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Solving certain problems 
of scheduling theory by 
the methods of quadratic 
optimization

Досліджено конвеєрну задачу теорії розкладів для (flow shop) зі стандартними обмеженнями. 
Шляхом деяких перетворень ці обмеження зведені до квадратичних форм змінних задачі. По-
казано, що будь-яка задача теорії розкладів для конвеєрної системи машин зводиться до задачі 
мінімуму лінійної функції з набором лінійних і квадратичних обмежень, тобто до задачі опуклої 
оптимізації. Розглянуто модельний приклад та методом точної квадратичної регуляризації 
отримано оптимальний розклад.
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1.  Introduction

The ordering of processes and algorithms is necessary in 
any field of activity, where the number of such processes is 
sufficiently large  [1]. A separate class of problems of this 
kind is associated with the ordering of the execution of  
a certain number of processes  (tasks) on a given number 
of devices, the so-called «scheduling problems»  [2]. The 
problems of information processing, technological processes of 
industrial enterprises, transport problem – all of them (and 
not only) are reduced to the problems of scheduling theory. 
In terms of content, many problems in scheduling theory 
are optimized. They consist in selecting  (finding) among 
the set of admissible schedules  (schedules allowed by the 
conditions of the problem) of those solutions on which the 
«optimal» value of the objective function is achieved. It 
is assumed that at the beginning of the planning period, 
a list of performed tasks is known. Each task is a set of 
interdependent works, which are performed on separate 
devices. For each job, you specify the processing time on 
each machine, the order of maintenance, and the execution 
time. The complexity of scheduling problems is determined 
by the number of tasks  (n) and the number of processing 
units  (m). A separate class of tasks «flow shop» fixes the 
order of using machines and assumes a consistent multi-stage 
execution of each task on each machine in the established 
order. The solution of the problem is the sequence of the 
tasks, at which the total processing time is minimized. De-
spite the simplicity of setting the tasks of scheduling theory 
and the increasing number of works devoted to their solu-
tion, an algorithm that will find an optimal or approximate 
solution for «reasonable» time is not found. The proposed 
approach to solving scheduling problems by the methods 
of convex optimization allows one to obtain an optimal or 
approximate solution for the polynomial time.

2. �T he object of research and  
its technological audit

The object of research are the problems of scheduling theory, 
which include certain resources (processing devices), a set 

of tasks, precedence constraints, and methods for estimating 
schedules. The so-called «flow shop problem» of scheduling 
theory is considered, which includes all the components 
listed above, while the order of processing of each job on 
the devices is the same and is determined. The required 
schedule should ensure the minimum time T for all jobs. 
The graph of the flow shop problem is shown in Fig.  1.

Fig. 1. The flow shop problem.  
Each job in the same sequence goes through all the devices

An optimal solution to the formulated problem can 
be obtained by considering all possible priorities for the 
fulfillment of the initial tasks. The number of possible 
variants of execution of tasks is equal to the number of 
permutations from n elements, that is, n! options. There-
fore, for n ~ 10–20, it is already impossible to obtain an 
optimal solution, since the amount of computation and the 
time of their execution will exceed all reasonable limits.

3. T he aim and objectives of research

The aim of this research is development of a method 
for solving pipeline scheduling problems based on con-
vex optimization methods. This method should ensure the  
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calculation of the optimal schedule with a given accuracy 
within an acceptable time.

To achieve this aim it is necessary:
1.	 To reformulate the limitations of the flow shop 

problem in the form of a set of analytic functions of the 
variables of this problem.

2.	 To rewrite the constraints in the form of convex func-
tions and formulate the problem of convex optimization.

3.	 To choose the optimal method for solving multi-
extremal convex optimization problems.

4. �R esearch of existing solutions  
of the problem

Classification of various problems in scheduling theory 
is considered in  [3]. As is known, the problems of schedul-
ing theory in the general formulation with the number of 
processing devices greater than m > 2 do not have a solution 
algorithm and are NP-complete [1, 2]. An attempt was made 
in  [4] to use the Johnson algorithm (m = 2) to construct an 
optimal schedule with a large number of processing devices. 
But, as the authors note, this approach does not lead to 
an optimal solution, but allows to find some approximation 
to it. Evaluation of the difference between the obtained 
solution and the optimal one is practically impracticable. 
The traditional approach to solving such problems uses the 
method of sequential opening of modules or the method of 
permutation of tasks [5], which leads to a large expenditure 
of time for calculating options. The method of branches 
and bound  [1], as well as its various modifications  [6], 
improves the methods of permutation of tasks used in solv-
ing the pipeline problem of scheduling theory. But they 
include additional procedures – the procedure for estimating 
schedules, the procedure for branching, the procedure for 
dropping out and the procedure for stopping. The main 
disadvantage of the branch and bound method is the need 
to define estimates at each vertex of the branch tree, and 
for a large number of tasks, the number of vertices becomes 
significant  [7]. This does not allow to review all the ver-
tices of the branch tree. It was noted in  [8] that modern 
models and methods of scheduling theory can be divided 
into two groups: approximate  (heuristic) and permutable 
with various variants of optimization of permutations. As  
a result, using the methods of the first group, the accuracy 
of solutions is lost, and the time of solving the problem by 
the methods of the second group can go beyond reason-
able limits. Therefore, the use of general methods of global 
optimization  [9,  10], allowing a reasonable time to obtain  
a solution to the problem of scheduling theory, is promising. 
This paper is devoted to the mathematical formulation of 
the problems of scheduling theory in a form convenient 
for using the methods of global optimization.

5. M ethods of research

Let m – the number of processing devices; n – the 
number of jobs performed on these devices, each job inclu
ding processing on each of the m devices. Denote by:

t tijmin min( ),=

where tij  – the execution time of the i-th job on the j -th  
device, the time for the start of the task execution on 
the selected device will be denoted as xij   (task schedule 

variables). Let’s introduce the auxiliary function of the 
employment of devices  [8] in the form:
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the graph of which is shown in Fig.  2.

Fig. 2. The graph of the function gij (t – xij )

Condition: on one device at a given time, only one 
job is processed is equivalent to the inequality:

g t x t j mij ij
i

n
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=
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Similarly, the second condition: each job can’t be si-
multaneously executed on two devices, takes the form:

g t x t i nij ij
j

m
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=
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, , ,..., . 	 (3)

The total execution time of all tasks on the devices 
satisfies an additional set of linear constraints:

T x t i nim im≥ + =, ,... ,1 	 (4)

and is the target function of the flow shop problem. Minimiza-
tion of the Т value is achieved by changing the variables ( ).xkj   
Let’s pass at the following minimization problem:
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Let’s estimate the restrictions on the variables  ( ),xkj  
which follow from the relations (2), (3) of the problem (5).

Let’s consider the system of inequalities (2), which 
must be satisfied at any time  t, including for the mo-
ments of time corresponding to the maximum of each of 
the functions gij entering into the sum, i.  e., the instants 
of time t x tj j= +1 1 , t x tj j= +2 2 , t x tj j= +3 3 , and so on. As 
a result, let’s obtain the following system of inequalities:

g x t x j m k nij kj kj ij
i

n

+ −( ) ≤ = =
=
∑ 1 1 1

1

, ,... , ,.... . 	 (6)

In the case i = k, in each of the inequalities (6) there 
is a summand of the form g tij ij( ), which by identity (1) 
is identically equal to one, and the system of inequali-
ties  (6) can be rewritten as follows:
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g x t x j m k n k iij kj kj ij
i
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Since the functions gij are non-negative by definition, 
each of the terms in the sum of the summands must be 
zero. Let’s pass to a set of restrictions on the difference 
x xkj ij− , and k i≠ . These differences occur twice in equa-
tions with rearranged indices i and k, where the signs 
of the differences are opposite, therefore, two conditions 
must be fulfilled simultaneously:

g x x tij kj ij kj− +( ) = 0  and g x x tkj ij kj ij− +( ) = 0,

j m k n k i= = ≠1 1,... , ,... , . 	 (8)

A zero of a function g zij ( )  is achieved for values of the 
argument z < 0 or z t tij> + min ,  which leads to inequalities:

x x tkj ij kj− + ≤ 0,  x x t t tkj ij kj ij− + ≥ + min ,

x x tij kj ij− + ≤ 0,  x x t t tij kj ij kj− + ≥ + min ,

or

x x tkj ij kj− ≤ − ,  x x t t tkj ij ij kj− ≥ − + min ,

x x tkj ij ij− ≥ ,  x x t t tkj ij kj ij− ≤ − + − min . 	 (9)

In the expression (9), the fulfillment of the first in-
equality automatically leads to the fulfillment of the fourth 
inequality, and the fulfillment of the third inequality auto
matically leads to the fulfillment of the second. Thus, 
two inequalities are valid from the set of inequalities (9):

x x tkj ij kj− ≤ − ,  x x tkj ij ij− ≥ , 	 (10)

and the execution of any of them nullifies each of the 
functions in expression (8).

The first of the inequalities (10) indicates that the 
execution of the i-th job on the j-th device can’t begin 
until this processing ends on the k-th job. The second 
expression indicates that the execution of the k-th job 
on the j-th device can’t begin until the i-th job pro-
cessing on this device has finished. Depending on the 
sequence of tasks, one of these inequalities will be imple-
mented, but both can’t be performed at the same time. 
The combination of these conditions is possible in the  
expression:

( )( ) .x x t x x tkj ij kj kj ij ij− + − − ≥ 0 	 (11)

Expression (11) defines two parallel hyperplanes in 
the space of variables  ( ).xkj  The region of space between 
hyperplanes does not satisfy condition  (11) and there 
can’t be admissible solutions of problem  (5). All possible 
solutions of problem  (5)  (including the optimal one) will 
be located outside of hyperplanes. Thus, the complete 
system of inequalities  (9), which places restrictions on 
variables x xkj ij,   (only one job is processed on a single 
device at a given time), can be represented as:

( )( ) , ,... ,x x t x x t j mkj ij kj kj ij ij− + − − ≥ =0 1  

i n k i n= − = +1 1 1,... , ,... . 	 (12)

For the case of three restrictions of the form (12) in 
Fig.  3 shows the mutual arrangement of pairs of hyper-
planes and the range of possible solutions of problem  (5).

Fig. 3. The mutual disposition of pairs of hyperplanes and the 
domain of  possible solutions of problem (5): 1–1′, 2–2′, 3–3′ – pairs 

of  hyperplanes corresponding to constraints (11)
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The admissible solutions in Fig. 1 are possible in regions 
outside all pairs of hyperplanes. These areas are designated 
as  

S . The system of inequalities (3) is treated similarly, 
with the corresponding replacement of the indices, which 
leads to the following restrictions:

( )( ) ,x x t x x tij iq ij ij iq iq− + − − > 0

i n q m j q m= = = +1 1 1,... , ,... , ,... . 	 (13)

In the case of a flow shop problem, the sequence of 
tasks on the devices is defined and the inequalities  (13) 
must be replaced by the conditions:

x x t i n k mik ik ik+ ≥ + = = −1 1 1 1, ,.... , ,.... . 	 (14)

Comparing the results with the graph of the conveyor 
problem in Fig.  1, it is possible to state that for each line 
of the graph that determines the sequence of operations 
in the job, a linear restriction of the form  (14) is writ-
ten. If the sequence of operations on devices is indifferent 
for the selected job, then in this case it is necessary to 
use the constraint of the form  (13). For tasks performed 
on one device, but not connected by lines of the graph, 
constraints of the form  (12) must be written.

6. R esearch results

The procedure proposed in this paper allows to write 
down the constraints of the problem of scheduling theory 
in the form of a set of smooth, convex, twice differentiable 
functions whose number does not exceed:

N n m m ngen = ⋅ + −
1

2
2( ). 	 (15)

Constraints of the form  (14) are always less than con-
straints of the form (13); therefore, for the pipeline problem 
their total number will be less than in (15):

N n m m n n n m n ngen = ⋅ − + ⋅ − = ⋅ + −( ) ( ) ( ) .1
1

2
1

1

2
1 	 (16)

Thus, any pipeline problem in the scheduling theory 
reduces to the problem of the minimum of the linear 
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function  (min(T))  (4) with a set of linear and quadratic 
constraints (12), (14), that is, to the so-called convex opti-
mization problem. The development of the theory of convex 
optimization in recent years has been very intensive and 
quite reliable and effective methods of finding the optimal 
solution of the problem with a given accuracy have been 
developed [10]. These methods are represented by several 
«competing» directions, which have their strengths and 
weaknesses, the description of which is detailed in [11]. The 
greatest progress in global optimization was obtained using 
the method of exact quadratic regularization of EQR [12]. 
This method is applicable for a wide class of multi-extremal 
problems and allows them to be divided into two classes 
of complexity. The first class reduces to minimizing the 
norm of a vector on a convex set, and the second to maxi
mizing the norm of a vector on a convex set. The problem 
of finding the minimum of a linear function  (min(T))  (4) 
with a set of linear and quadratic constraints (12), (14) 
belongs to the second class of complexity [9].

The use of the method of exact quadratic regularization 
transforms the problem (min(T)) with constraints (12)–(14)  
to the following form:

max ( ) ,x T s r x d
2 2

1+ + − ≤{ }
( )( ) ,x x t x x t r x dkj ij kj ij kj ij− + − + + ≤2

x x tik ik ik+ ≥ +1 , 	 (17)

where s – a fixed parameter satisfying the condition:

T s x∗ ∗+ ≥ 2
, 	 (18)

and T ∗  and x∗  – a solution of problem (17), the value of 
the parameter r > 0 is chosen such that the admissible domain 
of solutions of problem (17) is convex. Indeed, the parame
ter r enters into all the restrictions of the problem (17),  
the Hessians of these functions with a suitable choice 
of the parameter r are positive definite matrices and the 
restriction functions are convex. The components of the 
vector x are the required variables of the schedule task. 
In problem (17), it is necessary to find the minimum value 
of the parameter d > 0, for which simultaneously with the 
condition (18) the following condition is fulfilled:

r x d
2 = . 	 (19)

The parameter s, along with the parameter d, deter-
mines the solution search area and its choice, in accor-
dance with condition (18), leads to finding the global 
minimum of the time for passing the schedule T* and 
the corresponding variables of this schedule x*, that is, 
the solution of the problem.

Thus, the pipeline scheduling problem reduces to one 
of the traditional problems of global optimization, namely, 
minimizing the square of the norm of the vector x with 
quadratic constraints (17).

To demonstrate the efficiency of the above procedure, 
a pipeline processing model consisting of five tasks (n = 5) 
and three sequential processing devices  (m = 3) is chosen. 
The execution time of each of the tasks on the devices tij  
is chosen randomly and given in Table  1.

As a result of the optimization carried out by the 
method of exact quadratic regularization (EQR), the time 

values xij  for the beginning of job processing on devices, 
which values are given in Table  2, are obtained.

Table 1

Time for each task on individual devices

Processing 
device

Tasks

1 2 3 4 5

1 5 4 7 2 3

2 8 4 1 8 5

3 1 9 4 4 1

Table 2

Time to start each task on individual devices

Processing 
device

Tasks

1 2 3 4 5

1 6 2 11 0 18

2 14 10 22 2 23

3 23 14 24 10 28

The completion time for all tasks is 29 and is minimal for 
this task, and the resulting schedule is optimal. In this case, 
all restrictions of the sequence of operations (14), presented 
in Table  1, are satisfied and restrictions (12) for processing 
only one job on any device at a given time  (Table  4). For 
clarity, constraints (14) are rewritten as:

x x t i n k mik ik ik+ − − ≥ = = −1 0 1 1 1, ,.... , ,.... . 	 (20)

Table 3

The difference in the times of the beginning of the execution of the 
subsequent operation and the end of the previous one for each of the tasks

Pairs of 
operations

Tasks

1 2 3 4 5

1–2 3 4 4 0 2

2–3 1 0 1 0 0

Table 4

The numerical values of the constraints (12) for each of the machines  
and possible pairs of tasks

Number  
of device

Pairs of tasks

1–2 1–3 1–4 1–5 2–3 2–4 2–5 3–4 3–5 4–5

1 00 00 44 105 80 00 228 162 00 336

2 00 00 80 14 104 00 162 252 00 338

3 00 00 126 24 14 00 75 180 00 266

The above solutions are obtained by numerical calcula-
tions using Excel Solver  (USA).

7. S WOT analysis of research results

Strengths. Using traditional methods of scheduling 
theory, an increase in the number of tasks or devices 
leads to an exponential increase in the solution time of 
the problem. The proposed method for converting the 
pipeline problem of scheduling reduces it to the problem 
of convex optimization. The number of constraints in this  
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problem is polynomial with respect to the number of jobs 
and the number of processing devices. Therefore, an in-
crease in the number of jobs or the number of processing 
devices leads only to a polynomial increase in the time 
of solving the problem. Therefore, the time required to 
calculate the optimal schedule will be orders of magnitude 
smaller than in the case of traditional methods.

Weaknesses. The convex optimization problem obtai
ned by converting the pipeline problem turns out to be 
multi-extremal. Therefore, not all methods of convex op-
timization allow to find a global minimum, that is, an 
optimal solution.

The found solution may be close to optimal, but not 
coincide with it. Therefore, it may be necessary to repeat 
the solution of the problem with other initial conditions.

Opportunities. The method of exact quadratic regulari
zation  (EQR) allows to find the global minimum of the 
multi-extremal problem. Algorithmization of the definition 
of additional parameters of the method  (EQR) and their 
changes will automate the process of finding the optimal 
schedule. In this case, the elapsed time for calculating 
the optimal schedule will be reduced. This will make it 
possible to optimize the use of resources depending on 
the time-varying flow of tasks.

Threats. Additional costs will be associated with develop
ment and implementation of new software to determine 
the optimal schedules.

8.  Conclusions

1.	 The formulation of constraints of the flow shop problem 
is changed and is reduced to a set of analytic functions 
of the variables of this problem. Thus, we pass from the 
problems of discrete mathematics to the problems of clas-
sical mathematical analysis.

2.	 The analytic functions of the constraints are convex.  
Thus, the original problem is reformulated into the problem 
of convex optimization. This allows to solve the problem 
by convex optimization methods.

3.	 A method of exact quadratic regularization  (EQR) 
is chosen for solving the multiply connected convex op-
timization problem. Its use makes it possible, in polyno-
mial time, to find the optimal schedule for the flow shop 
problem.
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Решение некоторых задач теории расписаний 
методами выпуклой оптимизации

Исследована конвейерная задача теории расписаний  (flow 
shop) со стандартными ограничениями. Путем некоторых пре-
образований эти ограничения сведены к квадратичным формам 
переменных задачи. Показано, что любая конвейерная зада-
ча теории расписаний сводится к задаче минимума линейной 
функции с набором линейных и квадратичных ограничений, 
то есть к задаче выпуклой оптимизации. Рассмотрен модель-
ный пример и методом точной квадратичной регуляризации 
получено оптимальное расписание.

Ключевые слова: теория расписаний, выпуклая оптимизация, 
метод точной квадратичной регуляризации.
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