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SOLVING CERTAIN PROBLEMS
OF SCHEDULING THEORY BY

THE METHODS OF QUADRATIC
OPTIMIZATION

Jlocnioaceno konseepny 3adauy meopii posxiadie ois (flow shop) 3i cmandapmuumu oo mencennamu.
Hnsixom desikux nepemsopensv Ui oomemncens 36edeni 00 Keaopamuunux Gopm sminnux 3adaui. Ilo-
Kasamo, uo 6yoo-sxa sadaua meopii po3xaadie 0 KOHBEEPHOT CUCTEMU MAWUH 3600UMbCS 00 3A0aui
Minimymy Hiniiunoi Gyukyii 3 Habopom NHIUHUX | Keaopamuunux oomedxrcens, moomo 0o sadaui onyxiol
onmumizauii. Poszisanymo mo0ervnuil npukiad ma memooom mounoi Keaopamuunoi pezyiapusauii

OMPUMAHO ONMUMALLHUT PO3KAAO.

Kmovesi cnosa: meopis poskiadis, onykia onmumizayis, memoo mounoi Keaopamuyunoi pezyiapusauii.

1. Introduction

The ordering of processes and algorithms is necessary in
any field of activity, where the number of such processes is
sufficiently large [1]. A separate class of problems of this
kind is associated with the ordering of the execution of
a certain number of processes (tasks) on a given number
of devices, the so-called «scheduling problems» [2]. The
problems of information processing, technological processes of
industrial enterprises, transport problem — all of them (and
not only) are reduced to the problems of scheduling theory.
In terms of content, many problems in scheduling theory
are optimized. They consist in selecting (finding) among
the set of admissible schedules (schedules allowed by the
conditions of the problem) of those solutions on which the
«optimal» value of the objective function is achieved. It
is assumed that at the beginning of the planning period,
a list of performed tasks is known. Each task is a set of
interdependent works, which are performed on separate
devices. For each job, you specify the processing time on
each machine, the order of maintenance, and the execution
time. The complexity of scheduling problems is determined
by the number of tasks (z) and the number of processing
units (m). A separate class of tasks «flow shop» fixes the
order of using machines and assumes a consistent multi-stage
execution of each task on each machine in the established
order. The solution of the problem is the sequence of the
tasks, at which the total processing time is minimized. De-
spite the simplicity of setting the tasks of scheduling theory
and the increasing number of works devoted to their solu-
tion, an algorithm that will find an optimal or approximate
solution for «reasonable» time is not found. The proposed
approach to solving scheduling problems by the methods
of convex optimization allows one to obtain an optimal or
approximate solution for the polynomial time.

2. The ohject of research and
its technological audit

The object of research are the problems of scheduling theory,
which include certain resources (processing devices), a set

of tasks, precedence constraints, and methods for estimating
schedules. The so-called «flow shop problem» of scheduling
theory is considered, which includes all the components
listed above, while the order of processing of each job on
the devices is the same and is determined. The required
schedule should ensure the minimum time T for all jobs.
The graph of the flow shop problem is shown in Fig. 1.
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Fig. 1. The flow shop problem.
Each job in the same sequence goes through all the devices

An optimal solution to the formulated problem can
be obtained by considering all possible priorities for the
fulfillment of the initial tasks. The number of possible
variants of execution of tasks is equal to the number of
permutations from n elements, that is, n! options. There-
fore, for n~10-20, it is already impossible to obtain an
optimal solution, since the amount of computation and the
time of their execution will exceed all reasonable limits.

3. The aim and ohjectives of research

The aim of this research is development of a method
for solving pipeline scheduling problems based on con-
vex optimization methods. This method should ensure the
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calculation of the optimal schedule with a given accuracy
within an acceptable time.

To achieve this aim it is necessary:

1. To reformulate the limitations of the flow shop
problem in the form of a set of analytic functions of the
variables of this problem.

2. To rewrite the constraints in the form of convex func-
tions and formulate the problem of convex optimization.

3. To choose the optimal method for solving multi-
extremal convex optimization problems.

4. Research of existing solutions
of the prohlem

Classification of various problems in scheduling theory
is considered in [3]. As is known, the problems of schedul-
ing theory in the general formulation with the number of
processing devices greater than m>2 do not have a solution
algorithm and are NP-complete [1, 2]. An attempt was made
in [4] to use the Johnson algorithm (m=2) to construct an
optimal schedule with a large number of processing devices.
But, as the authors note, this approach does not lead to
an optimal solution, but allows to find some approximation
to it. Evaluation of the difference between the obtained
solution and the optimal one is practically impracticable.
The traditional approach to solving such problems uses the
method of sequential opening of modules or the method of
permutation of tasks [5], which leads to a large expenditure
of time for calculating options. The method of branches
and bound [1], as well as its various modifications [6],
improves the methods of permutation of tasks used in solv-
ing the pipeline problem of scheduling theory. But they
include additional procedures — the procedure for estimating
schedules, the procedure for branching, the procedure for
dropping out and the procedure for stopping. The main
disadvantage of the branch and bound method is the need
to define estimates at each vertex of the branch tree, and
for a large number of tasks, the number of vertices becomes
significant [7]. This does not allow to review all the ver-
tices of the branch tree. It was noted in [8] that modern
models and methods of scheduling theory can be divided
into two groups: approximate (heuristic) and permutable
with various variants of optimization of permutations. As
a result, using the methods of the first group, the accuracy
of solutions is lost, and the time of solving the problem by
the methods of the second group can go beyond reason-
able limits. Therefore, the use of general methods of global
optimization [9, 10], allowing a reasonable time to obtain
a solution to the problem of scheduling theory, is promising.
This paper is devoted to the mathematical formulation of
the problems of scheduling theory in a form convenient
for using the methods of global optimization.

5. Methods of research

Let m — the number of processing devices; n — the
number of jobs performed on these devices, each job inclu-
ding processing on each of the m devices. Denote by:

Z-min =m1n(tlj)’
where ¢; — the execution time of the i-th job on the j-th

device, the time for the start of the task execution on
the selected device will be denoted as x; (task schedule

variables). Let’s introduce the auxiliary function of the
employment of devices [8] in the form:
1 1 1
—+
X tl] tmin ’( )

gi(t—x;)=

1 ‘t—xij
_2[ oo

the graph of which is shown in Fig. 2.
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Fig. 2. The graph of the function g;(t—x;)

Condition: on one device at a given time, only one
job is processed is equivalent to the inequality:

Zn:g,-j(t—x,-j)ﬁi, Vt20, j=1,.,m

i=1

(2)

Similarly, the second condition: each job can’t be si-
multaneously executed on two devices, takes the form:

S g (t-x,)<1, Ve20, i=1,..n.

=

3)

The total execution time of all tasks on the devices
satisfies an additional set of linear constraints:
T>2x,+tm, i=1,..n, (4)
and is the target function of the flow shop problem. Minimiza-

tion of the T'value is achieved by changing the variables (x,).
Let’s pass at the following minimization problem:

Jj=1

mln(ng,j (t—x;)<1, Zgy(t xy) <1, T>x,m+t,mJ (5)

Let’s estimate the restrictions on the variables (&),
which follow from the relations (2), (3) of the problem (5).

Let’s consider the system of inequalities (2), which
must be satisfied at any time ¢ including for the mo-
ments of time corresponding to the maximum of each of
the functions g entering into the sum, i. e, the instants
of time t=uy;+t;, t=2y;+1ty;, t=23;+1;;, and so on. As
a result, let’s obtain the following system of inequalities:

Zgij (xkj+tk]-—x,-j)S1, j=Ll.m, k=1..n (6)
i=1

In the case i=*k, in each of the inequalities (6) there
is a summand of the form g;(¢;), which by identity (1)
is identically equal to one, and the system of inequali-
ties (6) can be rewritten as follows:

;SS
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igﬁ (a0 +1y—2;)<0, j=1..m, k=1,.n, k#i. (7)
i=1

Since the functions gj are non-negative by definition,
each of the terms in the sum of the summands must be
zero. Let’s pass to a set of restrictions on the difference
x —x;, and k=i. These differences occur twice in equa-
tions with rearranged indices i and k, where the signs
of the differences are opposite, therefore, two conditions

must be fulfilled simultaneously:
8 (xkj - +tkj)=0 and g, (xl-]- —xy +tl-j)=0,
j=L.m, k=1..n, k#i. (8)

A zero of a function g;(z) is achieved for values of the
argument z<0 or z>t;+t,,, which leads to inequalities:

xkj—xi/+tkj SO, Xy — Xy +tkj Z[l] +tmin7

X=Xy +0 <0, X=X+ L 20y + L

or

Xy — X5 S—ly, Xy — Xy 2y — Ly + i,

- tmin . (9)

Xy — X5 2Ly, Xy — Xy =1+

In the expression (9), the fulfillment of the first in-
equality automatically leads to the fulfillment of the fourth
inequality, and the fulfillment of the third inequality auto-
matically leads to the fulfillment of the second. Thus,
two inequalities are valid from the set of inequalities (9):

Xy =Xy Sy, Xy —Xx; 2Ly, (10)
and the execution of any of them nullifies each of the
functions in expression (8).

The first of the inequalities (10) indicates that the
execution of the i-th job on the j-th device can’t begin
until this processing ends on the k-th job. The second
expression indicates that the execution of the k-th job
on the j-th device can’t begin until the i-th job pro-
cessing on this device has finished. Depending on the
sequence of tasks, one of these inequalities will be imple-
mented, but both can’t be performed at the same time.
The combination of these conditions is possible in the
expression:

(= x5 + 14 ) (x5 — x5 — ;) 2 0. (11)

i Ly

Expression (11) defines two parallel hyperplanes in
the space of variables (x;). The region of space between
hyperplanes does not satisfy condition (11) and there
can’t be admissible solutions of problem (5). All possible
solutions of problem (5) (including the optimal one) will
be located outside of hyperplanes. Thus, the complete
system of inequalities (9), which places restrictions on
variables xy, x; (only one job is processed on a single
device at a given time), can be represented as:

(xy = x5+ ) (xy — x5 — ;) 20, j=1,..m,

i=1.n-1 k=i+1,..n

(12)

For the case of three restrictions of the form (12) in
Fig. 3 shows the mutual arrangement of pairs of hyper-
planes and the range of possible solutions of problem (5).

Fig. 3. The mutual disposition of pairs of hyperplanes and the
domain of possible solutions of problem (5): 1-1’, 2-2, 3-3’ — pairs
of hyperplanes corresponding to constraints (11)

The admissible solutions in Fig. 1 are possible in regions
outside all pairs of hyperplanes. These areas are designated
as (s). The system of inequalities (3) is treated similarly,
with the corresponding replacement of the indices, which
leads to the following restrictions:

(x5 = x5, + 1) — x5 —135) >0,

i=1,..n g=1..m, j=q+1,..m. (13)

In the case of a flow shop problem, the sequence of
tasks on the devices is defined and the inequalities (13)
must be replaced by the conditions:

Xt 2 X+, 1=1,0m, k=1,...m—1. (14)
Comparing the results with the graph of the conveyor
problem in Fig. 1, it is possible to state that for each line
of the graph that determines the sequence of operations
in the job, a linear restriction of the form (14) is writ-
ten. If the sequence of operations on devices is indifferent
for the selected job, then in this case it is necessary to
use the constraint of the form (13). For tasks performed
on one device, but not connected by lines of the graph,
constraints of the form (12) must be written.

6. Research resulis

The procedure proposed in this paper allows to write
down the constraints of the problem of scheduling theory
in the form of a set of smooth, convex, twice differentiable
functions whose number does not exceed:

1
N, =§n~m(m+n—2).

(15)

Constraints of the form (14) are always less than con-
straints of the form (13); therefore, for the pipeline problem
their total number will be less than in (15):

(16)

1 1
Ny, =n~(m—1)+§m~n(n—1)=§nvm(n+1)—n.

Thus, any pipeline problem in the scheduling theory
reduces to the problem of the minimum of the linear
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function (min(7)) (4) with a set of linear and quadratic
constraints (12), (14), that is, to the so-called convex opti-
mization problem. The development of the theory of convex
optimization in recent years has been very intensive and
quite reliable and effective methods of finding the optimal
solution of the problem with a given accuracy have been
developed [10]. These methods are represented by several
«competing» directions, which have their strengths and
weaknesses, the description of which is detailed in [11]. The
greatest progress in global optimization was obtained using
the method of exact quadratic regularization of EQR [12].
This method is applicable for a wide class of multi-extremal
problems and allows them to be divided into two classes
of complexity. The first class reduces to minimizing the
norm of a vector on a convex set, and the second to maxi-
mizing the norm of a vector on a convex set. The problem
of finding the minimum of a linear function (min(7T)) (4)
with a set of linear and quadratic constraints (12), (14)
belongs to the second class of complexity [9].

The use of the method of exact quadratic regularization
transforms the problem (min(7)) with constraints (12)—(14)
to the following form:

max {[af* [T +5+(r =) | <d},
(X — x5 + 8y ) (a0 — 2y -kt,-]-)erHacH2 <d,

Xipst 2 Xip + i, (17)

where s — a fixed parameter satisfying the condition:

T*

(18)

and T* and x* — a solution of problem (17), the value of
the parameter > 0 is chosen such that the admissible domain
of solutions of problem (17) is convex. Indeed, the parame-
ter 7 enters into all the restrictions of the problem (17),
the Hessians of these functions with a suitable choice
of the parameter r are positive definite matrices and the
restriction functions are convex. The components of the
vector x are the required variables of the schedule task.
In problem (17), it is necessary to find the minimum value
of the parameter d >0, for which simultaneously with the
condition (18) the following condition is fulfilled:

rlxff =d (19)

The parameter s, along with the parameter d, deter-
mines the solution search area and its choice, in accor-
dance with condition (18), leads to finding the global
minimum of the time for passing the schedule T* and
the corresponding variables of this schedule x*, that is,
the solution of the problem.

Thus, the pipeline scheduling problem reduces to one
of the traditional problems of global optimization, namely,
minimizing the square of the norm of the vector x with
quadratic constraints (17).

To demonstrate the efficiency of the above procedure,
a pipeline processing model consisting of five tasks (n=135)
and three sequential processing devices (m=3) is chosen.
The execution time of each of the tasks on the devices ;
is chosen randomly and given in Table 1.

As a result of the optimization carried out by the
method of exact quadratic regularization (EQR), the time

values x; for the beginning of job processing on devices,
which values are given in Table 2, are obtained.

Tahle 1
Time for each task on individual devices
Processing Tasks
device 1 2 3 4 g
1 5 4 7 2 3
2 8 4 1 8 5
3 1 9 4 4 1
Table 2
Time to start each task on individual devices
Processing Tasks
device 1 2 3 4 5
1 B 2 11 0 18
2 14 10 22 2 23
3 23 14 24 10 28

The completion time for all tasks is 29 and is minimal for
this task, and the resulting schedule is optimal. In this case,
all restrictions of the sequence of operations (14), presented
in Table 1, are satisfied and restrictions (12) for processing
only one job on any device at a given time (Table 4). For
clarity, constraints (14) are rewritten as:

Xt — X =13 20, i=1,..m, k=1..m—-1. (20)
Table 3

The difference in the times of the beginning of the execution of the
subsequent operation and the end of the previous one for each of the tasks

Pairs of Tasks
operations 1 2 3 4 5
1-2 3 4 4 0 2
2-3 1 0 1 0 0

Tahle 4

The numerical values of the constraints (12) for each of the machines
and possible pairs of tasks

Number Pairs of tasks

of device | 12 [ 1-3 | 1-4 | 1-5 | 2-3 | 2-4 | 2-5 | 3-4 | 3-5 | 4-5
1 00 | 00 | 44 |105| 80 | OO |228 | 162 | 0O | 336
2 00D | 0D | 80 | 14 | 104 | 0O | 162|252 | 0D | 338
3 00 | 0D |126| 24 | 14 | 00 | 75 | 180 | OO | 266

The above solutions are obtained by numerical calcula-
tions using Excel Solver (USA).

7. SWOT analysis of research results

Strengths. Using traditional methods of scheduling
theory, an increase in the number of tasks or devices
leads to an exponential increase in the solution time of
the problem. The proposed method for converting the
pipeline problem of scheduling reduces it to the problem
of convex optimization. The number of constraints in this

;SB
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problem is polynomial with respect to the number of jobs
and the number of processing devices. Therefore, an in-
crease in the number of jobs or the number of processing
devices leads only to a polynomial increase in the time
of solving the problem. Therefore, the time required to
calculate the optimal schedule will be orders of magnitude
smaller than in the case of traditional methods.

Weaknesses. The convex optimization problem obtai-
ned by converting the pipeline problem turns out to be
multi-extremal. Therefore, not all methods of convex op-
timization allow to find a global minimum, that is, an
optimal solution.

The found solution may be close to optimal, but not
coincide with it. Therefore, it may be necessary to repeat
the solution of the problem with other initial conditions.

Opportunities. The method of exact quadratic regulari-
zation (EQR) allows to find the global minimum of the
multi-extremal problem. Algorithmization of the definition
of additional parameters of the method (EQR) and their
changes will automate the process of finding the optimal
schedule. In this case, the elapsed time for calculating
the optimal schedule will be reduced. This will make it
possible to optimize the use of resources depending on
the time-varying flow of tasks.

Threats. Additional costs will be associated with develop-
ment and implementation of new software to determine
the optimal schedules.

8. Conclusions

1. The formulation of constraints of the flow shop problem
is changed and is reduced to a set of analytic functions
of the variables of this problem. Thus, we pass from the
problems of discrete mathematics to the problems of clas-
sical mathematical analysis.

2. The analytic functions of the constraints are convex.
Thus, the original problem is reformulated into the problem
of convex optimization. This allows to solve the problem
by convex optimization methods.

3. A method of exact quadratic regularization (EQR)
is chosen for solving the multiply connected convex op-
timization problem. Its use makes it possible, in polyno-
mial time, to find the optimal schedule for the flow shop
problem.
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PEIUEHME HEKOTOPBIX 3AZIAY TEOPYH PACTIHCAHMI
METO[AMH BBINYKNOH ONTHMH3IALKK

Wccnenosana kouBeiiepHast 3agada teopun pacrucanuii (flow
shop) co cranpapTHbiMU orpaHudeHusiMi. [lyTeM HEKOTOPBIX mpe-
06pa3oBaHUil 3TU OrPaHUYEHUS CBEIEHDI K KBAAPATUYHBIM (hopMam
nepeMeHHbIX 3aaui. [lokasaHo, uTo J06asi KOHBellepHas 3aja-
4ya TEOPUM PACIMCAHUII CBOANTCA K 3ajlade MUHMMYyMa JIMHEHHON
dyHKIMKM ¢ HAGOPOM JIMHEWHBIX U KBAJPATUYHBIX OrPAHIYEHUI,
TO eCTb K 3ajla4e BBIIIYKJIONH onTuMusanuu. PaccMoTpeH Mojesb-
HBIIl [IPUMEP M METO/OM TOYHOII KBaZipaTU4YHON perysspusanuu
[0JIy4eHO ONTHMAJIbHOE pacluCaHMUe.

Kmouessie cnoBa: TeOpIs PACIIICAHUI, BBITYKJIAs ONTUMU3AINS,
METOJl TOYHOIl KBaJIpaTUYHON peryJsspusanuu.
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