DOI: 10.15587/2312-8372.2018.128571

АНАЛИЗ СПОСОБОВ РЕГУЛИРОВАНИЯ РАЗМЕРА ЧАСТИЦ ДИОКСИДА КРЕМНИЯ, ПОЛУЧЕННЫХ МЕТОДОМ ШТОБЕРА

Харченко А. В., Миронюк О. В., Мельник Л. И., Сиволапов П. В.

Объектом исследования является метод синтеза наночастиц диоскида кремния, а именно метод Штобера. Синтез частиц с помощью Штоберпроцесса является примером золь-гель метода – одного из наиболее практичных и регулируемых способов получения наночастиц регулируемого размера, формы и морфологии. Метод Штобера является классическим подходом к синтезу наночастиц диоксида кремния, однако в существующих работах отсутствует систематический подход к установлению связи между такими параметрами реакции, как концентрации компонентов, температура и время проведения процесса. В ходе исследования использовались разные виды информационного поиска и изучения информации. В результате работы получен обзор, который способен решить задачу систематизации влияния указанных параметров в условиях Штобер-процесса. Рассмотрены способы кремнезема, регулирования размеров частиц именно изменение: температуры в достаточно широком диапазоне от $5\,^{\circ}\!C$ концентрации $TEOS/H_2O/NH_3$; количества и термодинамического качества растворителя, а также влияние времени проведения реакции. Влияние указанных параметров рассматривается не только с точки зрения изменения единичного параметра, а и в комплексе с остальными. Установлены закономерности изменения диаметра частиц для главных условий синтеза. Показаны пути синтеза частиц методом Штобера от сотен нанометров до микрометров. Показано, что для синтеза частиц с минимальными размерами необходимым будет снижение концентрации реагирующих компонентов: TEOS, H_2O и NH_3 . Это позволяет снизить скорость процессов гидролиза и конденсации, а также растворимость промежуточного $[Si(OC_2H_5)_{4-X}(OH)_X]$, что определяет отсутствие перенасыщения в процессе зародышеобразования. Определяющими факторами такого снижения являются температура синтеза и использование более полярных растворителей. Результаты работы могут быть использованы для управления синтезом наночастиц диоксида кремния для различных применений – от каталитических систем до функциональных наполнителей материалов и, в частности, создания супергидрофобных структур.

Ключевые слова: метод Штобера, наночастицы диокида кремния, регулирование размера наночастиц, золь-гель процесс.

1. Введение

Динамическое развитие нанотехнологий наблюдалось во многих областях науки. Особое внимание уделяется областям технологии, где текущие

исследования сосредоточены на размере частиц, синтезе, регулировании характеристик поверхности и применении. Недавно научно-исследовательское сообщество проявило большой интерес к наноструктурам оксидов неметаллов и их применениям благодаря их простой процедуре синтеза. Кроме того, эти наночастицы имеют ряд новых свойств, таких как оптические, магнитные, каталитические и механические. Одним из широко применяемых оксидов неметаллов являются наночастицы кремнезема [1, 2]. Качество получаемых продуктов сильно зависит от размера и распределения частиц кремнезема [3, 4]. Синтез наночастиц диокисда кремния методом Штобера является наиболее рациональным. Существует ряд параметров провидения синтеза, изменяя которые можно изменять размер получаемых наночастиц. В связи с этим актуальными являются исследования, посвященные систематизации параметров, влияющих на размер конечных частиц, получаемых при синтезе Штобера.

Интерес к исследованию тематики наноразмерных материалов на основе кремнезёма может быть проиллюстрирован путём анализа количества публикаций в реестре [5], содержащих в ключевых словах слово «Stober process» с 1994 до 2017 год (рис. 1).

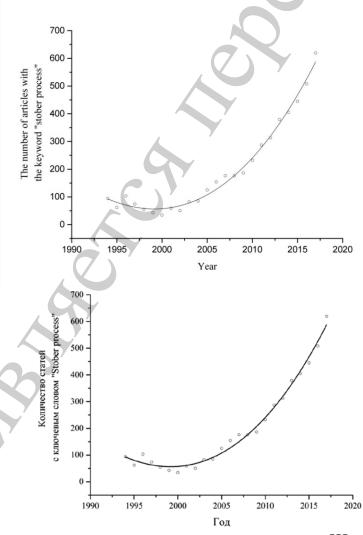


Рис. 1. Динамика интереса к исследованию процесса Штобера на примере поискового ресурса [5]

Данные, представленные на графике рис. 1 и приведенная выше информация указывают на рост интереса к данной тематике вместе с увеличением практической значимости результатов синтеза наночастиц с управляемыми свойствами.

2. Объект исследования и его технологический аудит

Объектом данного исследования является регулирование размеров частиц диоксида кремния, получаемых в ходе золь-гель конденсации в рамках процесса Штобера.

В работе рассматривается влияние таких факторов как концентрация активных компонентов в классическом Штобер-процессе, а именно тэтраэтоксисилана, воды, а также аммиака. Кроме того, внимание уделяется и таким неконцентрационным факторам, как температура проведения процесса конденсации и реакционное время.

Необходимость выбора именно этих факторов вызвана отсутствием систематического подхода к регулированию размеров частиц диоксида кремния в существующих работах. В частности, в большинстве исследований рассматриваются только отдельные факторы, что ограничивает возможности в создании общей хорошо регулируемой модели получения продукта нужной гранулометрии. В свою очередь, это сужает возможности управляемого синтеза компонентов, например, для получения функциональных наполнителей для композиционных материалов, литьевой керамики, систем с селективной адсорбцией и т. п.

3. Цель и задачи исследования

Целью данной работы является систематизация и обобщение способов регулирования размера частиц диоксида кремния, синтезированных методом Штобера.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1. Рассмотреть основные условия синтеза методом Штобера и определить влияние этих условий на размер частиц продукта процесса.
 - 2. Сформулировать основные методы регулирования размера частиц.

4. Исследование существующих решений проблемы

Существует мнение, что социально-экономический прогресс в XXI веке будет всецело определяться успехами нанотехнологий [6]. Современная наука все в большей степени обращает внимание на наноматериалы и связанные с ними технологии. В частности, за последние два десятилетия изучались такие аспекты этой отрасли науки как производство наноструктур [7], синтез наночастиц [8] и плёнок нанометровой толщины [9]. Наночастицы чаще всего используются в качестве исходного материала для дальнейших модификаций и создания структурированных ансамблей. Получение монодисперсного коллоидного диоксида кремния привлекло значительное внимание из-за

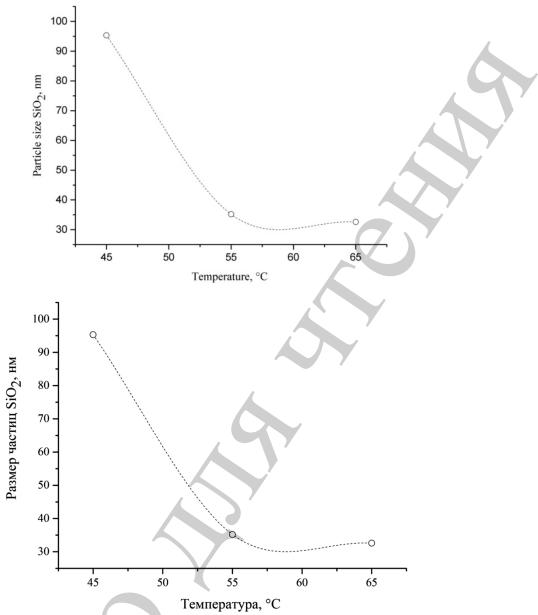
широкого спектра потенциального применения, такого как оптические устройства, магнитные частицы, носители для хроматографии, катализаторы и добавки к полимерным материалам [1–3, 10, 11]. Также широко изучается их пригодность к применению в виде фотонных кристаллов [12, 13], химических датчиков [14], биосенсоров [15]. В начале 2000-х годов было множество описывающих применение нанофильтров для публикаций ИХ как композиционных материалов [16-18],сенсоров управляемого введения лекарственных препаратов [19–22].

В монографии [23] были проиллюстрированы разнообразные способы получения монодисперсного диоксида кремния. Общепринятым методом стал гидролиз и конденсация тетраэтилортосиликата (TEOS) с водой в присутствии аммиака в качестве катализатора [24]. С момента открытия на основе этой реакционной системы было проведено множество исследований [25, 26]. В 1968 г. был разработан систематический метод контроля диаметра частиц SiO₂ в диапазоне размеров до микрона [27] и сегодня этот метод известен как метод Штобера или SFB. Последующие публикации описывают возможности получения гораздо меньших по размеру частиц диоксида кремния [28–32].

В ходе исследований и изменений процесса Штобера были описаны различные рецептуры, получены частицы с разными диаметрами. Информация, уже существующая по данной теме, достаточно обширна и нуждается в обобщении.

5. Методы исследований

При исследовании были использованы общенаучные методы:


- метод анализа при изучении синтеза частиц диоксида кремния методом Штобера;
- методы систематизации, классификации и обобщения при рассмотрении параметров, влияющих на ход течения реакции, в последствии на размер получаемых частиц кремнезема.

6. Результаты исследования

Условия синтеза, такие как температура, концентрация и количество реагентов, а также тип растворителя, напрямую определяют размер частиц диоксида кремния. Использование этих факторов позволяет получать частицы диоксида кремния в диапазоне от 150 нм до 1000 нм. Далее будет рассмотрено влияние каждого из названных факторов.

6.1. Температура

Для фактора температуры справедливо правило: размер частиц уменьшается с увеличением температуры (рис. 2) [33–37].

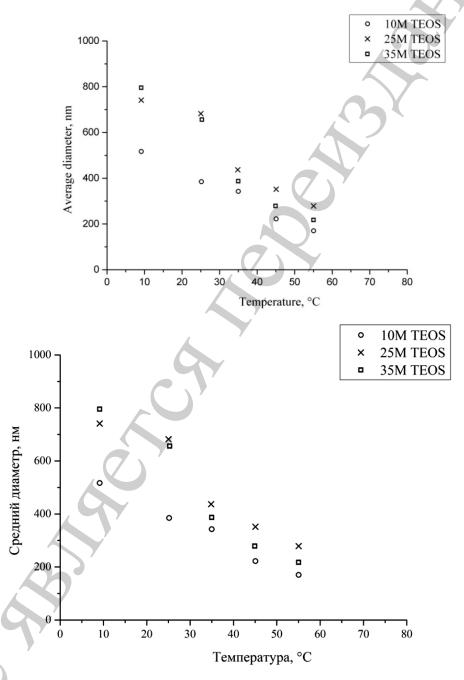


Рис. 2. Зависимость размера частиц от температуры проведения реакции Штобера

Установлено, что скорость зародышеобразования увеличивается при увеличении температуры, размер частиц уменьшается из-за высокой скорости зародышеобразования [3, 38]. Из рис. 2 видно, что при повышении температуры с 45 °C до 55 °C размер частиц снизился с 95 до 30 нм. Однако при дальнейшем повышении температуры никакого существенного изменения не наблюдается на отрезке от 55 °C до 65 °C. При повышении температуры до 65 °C размер частиц повышается, что объясняется авторами исследования началом процессов агрегации. Они связывают протекание процесса с повышенной растворимостью и повышением вероятности столкновений частиц при высоких температурах [33].

В публикации [10] подтверждают, что при росте температуры, размер частиц уменьшается. В эксперименте показано, что монодисперсные частицы в диапазоне 920–940 нм могут быть получены для системы с концентрацией

тэтраэтоксисилана (TEOS) 1,24 М при температуре 5 °C, но для такого содержания реагента при температуре 20 °C вероятна интенсификация агрегации. Из этого следует, что понижение температуры, вероятно, замедляет реакции гидролиза и конденсации TEOS, а также снижает частоту тепловых колебаний олигомеров. Это может в некоторой степени снижать интенсивность их агрегации, что приводит к образованию более крупных частиц при высокой концентрации TEOS. В работе [25] наглядно представлено это утверждение (рис. 3).

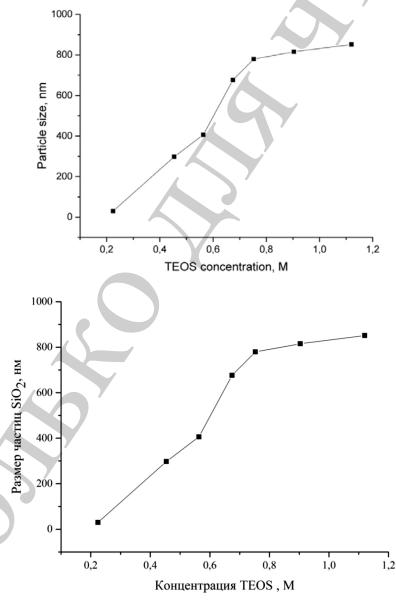
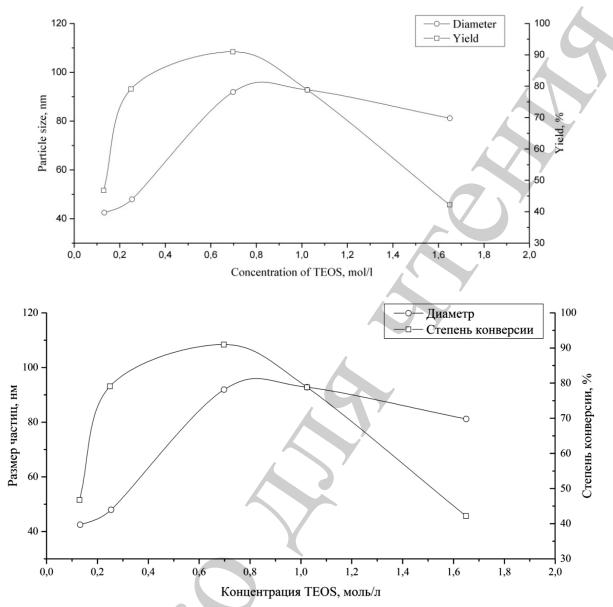


Рис. 3. Зависимость размера частиц от температуры проведения реакции Штобера при повышенных концентрациях TEOS

Из рис. З следует, что при повышении температуры в этих условиях происходит снижение размера частиц практически в четыре раза – с 800 до 200 нм. В целом, анализ зависимостей, представленных на рис. 2 и рис. 3, указывает на их подобие для различных концентраций TEOS. При этом, очевидно, что нижний предел размера определяется концентрацией указанного реагента, а само существование этого предела – установлением равновесия между подвижностью олигомеров и устойчивостью системы к агрегативным и далее коагуляционным изменениям.

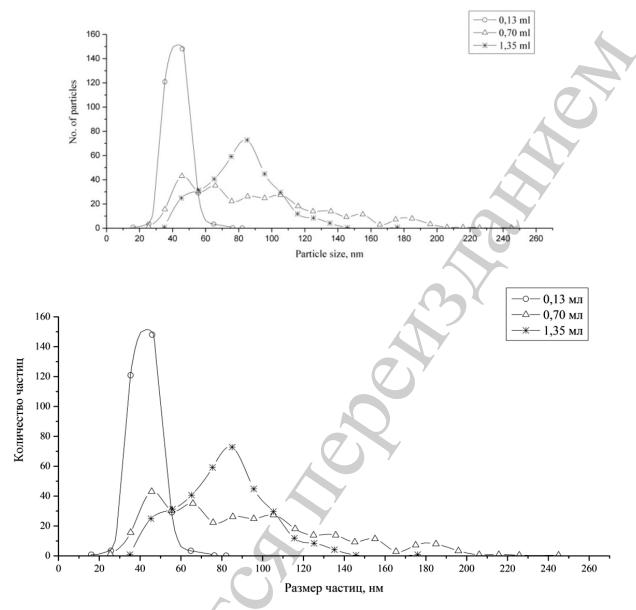
6.2. Концентрация TEOS

Размер частиц тэтраэтоксисилана прямо пропорционально связан с размером частиц продукта, что подтверждается рядом экспериментальных результатов [33, 34, 39–41]. Рассмотрим для примера одну из таких зависимостей (рис. 4).


Рис. 4. Зависимость размера частиц диоксида кремния, получаемых по методу Штобера от концентрации TEOS [10]

Поскольку именно гидролиз TEOS является источником мономера для протекания последующих конденсационных реакций, его концентрация определяет концентрацию зародышей/первичных частиц, присутствующих в системе.

перенасыщении раствора происходит образование При начальном большего количества зародышей, которое будет индуцировать образование большего количества первичных частиц. Агрегация первичных частиц приводит к образованию более стабильных вторичных частиц [25, 42]. После периода индукции любые первичные частицы или образующиеся ядра будут растворяться и повторно осаждаться на растущих вторичных частицах посредством механизма созревания Оствальда [43]. Процесс продолжаться до тех пор, пока все первичные частицы не будут израсходованы или пока не будет достигнуто стабильное состояние [33].


Итак, когда концентрация TEOS становится больше, в промежутке между объемами во время гидролиза, мономер образует большее количество промежуточных продуктов реакции, таким образом, более крупные частицы могут образовываться при конденсации этих промежуточных продуктов. В работе [25] сообщается о подобном явлении при 55 °C. Авторами обнаружено, что размер частиц увеличился с 150 до 250 нм, когда молярная концентрация TEOS увеличилась с 0,1 до 0,35 М.

В публикации [33] показано, что при фиксированной концентрации воды $(H_2O)=0.04$ моль/л, аммиака $(NH_3)=0,08$ моль/л И размер увеличивается с увеличением концентрации ДО 0.80 моль/л **TEOS** стабилизируется на величине около 90 нм. Это явление подтверждает увеличение размера частиц за счёт увеличения концентрации первичных частиц в период индукции. При концентрации TEOS более 0,80 моль/л аммиак оказывается в недостатке, что приводит к незавершенности реакций гидролиза и конденсации. В результате выход продукта падает более чем на 50 % из-за неполных реакций, и размер частиц остается почти постоянным (рис. 5).

Рис. 5. Зависимость размера частиц продукта процесса Штобера от содержания TEOS в системе по данным [33]

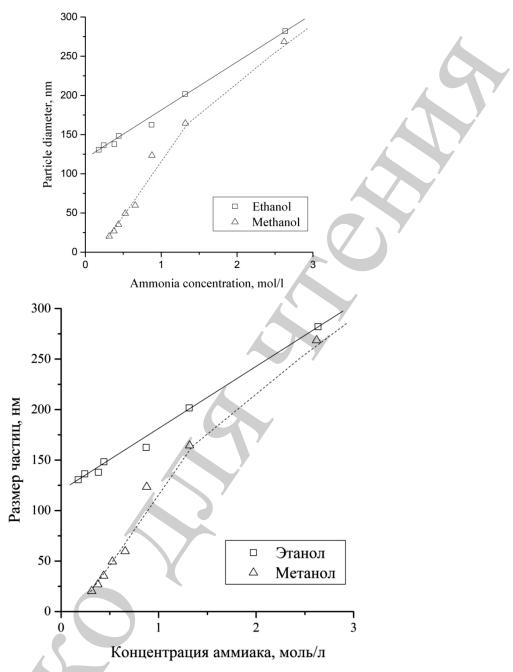
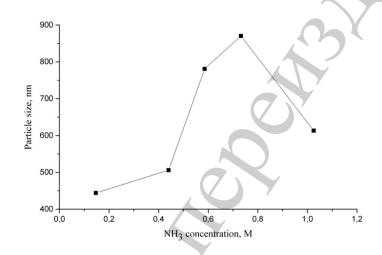

Также хотелось бы заметить, что при сильном перенасыщении раствора тетраэтоксисиланом израсходование первичных частиц происходит гораздо медленнее. Вследствие этого, первичные частицы спонтанно агрегируются для образования стабильных вторичных частиц, что приводит к значительному увеличению полидисперсности распределения частиц по размерам (рис. 6).

Рис. 6. Распределение частиц диоксида кремния по размерам в зависимости от концентрации TEOS по данным [44]

6.3. Концентрация NH₃

В процессе Штобера аммиак используется в качестве регулятора рН среды. В ранних работах утверждалось что, размер частиц увеличивается при возрастании концентрации NH_3 [34, 45], что показано на рис. 7.


Рис. 7. Влияние концентрации аммиака на средний размер частиц продукта по данным [34]

В работе [45] приведен график для концентрации TEOS 0,087 моль/л. В обоих растворителях увеличение концентрации аммиака приводит к увеличению среднего размера частиц. Этот эффект сильнее в метаноле. Частицы, выращенные в этаноле, достигают больших размеров, чем частицы в метаноле, и это более выражено в области концентрации с низким содержанием аммиака. Эта разница постепенно уменьшается по мере увеличения регулятора рН и, в конечном счете, частицы в любом растворителе растут до сопоставимых размеров. Присутствие аммиака увеличивает скорость гидролиза TEOS [28, 33, 43, 46, 47]. А также увеличивает скорость конденсации гидролизованных

мономеров [43, 46, 47]. Это приводит к увеличению размеров частиц кремнезема.

Выход также увеличивается до максимума в 95 % с увеличением концентрации NH_3 до 3,0 моль/л, что указывает на практически полное завершение процесса. Частицы, полученные при более высоких концентрациях $[NH_3]$ имеют гладкую поверхность, сферическую форму с отсутствием агрегации.

Начиная с 2010 г. [10, 41], в публикациях дополняется информация о влиянии аммиака на рост частиц кремнезема в процессе Штобера. Зависимость размера от концентрации NH_3 имеет экстремальный характер с выраженным максимумом (рис. 8).

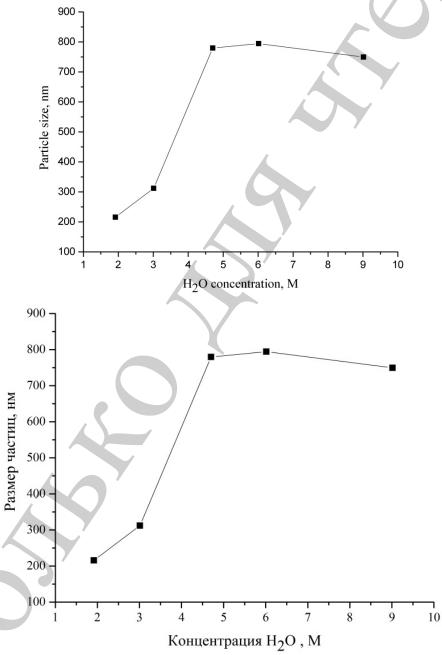


Рис. 8. Дополненная зависимость размера частиц диоксида кремния от концентрации аммиака по данным [10]

Резкое увеличение скорости роста размеров частиц, показанное на рис. 7 также может быть объяснено началом агрегации, в данном случае при концентрации аммиака 0,8 моль/л. Условием агрегации является соотношение скоростей гидролиза и конденсации: это происходит если скорость конденсации будет больше, чем скорость гидролиза TEOS.

6.4. Концентрация H₂O


С ростом количества H_2O (M) размер частиц увеличивается до определенного пика (рис. 9), после которого при дальнейшем увеличении концентрации размер частиц медленно уменьшается [3, 10].

Рис. 9. Влияние концентрации воды на средний размер частиц в процессе Штобера по данным [10]

На рис. 9 показано, что влияние концентрации воды на размер частиц аналогично влиянию концентрации NH_3 . А именно: размер частиц увеличивается с увеличением концентрации H_2O и достигает максимального значения, в данном случае — около 6 M, а затем опускается при повыщении концентрации. Этот результат хорошо согласуется с результатами работ [25, 34, 48]. H_2O может ускорить гидролиз TEOS, способствуя образованию более крупных частиц, тогда как при более высокой концентрации, H_2O разбавляет олигомеры в реакционном растворе, в результате чего образуется меньшее количество частиц.

В работе [25] представлены схожие результаты (рис. 10).

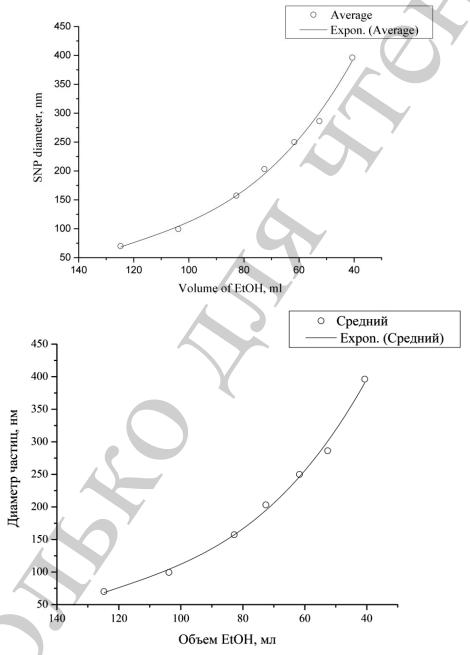


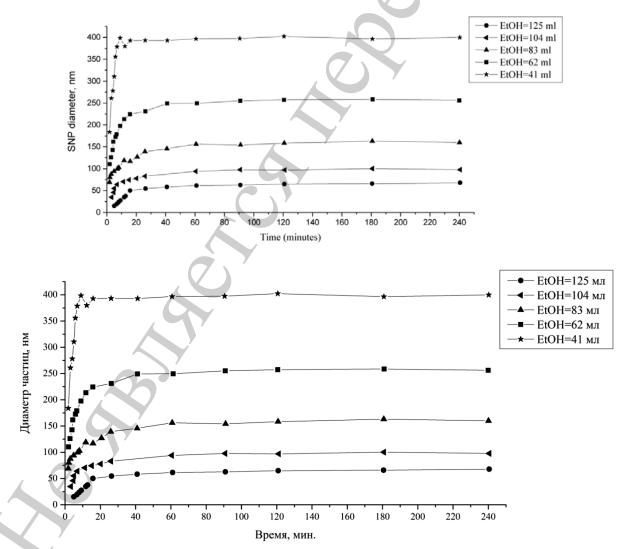
Рис. 10. Влияние концентрации воды на средний размер частиц кремнезема, полученных методом Штобера по данным [25]

Кривая на рис. 10 имеет чётко выраженный максимум, но поскольку в эксперименте [25] использовались другие соотношения $TEOS/NH_3$, средний размер частиц SiO_2 отличается от данных на рис. 9.

6.5. Количество и полярность растворителя

В работе [49] демонстрируется зависимость роста диаметра частиц диоксида кремния от уменьшения объема растворителя (этанола) в растворе (рис. 11).

Рис. 11. Влияние содержания растворителя на размер частиц продукта реакции Штобера по данным [49]


В публикации [34] ситнез Штобера проведен в ряде растворителей одного гомологического ряда с различными значениями диэлектрической

проницаемости, такими как метанол=32,6; этанол=24,3; пропанол=20,1; бутанол=17,8. Это определяет размер частиц в процессе зародышеобразования за счёт изменения баланса между вандерваальсовскими силами притяжения и электростатическими силами отталкивания. Последняя увеличивается при увеличении значения диэлектрической проницаемости среды, что в конечном итоге приводит к снижению размера частиц [10, 50].

Вопрос влияния термодинамического качества растворителя как на размеры частиц продукта, так и на кинетику процессов зародышеобразования, конденсации и стабилизации частиц, таким образом, недостаточно рассмотрен в литературе. В частности, перспективными в данном направлении могли бы быть исследования этого опроса с точки зрения теории Флори или подхода Хансена.

6.6. Влияние времени реакции на конечный размер частиц

Первоначально в исследованиях заключалось, что оптимальное реакционное время для окончания процесса Штобера должно находиться в пределах от 3 до 12 ч для достижения частицами конечных размеров [3, 20, 25, 51]. Но в более поздней публикации [49] это утверждение опровергается (рис. 12).

Рис. 12. Влияние времени прохождения реакции в процессе Штобера на размер частиц диоксида кремния по данным [49]

Исходя из этих данных, можно сделать вывод о практически полном завершении процессов в течение приблизительно 2 часов реакции. Достаточно высокая степень конверсии (более 90 %) достигается в первые 30 мин реакции. Скорость реакции зависит от содержания этанола в системе, она значительно увеличивается при снижении его концентрации.

7. SWOT-анализ результатов исследований

Strengths. Среди сильных сторон данного исследования необходимо отметить полученную систематизацию методов регулирования размера частиц кремнезема и обобщение возможных вариантов варьирования диаметра наночастиц. В пользу этого утверждения свидетельствуют приведенные выше результаты анализа мировой научной периодики, в которых отсутствует столь полное и широкое описание влияющих на процесс факторов. Использование полученных данных позволяет решить задачу выбора рационального фактора регулирования или же использовать комплексный подход к изменению параметров процесса.

Weaknesses. Слабой стороной комплексного регулирования параметров наночастиц, получаемых в процессе Штобера, является необходимость точного регулирования как концентраций компонентов, так и факторов температуры и времени реакции. Решением этой проблемы является автоматизация процесса, являющаяся ресурсозатратной. Особые требования к чистоте исходных продуктов также приводят к увеличению себестоимости исходных материалов.

Opportunities. При постановке промышленного синтеза наночастиц с регулируемой гранулометрией методом Штобера для производителя открывается ряд рынков:

- 1) рынок полупродуктов для лакокрасочной промышленности;
- 2) рынок добавок к полимерным материалам;
- 3) рынок полупродуктов литьевой керамики.

Для использования продукта в той или иной отрасли должно быть проведены экстенсивные исследования его эффективности в перечисленных областях.

Threats. Основной проблемой описанной технологии является отсутствие её профилирования под тот или иной конечный продукт. Именно установление эффективности действия добавки в том или ином случае и выбор адекватных условий синтеза и будет источником дополнительных затрат.

На данный момент существует близкая к описанной технология синтеза пирогенного кремнезема — аэросила. Конкурентные преимущества этой технологии включают более низкие энергозатраты и, следовательно, сниженную себестоимость продукта.

Технология синтеза методом Штобера, тем не менее, позволяет получить более управляемую гранулометрию и меньшие размеры частиц кремнезёма, а также увеличить диспергируемость полученных частиц в различных матрицах.

8. Выводы

1. Систематизированы способы регулирования размеров частиц диоксида кремния, получаемых в ходе синтеза по методу Штобера. Показано влияние изменения концентраций основных реагентов процесса, а также температуры и длительности проведения реакции.

Характер концентрационных зависимостей тэтраэтоксисилана, аммиака и воды имеет чётко выраженный экстремальный характер с максимумом для каждого отдельного реагента, что может быть объяснено балансом между процессами гидролиза, конденсации и агрегации частиц – продукта реакции.

Показано, что температура также является важным фактором регулирования размера частиц. Увеличение температуры позволяет снижать этот параметр до 4–5 раз, что объясняется повышением тепловой подвижности олигомеров в ходе конденсации. В то же время, существует определённый предел температуры, при котором система сталкивается с агрегативной неустойчивостью образующихся продуктов.

Оптимальная длительность реакции составляет до 2 часов, при этом основные процессы образования частиц происходят в течение первых 30 минут.

Показано, что изменение диэлектрической проницаемости растворителя также может служить инструментом для регулирования размеров частиц диоксида кремния. При этом, в существующих работах отсутствует описание этого способа с точки зрения более современных теорий, рассматривающих термодинамическое качество растворителя, например, теории Флори или более прикладного подхода Хансена.

2. Сформулированы и описаны основные методы регулирования размера частиц диоксида кремния. В зависимости от заданного размера частиц кремнезема, варьируя выше описанные параметры рассмотренными в работе методами, возможен синтез частиц размером от сотен нанометров до микрометров. Показано, что для получения частиц с минимальными размерами необходимо снижение концентрации реагирующих компонентов: TEOS, H₂O, NH₃, повышенная температура синтеза, а также использование растворителей с увеличенной полярностью.

References

- 1. Iler R. K. The Chemistry of Silica and Silicates. Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Chichester: John Wiley and Sons, 1979. 886 p.
- 2. Giesche H. Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics // Journal of the European Ceramic Society. 1994. Vol. 14, No. 3. P. 189–204. doi:10.1016/0955-2219(94)90087-6
- 3. Park S. K., Kim K. D., Kim H. T. Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2002. Vol. 197, No. 1–3. P. 7–17. doi:10.1016/s0927-7757(01)00683-5

- 4. Preparation and characterization of ultrafine silica / Sadasivan S. et al. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998. Vol. 132, No. 1. P. 45–52. doi:10.1016/s0927-7757(97)00148-9
 - 5. ScienceDirect. URL: https://www.sciencedirect.com/
- 6. Roco M., Tomellini R. Nanotechnology-Revolutionary Opportunities and societal Implications // 3rd Joint EC-NSF Workshop on Nanotechnology. 2002.
- 7. Hierarchically Ordered Oxides / Yang P. et al. // Science. 1998. Vol. 282, No. 5397. P. 2244–2246. doi:10.1126/science.282.5397.2244
- 8. Synthesis and properties of nanofunctionalized particulate materials / Fitz-Gerald J. et al. // Nanostructured Materials. 1999. Vol. 12, No. 5–8. P. 1167–1171. doi:10.1016/s0965-9773(99)00320-7
- 9. Xia Y., Whitesides G. M. Soft Lithography // Angewandte Chemie International Edition. 1998. Vol. 37. P. 550–575. doi:10.1002/(sici)1521-3773(19980316)37:5<550::aid-anie550>3.0.co;2-g
- 10. Preparation of spherical silica particles by Stober process with high concentration of tetra-ethyl-orthosilicate / Wang X.-D. et al. // Journal of Colloid and Interface Science. 2010. Vol. 341, No. 1. P. 23–29. doi:10.1016/j.jcis.2009.09.018
- 11. Payne C., Bergna H. The Colloid Chemistry of Silica // American Chemical Society. 1994. Vol. 234. P. 1–47. doi:10.1021/ba-1994-0234.ch001
- 12. Design of photonic structures by sol–gel-derived silica nanospheres / Chiappini A. et al. // Journal of Non-Crystalline Solids. 2007. Vol. 353, No. 5–7. P. 674–678. doi:10.1016/j.jnoncrysol.2006.10.034
- 13. Synthesis, characterization and modelling of silicon based opals / Pallavidino L. et al. // Journal of Non-Crystalline Solids. 2006. Vol. 352, No. 9-20. P. 1425–1429. doi:10.1016/j.jnoncrysol.2005.10.047
- 14. Humidity sensors based on silica nanoparticle aerogel thin films / Wang C.-T. et al. // Sensors and Actuators B: Chemical. 2005. Vol. 107, No. 1. P. 402–410. doi:10.1016/j.snb.2004.10.034
- 15. Grant S., Weilbaecher C., Lichlyter D. Development of a protease biosensor utilizing silica nanobeads // Sensors and Actuators B: Chemical. 2007. Vol. 121, No. 2. P. 482–489. doi:10.1016/j.snb.2006.04.096
- 16. Combined effects of silica filler and its interface in epoxy resin / Wang H. et al. // Acta Materialia. 2002. Vol. 50, No. 17. P. 4369–4377. doi:10.1016/s1359-6454(02)00275-6
- 17. Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content / Zhang H. et al. // Acta Materialia. 2006. Vol. 54, No. 7. P. 1833–1842. doi:10.1016/j.actamat.2005.12.009
- 18. Thermo-viscoelastic properties of silica particulate-reinforced epoxy composites: Considered in terms of the particle packing model / Kwon S. et al. // Acta Materialia. 2006. Vol. 54, No. 12. P. 3369–3374. doi:10.1016/j.actamat.2006.03.026
- 19. Klein S., Thorimbert S., Maier W. F. Amorphous Microporous Titania—Silica Mixed Oxides: Preparation, Characterization, and Catalytic Redox Properties // Journal of Catalysis. 1996. Vol. 163, No. 2. P. 476–488. doi:10.1006/jcat.1996.0349

- 20. Synthesis of Microporous Silica Spheres / Vacassy R. et al. // Journal of Colloid and Interface Science. 2000. Vol. 227, No. 2. P. 302–315. doi:10.1006/jcis.2000.6860
- 21. Kurungot S., Yamaguchi T., Nakao S. Rh/γ-Al2O3 catalytic layer integrated with Sol–Gel synthesized microporous silica membrane for compact membrane reactor applications // Catalysis Letters. 2003. Vol. 86, No. 3/4. P. 273–278. doi:10.1023/a:1022636606705
- 22. Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous / Lin Y.-S. et al. // Chemistry of Materials. 2006. Vol. 18, No. 22. P. 5170–5172. doi:10.1021/cm061976z
- 23. Chung T.-W., Yeh T.-S., Yang T. C.-K. Influence of manufacturing variables on surface properties and dynamic adsorption properties of silica gels // Journal of Non-Crystalline Solids. 2001. Vol. 279, No. 2–3. P. 145–153. doi:10.1016/s0022-3093(00)00411-7
- 24. Bogush G. H., Tracy M. A., Zukoski C. F. Preparation of monodisperse silica particles: Control of size and mass fraction // Journal of Non-Crystalline Solids. 1988. Vol. 104, No. 1. P. 95–106. doi:10.1016/0022-3093(88)90187-1
- 25. Chou K. S., Chen C. C. Preparation and Characterization of Monodispersed Silica Colloids // Advances in Technology of Materials and Materials Processing Journal. 2003. Vol. 5, No. 1. P. 31–35.
- 26. Stober W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range // Journal of Colloid and Interface Science. 1968. Vol. 26, No. 1. P. 62–69. doi:10.1016/0021-9797(68)90272-5
- 27. Kim S.-S. Effect of electrolyte additives on sol-precipitated nano silica particles // Ceramics International. 2004. Vol. 30, No. 2. P. 171–175. doi:10.1016/s0272-8842(03)00085-3
- 28. Azlinaa H. N., Hasnidawani J. N., Norita H. Synthesis of SiO2 Nanostructures Using Sol-Gel Method // 5th International Science Congress & Exhibition. Lykia, 2015.
- 29. Two-Dimensional Ordered Arrays of Silica Nanoparticles / Wang C. et al. // Chemistry of Materials. 2000. Vol. 12, No. 12. P. 3662–3666. doi:10.1021/cm990738j
- 30. Fabrication of ultra-large mesoporous carbon with tunable pore size by monodisperse silica particles derived from seed growth process / Lei Z. et al. // Microporous and Mesoporous Materials. 2006. Vol. 96, No. 1–3. P. 127–134. doi:10.1016/j.micromeso.2006.06.031
- 31. Chou K.-S., Chen C.-C. The critical conditions for secondary nucleation of silica colloids in a batch Stober growth process // Ceramics International. 2008. Vol. 34, No. 7. P. 1623–1627. doi:10.1016/j.ceramint.2007.07.009
- 32. An optimized sol–gel synthesis of stable primary equivalent silica particles / Rahman I. A. et al. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007. Vol. 294, No. 1–3. P. 102–110. doi:10.1016/j.colsurfa.2006.08.001
- 33. Analysis of Parameters and Interaction between Parameters in Preparation of Uniform Silicon Dioxide Nanoparticles Using Response Surface Methodology /

- Wang H.-C. et al. // Industrial & Engineering Chemistry Research. 2006. Vol. 45, No. 24. P. 8043–8048. doi:10.1021/ie060299f
- 34. Kim K. D., Kim H. T. Formation of Silica Nanoparticles by Hydrolysis of TEOS Using a Mixed Semi-Batch/Batch Method // Journal of Sol-Gel Science and Technology. 2002. Vol. 25, No. 3. P. 183–189. doi:10.1023/a:1020217105290
- 35. Tan C. G., Bowen B. D., Epstein N. Production of monodisperse colloidal silica spheres: Effect of temperature // Journal of Colloid and Interface Science. 1987. Vol. 118, No. 1. P. 290–293. doi:10.1016/0021-9797(87)90458-9
- 36. Synthesis of nanometric silica particles via a modified Stober synthesis route / Meier M. et al. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2018. Vol. 538. P. 559–564. doi:10.1016/j.colsurfa.2017.11.047
- 37. Pierre A. C. Introduction to Sol–Gel Processing. Boston: Kluwer Academic Publishers, 1998. 394 p. doi:10.1007/978-1-4615-5659-6
- 38. Particle Size Distributions Produced by Hydrolysis and Condensation of Tetraethylorthosilicate / Satoh T. et al. // Journal of Chemical Engineering of Japan. 1997. Vol. 30, No. 4. P. 759–762. doi:10.1252/jcej.30.759
- 39. Kim K. D., Kim H. T. New Process for the Preparation of Monodispersed, Spherical Silica Particles // Journal of the American Ceramic Society. 2004. Vol. 85, No. 5. P. 1107–1113. doi:10.1111/j.1151-2916.2002.tb00230.x
- 40. Ibrahim I. A. M., Zikry A. A. F., Sharaf M. A. M. Preparation of spherical silica nanoparticles // Journal of American Science. 2010. Vol. 6, No. 11. P. 985–989.
- 41. Bogush G., Zukoski C. Uniform silica particle precipitation: An aggregative growth model // Journal of Colloid and Interface Science. 1991. Vol. 142, No. 1. P. 19–34. doi:10.1016/0021-9797(91)90030-c
- 42. Brinker C., Scherer G. The Physics and Chemistry of Sol-Gel Processing. San Diego: Academic Press Inc., 1990. 908 p.
- 43. Chen S.-L., Dong P., Yang G.-H. The Size Dependence of Growth Rate of Monodisperse Silica Particles from Tetraalkoxysilane // Journal of Colloid and Interface Science. 1997. Vol. 189, No. 2. P. 268–272. doi:10.1006/jcis.1997.4809
- 44. Matsoukas T., Gulari E. Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate // Journal of Colloid and Interface Science. 1988. Vol. 124, No. 1. P. 252–261. doi:10.1016/0021-9797(88)90346-3
- 45. Matsoukas T., Gulari E. Monomer-addition growth with a slow initiation step: A growth model for silica particles from alkoxides // Journal of Colloid and Interface Science. 1989. Vol. 132, No. 1. P. 13–21. doi:10.1016/0021-9797(89)90210-5
- 46. Chemical reaction kinetics leading to the first Stober silica nanoparticles NMR and SAXS investigation / Green D. et al. // Journal of Non-Crystalline Solids. 2003. Vol. 315, No. 1–2. P. 166–179. doi:10.1016/s0022-3093(02)01577-6
- 47. Chen S.-L. Preparation of monosize silica spheres and their crystalline stack // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998. Vol. 142, No. 1. P. 59–63. doi:10.1016/s0927-7757(98)00276-3
- 48. Gao W., Rigout M., Owens H. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals //

Journal of Nanoparticle Research. 2016. Vol. 18, No. 12. doi:10.1007/s11051-016-3691-8

49. Size, volume fraction, and nucleation of Stober silica nanoparticles / Green D. // Journal of Colloid and Interface Science. 2003. Vol. 266, No. 2. P. 346–358. doi:10.1016/s0021-9797(03)00610-6

50. Lee K., Sathyagal A. N., McCormick A. V. A closer look at an aggregation model of the Stober process // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998. Vol. 144, No. 1–3. P. 115–125. doi:10.1016/s0927-7757(98)00566-4