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1. Introduction

For practice, speed problems are of great interest, when it
is necessary to realize technologically desirable temperatures
of a medium with the specified accuracy in the shortest
possible time. The use of tertiary methods for increasing
oil production [1] poses a number of problems, the so-
lution of which is somehow connected with the optimal
organization of the processes of impact on the reservoir
and their management. Investigation of non-isothermal
processes in porous media [2, 3] shows that, depending
on the real properties of liquids and the reservoir, there is
a technologically desirable temperature distribution in the
formation, in which the displacement process takes place
more efficiently. In this regard, there is a need to deter-
mine such regimes and terms of impact on the formations,
which, with minimal costs of material thermal resources,
would provide the maximum effect. Therefore, the theoretical
study of heat transfer processes, the determination on this
basis of optimal regimes and terms of thermal exposure,
is undoubtedly of great theoretical and practical interest.

2. The ohject of research
and its technological audit

The object of research is an iterative numerical method for
solving problems for optimal speed with phase constraint for
equations of parabolic type with variable coefficients, descri-
bing the processes of thermal conductivity in porous media.

Mathematical modeling of non-isothermal filtration
processes of a homogeneous incompressible fluid in an
inhomogeneous formation shows [3] that the determination
of the temperature distribution in a reservoir in dimen-
sionless variables can be reduced to the solution of the
boundary value problem:

19 0 t)d
yc"E)yc(xnk(X)azJ+ q;)%—ﬁ(t)wf(xyt):

u(x,0)=(x), . Sx <1y, (2)
ou(x.,t)—oyu, (x.,t)=g(t), 0<t<T, 3)
Osu(xg,t)+ 030w, (xp,t)=0(t), 0St<T, (4)

where u(x,t) — the average formation temperature; @(x) —
initial temperature distribution; k(x), c(x), q(t), B@) —
known continuous functions — thermophysical characteristics
of a liquid-saturated porous medium; f(x,t) — density of
thermal sources; g(¢) — temperature (o, =1, 6, =0) or heat
flux at the boundary » =7,; v(¢) — temperature (65 =1, 5, =0)
or power (03=1,06,=0) of the heat source at the boun-
dary r=r;. n=0 corresponds to a plane-parallel one; n=1 —
flat radial filtration.

It is necessary to determine such operation mode of
thermal sources, so that the temperature distribution of
the formation specified from the technological conditions
with the specified accuracy is reached in a minimum time.
The mathematical formulation of the problem consists in
determining such controls g(¢), o(¢), f(x,t) and func-
tions u(x,t) satisfying conditions (1)—(4), with constraints:

8min < g(t) < 8max>
Omin < Z}(t) < Omaxs

Juin €SS frans ()

U(2,6) < Uy, (6)
that for a given function u"(x) and constant >0, the
inequality:

j (u(x.T)—u' (1))’ 2'dr <3, 7)

X

is performed in the minimum time T, guin, &max> Uminsy Cmaxs

Juin» Joax — specified numbers characterizing the limiting
— o) (6)eC = {x, <x<xy, 0<t<T}, (1) possibilities of thermal sources; #,,, —maximum permissible
ot temperature value.
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Controls g(x,t), o(t), f(t) will be sought in the set
of piecewise-continuous functions that satisfy conditions (5)
almost everywhere. Let’s denote this set by F. For fixed g(¢),
o(t), f(t)eF the corresponding solution [5] u=u(x,t) is
determined from the boundary value problem (1)—(4). Let’s
assume that this solution exists and is unique.

Let’s note that many other physical processes [4] are
also described by the mathematical model (1)—(4), there-
fore, the developed numerical method can be applied to
solving analogous speed problems for these processes

3. The aim and ohjectives of research

The aim of research is development of a numerical
method for solving the problem of optimal speed with
phase constraint for a parabolic equation with variable
coefficients, describing the processes of thermal conducti-
vity in inhomogeneous porous media, with plane-parallel
and plane-normal filtration.

To achieve this aim, it is necessary to solve such
problems:

1. To solve problems using first-order optimization
methods, derive analytical formulas for the gradient com-
ponents of the functional with the respect to the control
parameters, through which an iterative process of finding
the optimal control for speed will be built.

2. Based on numerical experiments, discuss the com-
putational implementation of the proposed methodology
and give practical recommendations on its application.

4. Research of existing solutions
of the prohlem

It is known that the study of heat conduction processes
leads to problems for a linear parabolic equation only if
small intervals of temperature change are considered [4].
Therefore, there arises the need to solve problems for
optimal speed, not only with limiting the temperature
of the control thermal sources, but also on the tempera-
ture distribution at all points. Such problems arise also
in the study of thermal processes, when superheating of
the medium above a certain critical temperature is not
permissible [2, 4].

In this regard, considerable interest is the development
of effective computational algorithms for solving specific
problems of speed with phase constraint for equations of
parabolic type.

Problems of optimal control and speed for partial dif-
ferential equations, including those for parabolic equations,
are devoted to extensive scientific literature [1-10]. For
some classes of such problems, questions of the existence
and uniqueness of the optimal control for speed are investi-
gated, necessary and sufficient conditions for optimality are
obtained, methods for their solution are developed [5-9].
Numerical methods for solving time-optimal problems for
equations of parabolic type are devoted to [7-9], in which
problems without a phase constraint are mainly considered.

5. Methods of research

Let there exist such T and such g(t), o(t), f(t)eF,
for which, under conditions (1)—(6), inequality (7) is ful-
filled, which let’s call respectively, admissible time and
controls. Time T =T,, and functions g,,(t), v,,(t), [..(¢)€F,

being the solution of problem (1)—(7), are optimal in
terms of speed.

Let’s consider the following auxiliary optimal control
problem: for a fixed T find, such g(¢,T), o(¢,T), f(x,t,T)e F
that, under the conditions (1)—(6), the functional:

®(g,0.f)= | ()= (@) xdx, (8)

has its least possible value. This problem is of independent
interest, similar problems have been studied by many
authors [6, 7]. Let’s also assume that for T the problem
of finding the minimum of the functional (8) under the
conditions (1)—(6) has a solution.

The method of penalty functionals is applied to the
solution of the optimal control problem for a fixed T [7].
The functional is introduced:

](g,v,f)=d>(g,v,f)+AkP(g,v,f), 9)

where

T xg

P(g,0, /)= J j (max{u(x,t) —Upax })dedt,

llmAk =00

k—oo

(for example, A, =10%).

To solve the problem of minimizing the functional (9)
at T, using approximate first-order optimization methods [7],
an analytic formula for the gradient of the functional (10)
is derived.

a L‘7t
grad J = (J o J/.):(mxr’,’k(xc)y(;;)_

Ay (xg,t)
— Ouxla k(2. )y (X, 1) — G2k (g )T;

+ 03k )y (2, 1), Tx"y(x,t)dx} (10)

where y(x,t) — solution of the boundary value problem;

Lo dy) a(t)dy

x"&)x(x ax)—nax—ﬁ(t)y(xyf)Jr

+ 24, max{(u(,0) =ty ); 0}——c(x)a—y
'3 ’ max )» - atv

(x,0)eG' ={r.<r<rg, 0<t<T},

y(x,T)= 2(u(x,T)—u*(x))/c(x), x. <x<xp,

9y(x.,t)
G1y(xcvt)+62 xrnk(x()T_Q(t)y(xut) =07

ay(xlx’,t)
03y(xp,t)—0, xfnzk(xR)T_q(t)y(xR?t) =0,

0<t<T. (11)

Consequently, to calculate the gradient of the functio-
nal (9) for fixed g(¢), o(¢), f(t) it is necessary to solve
the boundary value problems (1)—(4), (11) to determine
the functions wu(x,t), y(x,t) and substitute them in (10).
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For a numerical solution of optimal control problems for
afixed T, a discrete analogue of the problem is constructed
by the method of finite differences on an uneven grid, which
is constructed on the basis of a priori information on the
properties of the solution of boundary value problems. In
view of the fact that large gradients of functions u(x,t),
y(x,t) are achieved near the boundary points x=x, and
x=x, it is advisable to use a non-uniform grid with re-
spect to the spatial variable that takes this property into
account. In this connection, it is necessary to thicken
the grid nodes with the respect to the variable x in the
vicinity of these points. This principle is laid in the basis
of the grid construction:

lj_{(xﬂ ]) Xjp = X+ hyy,
1=0,1,..,.N =1, xy=x,, Xy =Xp,
tp =t + T j=01, M —1;
ty=0, t,, =T}.
Using the implicit two-layer conservative scheme [4, 10]
and retaining the previous notation for grid functions, the

differential problems (1)—(4) and (11) can be approximated
by the following difference problems:

[xi;k,g (151 = s 11 / ) /By — " 1k‘ | %
s ) [ (x19;)

@ (Ui o =401 ) [ (X0 P )

=Bty o1 + S = (s 1 — ;)

i=12.,N-1 j=12,..,M-1,

X( 1/+1

(12)

uo=9; 1=0,N,

Ol j — O (Uy;j —Up ) hi = 8j»

|Ostiy,j+ 04 (U, ; —u,v,w)/hN =v;, j=0,

[ k (y1+1 J Z/l J /h7+1 .
z+E it 177 i3

X (Yo =iy )/ )0 ) = &5 (Wi = i) [ (X0 ) =
=By + Avmax{(u;; — 1, ); 0} =
=G (yiJH - yi,j)/ Tjsty
i=1,2,.,N-1 j=M-1, M-2,.1,
Yirr = 2w — 1) [ci,

Yi,j —Yo,j
OiYo,j+ Oy (g,yo,, —ky “hloj]”L

(13)

+ Gz[xg‘kowi;%—gijJ:Q
1

_gjyh',j]:()-

The discrete analogue of the gradient of the functio-
nal (13) has the form:

N, TYN-,j

Y
GiYn,j— Oy Xhky 7
N

grad J =(Jy,2 o0 J )=

= (0135”}30 Cli }—hyo ~— Gt ko, j» O3X% kN 7]1 P +
N
N-1
+ G4xl’£'k1\'yx\7,j2hi (xi"f1%>1,j +X7'Yi )/2),
i=0
i=1L,N, j=0,M. (14)

The functional (10) is calculated by the quadrature
formula of trapezoids.

The problems (12), (13) are linear with respect to the va-
lues of the grid functions «; ;,; and y;; and are solved by the
sweep method. Since these schemes are absolutely stable [10],
the step t; is chosen only for reasons of accuracy.

Thus, the solution of the optimal control problem for
fixed T is reduced to the construction of sequences {g;},
{o;}, {f;}, (j=0,M) by optimization methods:

— by the conditional gradient method (CGM) and

the gradient projection (GPM), starting with some

initial approximations;

— the step of the gradient methods is determined from

the condition of a monotone decrease of the functional

by the bisection method [7].

Let’s note that similar problems with two control func-
tions are considered in [11-14].

The speed problem is solved using the following algo-
rithm [12]:

Let

T >0, gt;,T™), o(;,T™),

S, T, m=12,., j=012.,M,

solution of the auxiliary problem for T®, g(¢;, T™), v(t;, T™),
the following condition is satisfied:

min J(g,0,[)<8. (15)

If (15) is satisfied for T, g(¢;,T™), v(t;, T™), f(¢;,T™)
(j=0,12,.,M) then the following time is taken as the
approximation:

()
TOms) = T(m) _

m’
else
(1)
T =T 4 — m=1,2,....
2m

Iterations over time continue until some m=m., at
which the following condition is fulfilled:

T <

—<g,

2m
where € — sufficiently small positive number. If, when
T =T (15) is satisfied, then Ty, =T, otherwise:

T
=T+ ——

Ty, =T, T, Qm:—1?

and for the optimal speed of control are taken:

gOn(t) g(tJV op) UOn(t) g(tj’nn) ﬁ)n(t) g(tp on)

4

TEXHOMOTTYHHIA AYAMT TA PE3EPBM BHPOEHMLTBA — Ne 5/1(37), 2017



I55N 2226-3780

INDUSTRIAL AND TECHNOLOGY SYSTEMS:
TECHNOLOGY AND SYSTEM OF POWER SUPPLY )

In connection with the fact that for each T the
corresponding optimal control problem is solved by the
first-order optimization method, whose convergence es-
sentially depends on the initial approximations:

g0, T™), vO(t;, T™),  fO(L;, T™).

The following methods of choosing zero approximations
for controls are considered:

a) for all
T (m=12,..), gV;,T")=gu(t),

o0, T =oy (L), [OWT™)= fu(t)),

j=012..,M, 0<t<T®,

where g5 (¢;), vi(t;) and f(t;) — specified grid functions.
b) let

8O, T™)=gu(t;), 0O®;,T™)=v,(t)),
SO T™Y=fr(t;), at T=T™, 0<¢; <T™.

Zero approximations for m=1,2,.. are given by the
formulas:

gO(t;, Ty = g™ (p™t,, T™),
0O (pmt;, Ty =0 (pmi; TM),
FO;, Ty = fo(pmg, T,
0<t, <T™.

With this choice of initial approximations, the struc-
ture of the optimal controls found at the m-th iteration
is preserved.

6. Research results

The convergence of the iteration process for solving
the time-optimal problem can be proved similarly to the
proof of the convergence of the binary division method
for finding the extremum of functions of one variable [7].
It is assumed that condition (15) is fulfilled for all T™ >T,,,
and for T <T,, this condition the condition is not ful-
filled [5, 8].

Let’s give a typical example of the numerical experi-
ments performed at:

k(x)=x+1, q@)=1, B=0, c(x)=2x,

f(©)=0, up=5 ¢(x)=0.001 x =0.001,

xg=1 o,=03=1 8=0.005, £=10"

In numerical experiments, a non-uniform grid with the
respect to x is used, the nodes of which are shown in

Table 1.
Calculations are carried out at:

T Tm

" =—r0 and 1" =—r

R m=12,...

Tahle 1
The non-uniform grid with the respect to the spatial variable
Grid nodes with respect to the variable x
0.0010 | 0.0020 | 0.0030 | 0.0040 | 0.0050 | 0.0060 | 0.0080
0.0120 | 0.0200 | 0.0360 | 0.0680 | 0.1000 | 0.1500 | 0.2000
0.2500 | 0.3000 | 0.3500 | 0.4000 | 0.4500 | 0.5000 | 0.5500
0.6000 | 0.6500 | 0.7000 | 0.7500 | 0.8000 | 0.8500 | 0.9000
0.9320 | 0.9640 | 0.8800 | 0.9880 | 0.9920 | 0.9940 | 0.9850
0.9960 | 0.8970 | 0.8880 | 0.9880 | 1.0000 — —

Let’s note that in the first case the step " =T®/M =
=const, and in the second case the step 1 changes at
each iteration in time, but is uniform for a fixed T,
(m=1,2,...). The results of numerical calculations show
the expediency of choosing a step in time by this method.

Taking into account that the optimal control speed is
«relay» function [5], a quasi-real (test) numerical experi-
ment is performed in which, first by the finite difference
method, the direct boundary value problem (1)—(4) is
solved for the selected:

gt)=g (), v(t;)=v'(t;),

where
NN L ELE
EEN=V)= " gy <7,
where T=0.06, 6=0.055 and u'(x)=u(x,T). In the speed
problem, the initial time TM" =0.24, is taken, step by time:

(m)

T = M=120.

The results of the calculations are shown in Tables 2, 3
and in Fig. 1-5.

Tahle 2
Iterations over time, option a
CGM CPM

m| T 70 n 7 7O 1 I
1 0.24 |1.028593| 30 |0.004731 |2.462947 | 14 | 0.005812
2 0.12 |0.533703| 51 |0.002331 |2.805619| 44 | 0.003639
3 0.06 |2.514058| 77 |0.000383|2.510189 | 65 | 0.000345
4 0.03 | 2643062 | 85 |0.584854 |2.640859| 79 | 0.585478
5 | 0.045 | 2.428016 | 98 |0.119878 | 2.425056 | 97 | 0.119808
6 | 0.0525|2.441755 | 110 | 0.026341 | 2.345241 | 108 | 0.024523

Note: m - iteration number at I; n — number of iterations in op-
timal control problems at T,
Tahle 3

Iterations over time, option b

CGM CPM
JO n Jn JO n Jo
1.028593 | 30 |0.004731|2.462947 | 14 | 0.005812
0.096814 | 44 |0.001274 | 0.208324 | 27 | 0.004827
0.008936| 56 |0.000435| 0.04313 | 39 | 0.000414
0.584984 | 67 |0.584253 | 0.598558 | 50 | 0.584176
0.045 |0.124654 | 76 |0.119878|0.123654 | 58 | 0.119844
0.0525|0.027892 | 81 |0.027796 | 0.027742 | 64 | 0.027480

Note: m - iteration number at T; n — number of iterations in op-
timal control problems at T,

m T(m)

0.24
0.12
0.06
0.03

[=p 0 W B I R e
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Tables 2 and 3 show the values T, the value of the
functional J® for initial approximations for control,
the minimum values min /™ in optimal control prob-
lems for T (m=1,2,..), obtained by choosing the initial
approximations in the ways a and b, respectively. The
optimal control problems for a fixed 7™ are solved by
the conditional gradient (MUG) and the gradient projec-
tion (PGM) methods g (¢;,7™) = guin, 0V, T™) =0,
g0, T™Y=gun, 0O, T™) =00, m=12,....

'
10
9
; I
7
!
B i
1
5 1
|
4 I
i
3 \
i
2 1
1 L
20 40 B0 !
Fig. 4. Optimal speed control using gradient projection method:
........ - v, = vlt, Ton)
\'
10
9
B )
[]
7 i
B i
5 i
1
4 i
3 i
1
2 i
1 -
0
20 40 60

Fig. 5. Optimum speed contral v@(9):
-------- — CGM (by the conditional gradient methaod),
— GPM (gradient projection method)

As can be seen from Tables 2 and 3, in order to achieve
the specified accuracy in the performance problem, 6 itera-
tions are required and T,, € (0.0525, 0.06). In optimal control
problems, the total number of iterations in option a by
the conditional gradient method is 110 and the gradient
projection method is 108. In option b, the total number of
iterations is CGM — 81, GPM - 64, i. e, the total number
of iterations in the optimal control problem in method b
the choice of the initial approximation is much less than
in variant a. In Fig. 1—4 shows the graphs of the optimal
controls for speed, obtained in CGM and GPM, respectively.
As can be seen from Fig. 1-4, the control-optimal controls
obtained by both methods are fairly close to test controls.
Calculations show that when T sufficiently close to T,,,
the optimal controls are also close to relay functions. This
property in the general case is not satisfied for optimal
controls for T™ #T,,. For example, Fig. 5 shows the graphs
of the optimal control v®(¢) obtained by CGM and GPM.
As can be seen from Fig. 5, these functions are not relay
and quite different from ©°(¢) by the metric C[0,T®].

Tables 4 and 5 show the values of the functions u"(x)
and u(x,T,,) at the grid nodes, these functions also agree
well with respect to the metric C(x,,xg).

Numerical experiments are also carried out in the case
when the control-optimal controls have two switching points.
However, the nature of the obtained results does not change.

g
10
9
8 7
L}
7 i
!
B 1
1
1
5 1
i
4
!
3 :
2 E
1 Ll
20 40 60 !
Fig. 1. Optimal speed control using conditional gradient method:
"""" - g.[V]/ - g(t/ Tun]
V.
10
9
8 L]
7 '
i
B ‘
1
5 I
1
4 ;
1
3 '
H
2 il
'
1 L
20 40 60 !
Fig. 2. Optimal speed control using conditional gradient method:
-------- -v(t), — vlt, Tpp)
\'
10
9
B ----------------------------------
7
B
5
4
3
2
1
t
20 40 60
Fig. 3. Optimal speed control using gradient projection method:
-------- - v, —vit T,
— 46
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Tahle 4
Desired distribution (%)

The values of the desired temperature at the grid nodes
1.1139 | 1.1823 | 1.2311 | 1.2690 | 1.3000 | 1.3486
1.5842 | 1.6366 | 1.6086 | 1.4861 | 1.3514 | 1.2583
1.4037 | 1.6068 | 1.8878 | 2.2456 | 2.6756 | 3.1664
4.5447 | 4.5608 | 3.9929 | 3.2476 | 2.2521 | 1.7027
1.2110 | 1.1758 | 1.1406 | 1.1054 | 1.0702 | 1.0351

1.0000
1.4988
1.2786
4.1892
1.2814

1.4162
1.2310
3.6907
1.4222
1.0000

Tahle 5
Temperature distribution u(x, T7;)

Temperature values at the optimum time
1.1607 | 1.2571 | 1.3259 | 1.3793 | 1.4230
1.8027 | 1.8136 | 1.6954 | 1.4258 | 1.1956
1.1057 | 1.2877 | 1.5517 | 1.8987 | 2.3276
4.38951 | 4.5275 | 4.0577 | 3.3292 | 2.3091
1.2213| 1.1844 | 1.1475| 1.1106 | 1.0737

1.0000
1.6982
1.0046
3.9469
1.2952

1.4913
1.0469
2.8313
1.7365
1.0368

1.5856
0.9842
3.3883
1.4428
1.0000

As can be seen from Tables 1-5 and Fig. 3—5, the proposed
algorithm gives fairly accurate results and can be used to de-
termine the optimal parameters of heat conduction processes.

7. SWOT analysis of research results

Strengths. The proposed algorithm can be used to deter-
mine the optimal regime and time of thermal conductivity
processes in inhomogeneous media. This algorithm con-
tributes to: saving time; process optimization; increase the
productivity of oil wells; increase the speed of calculation.

Weaknesses. The disadvantages of this method include
the complexity of the calculation.

Opportunities. Thanks to the introduction of this method
in the oil industry, an increase in oil recovery of the field
to 40 % is expected.

Threats. To implement this method, additional equipment
is necessary, and, accordingly, it is money costs. Highly quali-
fied personnel are also required to work with this equipment.

1. To solve the problems with the use of first-order
optimization methods and finite differences on non-uniform
grids, analytical formulas are obtained for the components
of the gradient vector of the functional with respect to
controllable functions.

2. A method is proposed for selecting initial approxi-
mations for optimal controls and a step in time at each
iteration, which makes it possible to accelerate the calcula-
tion process. To achieve the specified accuracy, the speed
problem required 6 iterations and T,, €(0.0525, 0.06).

3. Based on the analysis of the results of numerical
experiments, the influence of various parameters on the
iterative process is investigated and recommendations for
the use of the proposed algorithm are worked out. In op-
timal control problems, the total number of iterations in
option a by the conditional gradient method is 110 and the
gradient projection method is 108. In option b, the total
number of iterations is CGM — 81, GPM — 64, i. e., the
total number of iterations in the optimal control problem in
method b the choice of the initial approximation is much
less than in variant a. The optimal speed control, obtained
by both methods, is close enough to test controls. Numeri-

cal experiments are also carried out in the case when the
control-optimal controls have two switching points. However,
the nature of the results obtained does not change.
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YUCNEHHOE PEWEHKE 3AAYH HA ONTHMANBHOE
BLICTPOAEACTBUE C PA30BBIM OrPAHHYEHHEM [ OHOTO
NAPABOTHYECKOro YPABHEHHA

PaccmoTpen uncieHHbII METO7L PENeH s 33/[a41 Ha ONTHMAIbHOE
GpicTpozieiicTBre ¢ GasoBbIM OrpaHMYEHUEM [UIST TTapabOoJImuecKo-
TO ypaBHEHUsI C INepeMeHHbIMUI KOA(hdOUIEHTAMU, OIUCHIBAIOIIETO
MIPOIECCHI TETLIONPOBOHOCTH B HEOJHOPOAHBIX MOPUCTBIX CpPe/ax.
YucsenHas peasinsalusi aJIropuTMa OCYIeCTBIEHA METOIOM KOHEYHBIX
pasHocTeil Ha HepaBHOMepHOU ceTke. [Ipesiaraemblit MeTO MOKET
OBITH TIPHIMEHEH [UIST ONTHMATBHOTO OIPE/IETIEH ST TaPAMETPOB TIPO-
LIECCOB TEIIONPOBOAHOCTU U An(dy3un B HEOAHOPOAHBIX CPEJIaXx.

Kmouesrie cnoBa: 1apabosueckoe ypaBHeHe, 3a1a4a ObICTPO-
NeficTBYS, ONTUMAJIbHOE YIIpaByeHue, mTpadHoil GyHKITMOHAT, Tpa-
aueHT GyHKIMOHAIA.
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