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INVESTIGATION OF THE
INFLUENCE OF GRAVITATIONAL

FORCES ON THE PROCESS OF
DISPLACEMENT OF VISCOPLASTIC

FLUIDS

Jlocniocerno uucenvie modeniosanms npouecy 0806UMipHoi 0860xpasnoi pitvmpauii 6’a3Koniacmuunoi
Hagpmu ma 600U 3 YpaxysanHsIm epasimayitiHux cul, OeaKux 6Aacmusocmetl piout, a maxouc i0HOCHUX
pazosux npoHuKHOCMEN i KANLIAPHUX CUL HA OCHOBI PIZHOCMHO-IMePayitiinoz0 Memooy 6 PYXOMUxX
cimxax. /{ns 00Cniovcennss 6NAUBY UUX (aKmopie nHa npoyec Ginompauii po3pooieno 00uUCI0BAIbHUL
AN2OPUMM, U0 BOJIOOIE BAACTNUBICIIO A0ANMOBAHOCME 00 0COOIUBOCMEN 3a60aHb T GIOPISHAEMbCS GU-

COKO010 MOYUNICMIO.

Kmeouosi cnosa: zpasimayiini cuiu, Memoo 3MIHHUX HANPSIMKIG, JOKAILHO-00HOMIPHI cXemMu, adan-

MUBHA CimKa, 6 a3KoNIACMuUYHa Piouna.

1. Introduction

Mathematical modeling of oil production processes, as
a rule, reduces to solving boundary value problems for
systems of nonlinear partial differential equations. Their
research can be carried out by analytical or approximate
methods. Analytical solutions can be obtained by sub-
stantially simplifying the models of real processes, when
most of the main parameters are not taken into account,

for example, the inhomogeneity of the seams, the non-
stationarity of the operating modes, the compressibility of
phases, the complexity of the geometry of the filtration
region, etc. Such solutions are undoubtedly theoretical and
methodical, but their practical significance is significantly
limited. Accounting for factors that determine the specific
conditions of oil production, significantly complicates mathe-
matical modeling and generates the need for numerical
modeling. For numerical modeling of filtration processes
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within the framework of the adopted model, first of all,
it is necessary to develop economical numerical methods
with high accuracy.

The tasks of multiphase filtration have specific fea-
tures, which often do not allow the use of traditional
finite-difference methods in a numerical solution. Therefore,
there is a need to develop difference schemes in adap-
tive grids [1, 2], which allow to take into account the
singularities of the solution.

Adaptive grids reduce the artificial viscosity and oscil-
lation of the numerical solution. And also it is possible to
obtain qualitatively and quantitatively acceptable results
in the entire region with a small number of nodes in
the computational grid, excluding zones where there are
singularities of the solution, for example, zones of large
gradients.

2. The ohject of research
and its technological audit

The object of research is numerical simulation of the
process of two-dimensional two-phase filtration of visco-
plastic oil and water, taking into account the gravitational
forces, some properties of liquids, and relative phase per-
meabilities and capillary forces based on the difference-
iteration method in moving grids.

Let’s consider the spatially-axisymmetric problem of
displacement of viscoplastic oil by water in a layer in-
homogeneous in reservoir properties, taking into account
capillary and gravitational forces. It is assumed that the
liquids are compressible, the roof and the base of the for-
mation are impermeable, a perfect production well with
a radius r=r7, located in the center, and injection wells
on the outline of the formation.

Assuming that the phase potentials ¢;(7,z,¢) do not
depend on ¢, the equations describing the isothermal process
of displacement of viscoplastic oil by water in a cylindrical
coordinate system can be represented as:

10 20,) 0
rar(’k%a ) az(

10 20, 0
rar(m2 BTJ az(k

P —P,=P(s,), si+s,=1,

dp;) 0
M3 J 3¢ (mpsst),

20, ) d
0z | (mpm)

(r,zt)eGr={r.<r<R,0<z<H,0<t<T}, (1)

where index 1 refers to oil, and 2 to water, and H — thickness
of the formation.

Let’s note that for compressible fluids it is determined
by the formulas:

t dp
(Plzgz‘*im,l—LZ 2)

where g — the acceleration due to gravity; P, — some value
taken for the start of the pressure report. The function ¥; is
the same as in [3-5].

Let at the initial time ¢=0 in the reservoir there is
residual water. Then the system (1) can be written as the
desired functions P,(7,zt)=P(r,zt) and PB,(7,zt) in the
following dimensionless form:

19 I s
rar{(ﬁb \P{ar or D}L

d ap  Ip 0
+ 82[7\1 [afafpigﬂ = g(mm(l—s),

taf ] af (% 9 (3)
rar( 25 8 2 $+Pzg2 —g(mpzs),
pi=Dp+pi(s),
[Si=1-5,5, =5,
(r,z,t)eGr={r.<r<R, 0<z<H, 0<t<T},

the initial and boundary conditions have the form:
p(?’,Z,O):pO(T,Z), (4)
Pe(1,2,0)= p°(r,2), t=0;
ap apk —pug
a a 1651
o ‘ (5)
a?:—ngQ,2:0,2:H,7’C<1’<R,0<tST;
p(r,z,t)+ pi(r,z,t) = fi(z,),
9 6
ﬂ:O, r=r1, 0<z<H, 0<t<T; ®)
or
p(r,z,t)= f2(2,0),
ap 9 7
@ ﬁ—o r=R, O0<z<H, 0<t<T. )
Jr  or

If the phase potentials are given at the initial time,
then the initial values for the unknown functions are de-
termined from the expression:

1
Po(r,z)zA—

2

(eAZ(ng’AZgZZ —Bz),
1 A -Agiz
Pko(r,z)zxe 1Py ~Aig1z —Po(r,z).
1

As can be seen, the equations of system (3), describing
the axisymmetric process of displacement of viscoplastic
oil by water, are nonlinear. Therefore, the only effective
device for solving such problems is numerical simulation.

3. The aim and ohjectives of research

The aim of research is development of efficient-eco-
nomical numerical methods for solving plane-radial two-
dimensional (axisymmetric) problems of nonlinear filtration
of a multiphase compressible fluid. These methods will
take into account the features of the solution and will
be suitable for a wide range of tasks. They can also be
used to create a software package for performing numerical
calculations and studies on the basis of numerical model-
ing of various nonlinear filtering processes.

To achieve this aim, it is necessary to solve such problems:

1. To construct cost-effective difference schemes and
an iterative process for finding the distribution of water
saturation.

2. Based on numerical experiments, to discuss the com-
putational implementation of the proposed methodology
and give practical recommendations on its application.

;16
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4. Research of existing solutions
of the prohlem

Among the works devoted to this topic, it is possible
to single out the following. In [6], the problem of dis-
placement from a porous medium of oil is solved with
the help of a polymer solution, which obeys the power
law of filtration. A numerical approach is proposed in [7],
which differs ideologically from the finite element method
and finite differences. The authors of [8] consider the
determination of formation parameters for flows that do
not obey Darcy’s linear law, and the possibility of dis-
tinguishing nonlinear effects.

An important stage in the development of methods for
solving non-stationary two-dimensional problems is the
method of variable directions (MVD), based on homoge-
neous approximation and widely used in many problems
of mathematical physics [9-15].

However, this method does not admit a direct gene-
ralization to the case of a larger number of dimensions
and for parabolic equations of a more general form [9].
For example, three-dimensional problems can be solved
using MVD only if the filtration in the vertical direction
is insignificant.

A more general method for obtaining economical implicit
difference schemes, suitable for equations with variables,
and even discontinuous coefficients, for quasilinear two-
dimensional non-stationary problems is the method of total
approximation or locally one-dimensional schemes (LOS) [9].

The systems (8) are split into two one-dimensional

systems:

— by z

( 19

LyyP + Ly P, + Lwy = - = (mp,(1-5)),

20t 9)
10

-Lzzp"'sz = 5&(777923);
— by

'L P+L,P L9 1

11+ Ly k—gg(mﬁ( -3)), (10)

10
»L21p=§$(mp28).

On the basis of the grid @, introduced over ¢, let’s
T
introduce the points ¢ | =t, +§ and divide each interval
n+-
2
of the form (t,,,t,m] into two half-intervals:

(tmt 1:| and [t 1ytn+1:|-
nig nig

The system of equations (9) and (10) can be approximated,
2 )

respectively, on the half-intervals (tn,t 1:| and (t 1,t,,+1j| by

a two-layer implicit difference scheme. Let’s obtain a chain
of one-dimensional schemes, which let’s call LOS:

5. Methods of research o o 1
A+ A (DY, + AW, =5 (V¥ + VY, ),
For the numerical solution of problem (3)—(7) let’s apply . (11)
the difference-iteration method in adaptive grids [1, 16]. A(EV 4 AW, = — (Vo V- VT
To this end, let’s introduce a spatiotemporal grid in the | 2(O : 2( AT 2”)
region Gy ={r,<r<R 0<z<H, 0<¢<T}: and
ri,n=7;¥1,n+hi,n7 i=17M_1y 7’0,,27}, rM,an; ( ~ _ 1 ~ ~ ~ ~
= i Ap(OY +Ap @)Y, =§(V11Y1;+V12Y2;),
Gy, =12 =24+ 0y, j=1,] =1, 20=0, z;= H; . (12)
tn = tn—1 + Ty, N= 1vN - 17 tO = 07 tl\" = T A21(£))71 = 5(‘721)71f + ‘722)72,?),
To construct cost-effective difference schemes, let’s use  where there are the next designations:
the LOS method. To this end, let’s represent the system .
of equations (3) in the following operator form: hill(rxl‘{ﬂ)nl,j (Yiw_Yw‘)_
Ay (t)Y =7kt ’ ,
J - hﬂ(ﬁh\lﬂ)i_lyj (Yu —YH,]‘)
Lyp+ Lupi+ Lop+ Liop, + Ly =g(mp1(1_3))y 2 .
P 8) h@%(ﬁ\.z)ﬁlj(xﬂ.j _Yi.j)_
Lop+ Lyyp + Lw, = - (mp,s), Ay ()Y =17'hi . ,
ot “ - h;1(r}\‘2)i_lj(nf =Yii))
where there are the following designations: ’ _
h;+11(7\‘a )i ol Yosijor = Yoij)—
Ity
a a a a Aaz(t)Y=h;1 = _ )
L= r‘iar{rh(r,phS)‘{ﬂ ar:|, L,= 82(7&182], hj (xu)i,j—%(ym'j Ya'i'j_1)_
— K- _ —
tmr 2o 2| = 2f0.2) MW= | 01~ | 012
o1 =1 5[ TA(T, P, )Ty 5 | Loa =57 Aoz s
o o dz\ "oz Vi =mpi(1=5), Vi =mp{(1-5)-mp,s’,
1
Vor = mpis, Vay =mp,s’, € = £,
here L=, W, =4 = 0o 8 _ fimensionl :
where —E, o =NoPo8as 8a —paﬁf 1mensionless quan- t =If"+1, Y1 =P(7‘i, Zj), Y2 :Pk(riyzj)7
tity; Ry,P) — characteristic dimensional quantities. 1<isM-1,1<j<J-1,1<n<N-1.
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Approximation of the initial and boundary conditions
leads to the systems:

Yfz.j =P(7'i72j,0)y Ylolj =Pk(7'iy2j70)y

1<isM-1,1<j< -1, (13
{}?m —{?1,1,0 = —}h:gzﬁz,i,ol (14)
Yoii=Ysi0 = (Pags—P1&1)ios
1?1.1',1 - I?1.1',0 =—IgsPaio,
}iz,m _Iﬁz,i,o =hi(P28g> —Pi&1)io» (15)
Yiig =Yg =~h;8:Paiy
Yoig = Yoiga = hy (P82~ P&
ﬁ,o,,jj‘?z,o,;‘f 614‘ (16)
hi' (Yo =Yop;)=0, i=0, 1< j< J-1, ISN <N -1,
I?.M.,j - ?1,,\/1-1.] + ?2\47 - )72,1\4-1.,‘ =0, (17)
Yivj=0s;, i=M,1<j< J-1,1<n<N-1.

The solution of the systems under consideration is dif-
ficult because of the nonlinearity, since the coefficients of
the equations entering into it depend on the unknown
functions. Therefore, when solving such systems, iterative
methods are used that make it possible to fully exploit the
advantages of implicit schemes and to conduct calculations
with a larger time step.

Linearization of the nonlinear equations of the system
(11)—(17) can be carried out in two ways — by the simple
iteration method and the Newton method [17]. In the future
let’s use the simple iteration method, which essence lies in
the fact that on a new time layer the values of nonlinear
terms coincide with the values on the previous time layer.

Thus, by opening all the terms in the systems (11) and
(12), linearizing the nonlinear terms for P, P, and s, and
introducing the following designation:

azyy azy CZy1 CZpp
Az= , cZ= ,
azyy AZyy CZy1 CZyy
bz, bz, Jz
bz= , Gz = )
bz, bzy Sz
ary an Chy Chy
AR= , CR= ,
ary; Ary Cly CIyy

bry bn, n
BR:[ 11 12], (PR:[/'1]7
bryy bry, I
let’s obtain as a result the equations for each direction:
— in z direction:

[ 1 1
(e+3) (e+5) .
~CZ{Y,y * +BZ,Y,; * =—9Zi7, j=0,

1 1 !
(e+3) (e+3) [“E]
AZOY, 2 —CZY)Y,; * + BZOY, . =—-@Z,

i,j i, j+

1<j<j—1, (18)

1
ety

1
Lzl -zl )< gz, =,

0<i<M,0<n<N;

— in r direction:

~CR{7)- Yy + BRI, = —FR{), i=0,
AR YD —CR Y™ + BR) YD = ~FR()

i+,j ]

1<i<M 1, (19)

ARG Y1) ~CRE) T =—FRG), i=M,

I

0<j<J, 0<n<N.

Thus, the solution of problem (11)—(17) reduces to
solving two independent one-dimensional problems:

Problem 1: (11), (13)—(15).

Problem 2: (12), (16), (17).

Problem 1 is solved first, and the initial approximations
are chosen from (11). The implementation algorithm is
as follows. If denote the index number in parentheses by
the iteration number, let’s set V()" =Yy, V)" =y, ;.

Solving problem 1 by the matrix sweep method [9], let’s
determine the intermediate values of the grid functions:

1 1
(1)[714—,—) 1 (1)(714——) 1
2 Nt 2 nts
Yl,i_j =Y1(ri7zjvt 2, Yv’z.i.j =Yv2 7‘,‘,Zj,t 2 |

Next, taking the values of the grid functions found
for the initial approximations for problem 2 and solving
it by the matrix sweep method, let’s determine the nodal
values of the grid functions:

(1)[7&%]
1i.j :Y1(ri,2jvt”+1), YQ(,E,)j(nH) :YZ(ri»Zj)t”H)'

Thus, on the grid Q.. let’s obtain the values of
the grid functions in the (/+1)-th approximation. Similarly
let’s define all other approximations.

Iterations continue until such 7,, as the following con-
ditions are fulfilled:

(I +1) (lm)
Hl,‘(}X‘Yllj -Yin ‘ g,

n+1 I
m.a.-X‘YZ(,i,j ’ _YZ(.i,f)‘ S8,
L] :
where €, €, — convergence accuracy.

6. Research resulis

The carried out methodological calculations show that in
the numerical simulation of two-dimensional problems it is also
expedient to apply the difference-iteration method in moving
grids. During the calculations, an adaptive grid by » was
used, which was constructed on the basis of two criteria.
By the first criterion for z=0, the nodal point was defined:

. ‘S(riﬂ)zht)_s(rhzht)‘
7 (¢) = max
‘ hi+1

)

in which the water saturation gradient reaches its maximum
value.

According to the second criterion, a similar point was
determined on the roof of the formation (z=H):

. S(’?+1’Z‘/71’t)_3(7?,2/71,?»‘)‘
r74(t)=max .
0<i<M R ‘

;18
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The «crushing» of the grid was carried out in a region
containing a segment [n*(t),r;_1(t)], and the condition of
o -quasi-uniformity of the grid with respect to the vari-
able r was fulfilled.

Let’s note that the variable z uses a non-uniform fixed
grid, condensing only in the vicinity of z=0 and z=H.

Numerical calculations were carried out for the fol-
lowing initial data:

R=R,=100m; H=10m; r.=0.1m; m=0.2;

k=Fky=10""2 m?; u, =0.3 poise; U, =, =0.01 poise;
g atm dyn
§9=0.15; py=1——; G,=0.1 — =100 ——;
cm’ m cm’
kgf

cm?’

=90 kgf' =100
fit)= ok L@)=

If let’s neglect the forces of gravity in problem (3)—(7),
then the criteria for selecting the points in the vicinity of
which the computational grid should thicken are identical
to those of the one-dimensional problem [16].

The influence of the initial gradient on the displacement
process is illustrated in Table 1, in which for the case
G, =0 the columns with the number I correspond to the
case, and to the case G,=0.001 — with the number III
It should be noted that the densities of oil and water
are determined by the following formulas:

pi(p1)=0.00853p; +0.82592,

The value of the water saturation is assumed to be

0.15 at =0 and z=0, water pressure — 100 o These
functions determine the functions p°(r,z) and p{(r,z) —
the initial conditions for the unknown functions.

At the injection well at z=0, the water pressure is set

kgf
equal 100 %, and at z=0.2; 0.4; 0.6; 0.8; 1.0 is determi-

ned, respectively, 0.9980; 0.9960; 0.9941; 0.9921; 0.9901.
The pressure difference (pressure difference at the injec-

tion and production wells) was equal 10 for each z.

m2

The results of the calculations of the water satura-
tion obtained for the distribution of the initial gradient
G,=5-10"* are given in the second column of Table 1.
Comparison of columns IT and III of Table 1 shows that the
filtration process is largely characterized by values G, (as
in the flat-radial case). Moreover, a decrease in the pa-
rameter G, leads to the case of the problem for G;=0,
which is plausible.

The results of calculations carried out to determine
the effect of gravity on the displacement process at z=0
are given in Table 2, according to which, even at low
thicknesses of productive layers, gravitational forces influ-
ence the displacement process, and this influence increases
with time. In fact, if at the moment t=0.08 (let’s note
that in the dimensional form 0.02592 corresponds to one
month), on the contour the difference in water satura-
tion was 0.0077; at t=0.24-0.0122; at t=1.04 it becomes

P2(p2)=0.01033 p, +0.999809.

equal to 0.0292.

Tahle 1
The influence of the initial gradient on the displacement process
T 0.1608 0.8808 1.3608
Columns I I m 1 I m 1 I m
r,m
0.001 0.1500 0.1500 0.1500 0.1514 0.1520 0.1528 0.1555 0.1566 0.1672
0.1 0.1500 0.1500 0.1500 0.1516 0.1526 0.1536 0.1564 0.1574 0.1590
0.2 0.1500 0.1500 0.1500 0.1523 0.1530 0.1537 0.1603 0.1614 0.1631
0.3 0.1500 0.1500 0.1500 0.1537 0.1542 0.1547 0.1708 0.1727 0.1752
0.4 0.1500 0.1500 0.1500 0.1574 0.1580 0.1586 0.1963 0.2013 0.2086
0.5 0.1500 0.1500 0.1500 0.1684 0.1694 0.1705 0.2725 0.2822 0.2904
0.6 0.1503 0.1504 0.1504 0.1958 0.1985 0.2022 0.3365 0.3420 0.3495
0.7 0.1515 0.1506 0.1516 0.2771 0.2835 0.2889 0.3833 0.3882 0.3941
0.8 0.1572 0.1574 0.1576 0.3443 0.3483 0.3530 0.4205 0.4257 0.4316
0.9 0.1593 0.1940 0.1951 0.3975 0.4014 0.4061 0.4572 0.4620 0.4680
1.0 0.3189 0.3225 0.3259 0.4466 0.4504 0.4550 0.4953 0.4992 0.5057
Table 2
The influence of gravity on the displacement process at z=0
t 0.0808 0.2408 0.6408 1.0408
g 0 981 0 981 0 981 0 981
r,m
0.001 0.1500 0.1500 0.1500 0.1500 0.1500 0.1500 0.1503 0.1527
0.1 0.1500 0.1500 0.1500 0.1500 0.1500 0.1502 0.1508 0.1529
0.2 0.1500 0.1500 0.1500 0.1500 0.1500 0.1507 0.1518 0.1538
0.3 0.1500 0.1500 0.1500 0.1500 0.1503 0.1514 0.1547 0.1564
0.4 0.1500 0.1500 0.1500 0.1503 0.1513 0.1528 0.1630 0.1641
0.5 0.1500 0.1500 0.1501 0.1511 0.1548 0.1562 0.1839 0.1859
0.6 0.1500 0.1500 0.1503 0.1539 0.1662 0.1675 0.2431 0.2445
0.7 0.1500 0.1502 0.1527 0.1681 0.1876 0.1876 0.3106 0.3188
0.8 0.1507 0.1515 0.1670 0.2384 0.2820 0.2880 0.3594 0.4250
0.9 0.1640 0.1650 0.2358 0.3076 0.3438 0.3576 0.3970 0.4205
1.0 0.2759 0.28186 0.3299 0.3421 0.3845 0.4168 0.4355 0.4847
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Table 3 shows the distribution of water saturation
by r at time £=0.32, obtained on the basis of the use of
two-dimensional (without gravity) and plane-radial mo-
dels with and without initial gradient taken into account.

Table 3
Distribution of water saturation by r
Twu-d@enswnal Prublem Radial filtration
G without gravity
r,m
51:[' 51:1[]_3 51:|] 51:1[]_3
0.001 0.1500 0.1500 0.1500 0.1500

50 0.1500 0.1503 0.1500 0.1502
60 0.1511 0.1514 0.1509 0.1511
B5 0.1530 0.1533 0.1525 0.1530
70 0.1570 0.1575 0.1567 0.1572
75 0.1654 0.1665 0.1652 0.1658
80 0.1814 0.1835 0.1810 0.1832
85 0.2154 0.2202 0.2146 0.2193
90 0.2672 0.2747 0.2656 0.2742
95 0.2942 0.3004 0.2938 0.2996
100 0.3469 0.3530 0.3463 0.3528

Calculations show that in the two-dimensional problem
the water saturation value on the injection well taking
into account G, is 0.3520, and at the radial filtration
it is 0.3528. That is, they differ insignificantly and at
the same time, in both cases, at this moment the water
advances to the same distance — 50 m. It follows that in
modeling the process without taking gravity into account,
it is expedient to simplify the geometry of the filtration
region, i. e. consider the plane-radial flow, in view of the
considerable simplicity of the calculations.

7. SWOT analysis of research results

Strengths. The proposed algorithm can be used for
hydro-gas dynamic calculations related to the develop-
ment and operation of oil fields containing abnormal oil.

This algorithm contributes to:

— saving time;

— reducing the amount of computing process;

— increase the productivity of oil wells;

— increase the speed of calculation.

Weaknesses. The disadvantages of this method include
the calculation complexity.

Opportunities. Thanks to the introduction of this method
in the oil industry, the oil recovery is expected to increase.

Threats. To implement this method, additional equip-
ment is needed, and, accordingly, it is money costs. Highly
qualified personnel are also required to work with this
equipment.

1. Economical difference schemes are constructed that
combine the advantages of explicit and implicit schemes
and make it possible to reduce the two-dimensional problem
to a chain of one-dimensional problems. A difference-ite-
rative method is also proposed in moving grids for solving
two-dimensional (axisymmetric) non-stationary filtration
problems of anomalous liquids, by means of which an
iterative process is constructed to find the distribution
of water saturation.

2. The carried out calculations to determine the influ-
ence of gravity on the displacement process have shown
that at z=0, even at low productive-bed thicknesses,
gravitational forces influence the displacement process.
And over time this influence increases: if at the time
t=0.08 on the circuit the difference of water saturation
was 0.0077; at t=0.24-0.0122, then at ¢=1.04 it becomes
equal to 0.0292.

It is shown that when modeling the process without
taking gravity into account it is expedient to simplify
the geometry of the filtration region, i. e., to consider
a plane-radial flow in view of the considerable simplicity
of the calculations.
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HCCNEAOBAHKE BIMHAHUA TPABUTALHOHHBIX CH/T HA MPOLECC
BBLITECHEHHA BA3KONMACTHYHBIX MUAKOCTEMR

Wccenenosano yncaennoe MOAeIMpOBaHUe ITIpoliecca JAByMep-
HOW AByxX(dasHoi (uasTpauu BsI3KOMJIACTUIHON HehTH W BOJBI

C y4eTOM TPAaBUTALMOHHBIX CUJI, HEKOTOPBIX CBOHCTB JKUIKOCTEIL,
a TakKe OTHOCUTEIbHBIX (Pa30BBIX ITPOHUIIAEMOCTE W KATTUJIIJISP-
HBIX CHJ HAa OCHOBE Pa3HOCTHO-HUTEPAIIMOHHOTO MeTO/a B TIO-
BIDKHBIX ceTKax. [lyist mcesieoBanus BAUSHUS 9TUX (DAKTOPOB Ha
npoiecc GUIBTPAIMKU pa3padoTaH BBHIYNCIAUTENbHBIH aJITOPUTM,
00J1a/IAI0MNH CBOWCTBOM aalTHPYEMOCTH K OCOOEHHOCTIM 3ajiad
M OTJIMYAIONINICS BBICOKON TOYHOCTBIO.

Kmouessie cnoBa: rpaBUTAIMOHITBIE CHUJIBI, METOJ TIePEMEHHBIX
HarpaBJeHUH, JOKATbHO-OJHOMEPHBIE CXEMBI, a/[allTHBHASI CETKA,
BSI3KOTLJIACTUYHASA JKUIKOCTb.
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