 1	1 31	0,57	0 93	0,13	286,	69,	11,	3,6	20	37,	112,	0,998
M10-	2,0	9	10,5	7	Ј,т	1,51	5	0,75	5	7	0	4	7	20	5	6	8
27																	
	$n_1/n_2=0,33; n_1=9; I=3,3 \text{ A}$																
M4,5-								0	a – :								0.05
9/	0 4 5	3,4	9 62	10,	4 88	0 31	0 68	0,52	0,74	247,	78,	84	2,5	45	6,3	19.0	0,998
M10-	0,10	6	,02	67	1,00	0,51	0,00	4	4	1	9	0,1	4	1,5	2	17,0	10
27																	
M10-																	
9/	10	7,6	10.0	4,6	4 94	0 72	0,66	0,92	0,59	254,	87,	94	2,8	10	10,	32 5	0,996
M10-	1,0	9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	·, ⁄ r	0,12	8	4	4	7	6	, r	4	10	8	52,5	8
27			-														
M11-																	
9/	1 11	8,5	10.0	4,1	4 93	0.80	0.67	0,92	0.61	254,	88,	9,5	2,8	11,	9,8	29.6	0,997
M10-	-,	4	10,0	4	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,	-,-,	5	~,• I	0	1	6	3	1	5	_>,0	05
27																	

M15- 9/ M10- 27	1,5	1», 1	10,0	3,0 3	5,09	1,09	0,64 8	1,0	0,48 5	261	86, 8	10, 1	3,0 7	15	18, 1	54,2	0,994 6
M20- 9/ M10- 27	2,0	17, 0	10,0	2,3	5,20	1,43	0,63 5	0,81	0,41	265, 6	77, 3	10, 9	3,3 0	20	33, 4	100	0,990 0
					1	n_1/n_2	=0,20) ; $n_1 =$	5; <i>I</i> =	3,8 A	L			K			
M4,5- 5/ M10- 27	0,45	3,4 0	9,52	10, 1	4,85	0,38	0,78	0,61	0,83 5	243	84, 6	10, 3	2,7 1	4,5	10, 9	32,7	0,996 7
M9,99 -5/ M10- 27	0,99 3	7,6 4	9,62	4,3 9	4,91	0,86	0,77	0,98 4	0,71	248, 7	95, 5	10, 9	2,8 6	9,9 3	13, 2	39,6	0,996 0
M10- 5/ M10- 27	1,0	7,6 9	9,62	4,4 1	4,92	0,86	0,77	0,98	0,71	248, 7	93, 4	10, 9	2,8 6	10	13, 2	39,6	0,996 0
M15- 5/ M10- 27	1,5	11, 5	10,0	3,0 4	4,89	1,25	0,78	0,94	0,64	252	90, 0	11, 6	3,0 6	15	21, 9	65,7	0,993 5
M20- 5/ M10- 27	2,0	16, 1	10,0	2,3 9	5,03	1,59	0,75 5	0,66	0,53 5	258	76, 6	12, 0	3,1 6	20	29, 0	86,9	0,991 35
						n_1/n	<i>1</i> 2=0,1	l ; <i>n</i> ₁ =	=3; I=	4 A							
M4,5- 3/ M10- 27	0,45	3,4 0	9,52	9,9 7	4,79	0,40	0,83 5	0,63 7	0,90	240	88, 1	11, 1	2,7 8	4,5	14, 4	43,2	0,995 7
M9,99 -3/ M10- 27	1,0	7,5 2	9,52	4,3 2	4,85	0,92 6	0,82 5	0,99	0,83	243, 1	96, 9	11, 4	2,8 6	9,9 97	15, 9	47,7	0,995 24
M10- 3/ M10- 27	1,0	7,5 2	9,52	4,3 2	4,85	0,92 6	0.82 5	0,99	0,83	243	96, 8	11, 4	2,8 6	10	15, 9	47,7	0,995 2
M15- 3/	1,5	11, 3	9,52	2,9 6	4,91	1,35	0,81 5	0,87 5	0,76 9	246	91, 2	11, 6	2,9 1	15	21, 5	64,4	0,993 6

Рис. 1. Зависимость промежуточной температуры T_1 двухкаскадного термоэлектрического охладителя от отношения n_1/n_2 для различных значений параметра *а* при *T*=300 K; (*l/S*)₂=10 см⁻¹; n_2 =27 в режиме ΔT_{max}

Рис. 2. Зависимость относительного рабочего тока каскадов двухкаскадного термоэлектрического охладителя от отношения n_1/n_2 для различных значений параметра *а* при *T*=300 K; $(l/S)_2=10$ см⁻¹; $n_2=27$ в режиме ΔT_{max} : а – первого каскада B_1 ; б – второго каскада B_2 .

Рис. 3. Зависимость относительного перепада температуры каскадов двухкаскадного термоэлектрического охладителя от отношения n_1/n_2 для различных значений параметра *a* при *T*=300 K; $(l/S)_2$ =10 см⁻¹; n_2 =27 в режиме ΔT_{max} : а – первого каскада Θ_1 ; б – второго каскада Θ_2 .

Рис. 4. Зависимость оптимального значения параметра *a*, соответствующего наибольшему значению перепада температуры: параметра геометри вервей *a* и рабочего тока *I* двухкаскадного термоэлектрического охладителя от отношения n_1/n_2 при *T*=300 K; $(l/S)_2$ =10 см⁻¹; n_2 =27 в режиме ΔT_{max}

Рис. 5. Зависимость максимального перепада температуры ΔT_{max} двухкаскадного термоэлектрического охладителя от величины параметра *а* для различных значений отношения n_1/n_2 при *T*=300 K; (*l/S*)₂=10 см⁻¹; n_2 =27 в режиме ΔT_{max}

Рис. 6. Зависимость относительной интенсивности отказов λ/λ_0 и вероятности безотказной работы *P* двухкаскадного термоэлектрического охлаждающего устройства от отношения n_1/n_2 для различных значений параметра *a* при *T*=300 К; $(l/S)_2=10$ см⁻¹; $n_2=27$ в режиме ΔT_{max} : а – относительной отказов λ/λ_0 ; б – вероятности безотказной работы *P*

Как видно из рис. 5, функциональная зависимость $\Delta T_{\text{max}}=f(a)$ для различных значений отношения n_1/n_2 имеет ярко выраженный максимум при заданной величине рабочего тока *I*. Для каждого значения отношения n_1/n_2 можно определить оптимальную геометрию ветвей термоэлементов $a_{\text{опт}}=(l/S)_1/(l/S)_2$, соответствующую наибольшему значению максимального перепада температуры ΔT_{max} . Следует отметить, что с ростом отношения n_1/n_2 величина параметра $a_{\text{опт}}$ смещается в сторону больших значений от традиционного a=1 (когда $(l/S)_1=(l/S)_2=10$).

Результаты расчета максимального перепада температуры ΔT_{max} при $a_{\text{опт}}$ ($\Delta T_{\text{max aont}}$) и при a=1 ($\Delta T_{\text{max a=1}}$) приведены в табл. 2.

Т	aб	лица	2

n_1/n_2	a _{опт}	$\Delta T_{\max a \circ \Pi T}$	$\Delta T_{\max a=1}$	$\gamma = \Delta T_{\max a \circ \pi T} / \Delta T_{\max a = 1}$
1,0	1,38	66,6	64,0	1,041
0,67	1,13	75,7	74,7	1,01
0,50	0,95	82,4	82,2	1,0024
0,33	1,11	88,1	87,6	1,005
0,20	0,993	95,5	93,4	1,022
0,11	1,0	96,9	96,8	1,001
0,0	1,0	100	100	1,0

Результаты расчета максимального перепада температуры

Как следует из последней колонки табл. 2, выигрыш зависит от отношения числа термоэлементов в каскадах и достигает максимума при значении отношения термоэлементов равном единице.

7. SWOT-анализ результатов исследований

Strengths. Сильной стороной данного исследования явилось обоснование возможности повышения показателей надежности двухкаскадных термоэлектрических охлаждающих устройств до 4% без доработки существующей технологии промышленного производства и изменения материала термоэлементов. С прикладной точки зрения это позволяет сохранить неизменными технические условия эксплуатации по климатическим, механическим и радиационным показателям выпускаемых изделий при повышении их качественных характеристик.

Weakness. Слабой стороной данного исследования является тот факт, что в предложенной модели учтено ограниченное число влияющих факторов, в частности не учтены термические деформации, которые возникают в местах соединения термоэлементов с теплоотводящими керамическими электродами. В каскадных термоэлектрических охладителях температурные условия функционирования термоэлементов в каскадах разнятся, что может оказывать влияние на пластические свойства паяных соединений. Данная составляющая не учтена предложенной моделью, и ее влияние на показатели надежности термоэлектрических охладителей нуждается в дальнейших исследованиях и соответствующих финансовых затратах.

Opportunities. Дополнительные возможности по повышению показателей надежности двухкаскадных термоэлектрических охлаждающих устройств состоят в учете геометрии термоэлементов и распределения термоэлементов в каскадах. Это позволяет оптимизировать проектные решения для достижения максимальных значений перепадов температур. При внедрении на предприятиях элементов данных исследований появляется возможность уже на стадии проектирования закладывать изделия, обладающие повышенными показателями надежности.

Threats. Сложности практического использования полученных результатов связаны с расширения номенклатуры выпускаемых двухкаскадных охладителей, привязанных к конкретным условиям эксплуатации. Поэтому данная функция должна быть заложена в алгоритм автоматизированной системы проектирования и изготовления, что является общей тенденцией современного производства. Дополнительные затраты связаны с доработкой программного продукта системы автоматизированного проектирования термоэлектрических охладителей в направлении учета исследованной составляющей надежности.

Таким образом, SWOT-анализ позволяет оценить основные направления повышения качества проектирования и изготовления двухкаскадных термоэлектрических охлаждающих устройств по надежностно-ориентированному критерию.

8. Выводы

1. Предложена и проанализирована модель взаимосвязи показателей надежности двухкаскадных ТЭУ различных конструкций с геометрией ветвей термоэлементов в каскадах в режиме ΔT_{max} при последовательном электриче-

ском соединении каскадов. Полученные соотношения позволяют оценить максимальные охлаждающие возможности и показатели надежности двухкаскадных охладителей различных конструкций.

2. Показана возможность увеличения максимального перепада температуры ΔT_{max} до 4 % за счет выбора оптимальной геометрии ветвей термоэлементов в каскадах $(l/S)_1 > (l/S)_2$, отличающейся от традиционной $(l/S)_1 = (l/S)_2$, при заданном рабочем токе. Предложенный подход позволяет оценить максимальные охлаждающие возможности двухкаскадных охладителей и вести оптимизационное проектирование систем обеспечения тепловых режимов радиоэлектронной аппаратуры.

Литература

1. Zebarjadi, M. Perspectives on thermoelectrics: from fundamentals to device applications [Text] / M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, G. Chen // Energy & Environmental Science. – 2012. – Vol. 5, № 1. – P. 5147–5162. doi:10.1039/c1ee02497c

2. Jurgensmeyer, A. L. High Efficiency Thermoelectric Devices Fabricated Using Quantum Well Confinement Techniques [Text] / A. L. Jurgensmeyer. – Colorado State University, 2011. – 54 p.

3. Tsai, H.-L. Self-sufficient energy recycling of light emitter diode/thermoelectric generator module for its active-cooling application [Text] / H.-L. Tsai, P. T. Le // Energy Conversion and Management. – 2016. – Vol. 118. – P. 170–178. doi:10.1016/j.enconman.2016.03.077

4. Rowe, D. Materials, Preparation, and Characterization in Thermoelectrics [Text] / ed. by D. Rowe // Thermoelectrics and its Energy Harvesting, 2 Volume Set. – Boca Raton: CRC Press, 2012. – 544 p. doi:<u>10.1201/b11891</u>

5. Zaykov, V. Prediction of reliability on thermoelectric cooling devices [Text]. Book 1. Single-stage devices / V. Zaykov, L. Kirshova, V. Moiseev. – Odessa: Politehperiodika, 2009. – 120 p.

6. Zaykov, V. Prediction of reliability indices of a two-stage thermoelectric cooling device in the ΔT_{max} mode [Text] / V. Zaykov, L. Kirshova, V. Moiseev, L. Kazanzhi // Technology and design in electronic equipment. – 2009. – No 4. – P. 45–47.

7. Zaykov, V. Prediction of reliability on thermoelectric cooling devices [Text]. Book 2. Cascade devices / V. Zaykov, V. Mescheryakov, Yu. Zhuravlov. – Odessa: Politehperiodika, 2016. – 124 p.

8. Brown, S. R. Yb 14 MnSb 11: New High Efficiency Thermoelectric Material for Power Generation [Text] / S. R. Brown, S. M. Kauzlarich, F. Gascoin, G. J. Snyder // Chemistry of Materials. -2006. - Vol. 18, No 7. - P. 1873–1877. doi: 10.1021/cm060261t

9. Riffat, S. B. Improving the coefficient of performance of thermoelectric cooling systems [Text] / S. B. Riffat, X. Ma // International Journal of Energy Research. – 2004. – Vol. 28, № 9. – P. 753–768. doi:<u>10.1002/er.991</u>

10. Gromov, G. Obiemnye ili tonkoplenochnye termoelektricheskie moduli [Text] / G. Gromov // Komponenty i tehnologii. – 2014. – № 9. – P. 38. 11. Mischenko, A. S. Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3 [Text] / A. S. Mischenko // Science. – 2006. – Vol. 311, № 5765. – P. 1270–1271. doi:<u>10.1126/science.1123811</u>

12. Singh, R. Experimental Characterization of Thin Film Thermoelectric Materials and Film Deposition VIA Molecular Beam Epitaxial [Text] / R. Singh. – University of California, 2008. – 54 p.

13. Kruglyak, Yu. A. Landauer-Datta-Lundstrom Generalized Electron Transport Model [Text] / Yu. A. Kruglyak // Nanosystems, Nanomaterials, Nanotechnologies. – 2013. – Vol. 11, № 3. – P. 519–549.

14. Sootsman, J. R. New and Old Concepts in Thermoelectric Materials [Text] / J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis // Angewandte Chemie International Edition. – 2009. – Vol. 48, No 46. – P. 8616–8639. doi:10.1002/anie.200900598

15. Nesterov, S. B. Evaluation of the possibility of increasing the thermoelectric quality of nanostructured semiconductor materials for refrigeration equipment [Text] / S. B. Nesterov, A. I. Kholopkin // Refrigerating Technique. -2014. $-N_{2}$ 5. - P. 40–43.

16. Gorskyi, P. Layered structure effects as realisation of anisotropy in magnetic, galvanomagnetic and thermoelectric phenomena [Text] / P. Gorskyi. – New York: Nova Publishers, 2014. – Vol. XIV. – 352 p.

17. Sano, S. Development of high-efficiency thermoelectric power generation system [Text] / S. Sano, H. Mizukami, H. Kaibe // KOMATSU Technical Report. -2003. – Vol. 49, No 152. – P. 1–7.

18. DiSalvo, F. J. Thermoelectric Cooling and Power Generation [Text] / F. J. DiSalvo // Science. -1999. - Vol. 285, No 5428. - P. 703–706. doi:10.1126/science.285.5428.703

19. Wereszczak, A. A. Thermoelectric Mechanical Reliability [Text] / A. A. Wereszczak, H. Wang // Vehicle Technologies Annual Merit Reviewand Peer Evaluation Meeting. – Arlington, 2011. – 18 p.

20. Thermoelectric Cooler Reliability Report [Text]. – Melcor Corporation, 2002. – 36 p.

21. Choi, H.-S. Prediction of reliability on thermoelectric module through accelerated life test and Physics-of-failure [Text] / H.-S. Choi, W.-S. Seo, D.-K. Choi // Electronic Materials Letters. – 2011. – Vol. 7, $N_{\rm D}$ 3. – P. 271–275. doi: 10.1007/s13391-011-0917-x

22.

4