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OPTIMIZATION OF THE ACYCLIC 
ADDERS OF BINARY CODES

Об’єктом дослідження є префіксна модель обчислення сигналів суми і перенесення у схемі паралельного 
суматора з паралельним способом перенесення. Одним з найбільш проблемних місць префіксної моделі 
є процес вироблення сигналів суми і перенесення, у якому початок обчислення префікса передбачено  
з першого розряду схеми. Це приводить, у підсумку, до надлишкового нагромадження і ускладнення апаратної 
частини пристрою.

У ході дослідження використовувалась математична модель обчислення сигналів суми і перенесення  
у схемі паралельного суматора, що ґрунтується на властивостях направленого ациклічного графа з двома 
типовими операціями.

Отримано зменшення складності логічної структури суматора бінарних кодів, зменшення глибини 
схеми та зменшення загальної протяжності з’єднувальних проводів. Це пов’язано з тим, що запропонований 
метод обчислення сигналів суми і перенесення має ряд особливостей синтезу схеми пристрою, зокрема 
застосування математичної моделі, що ґрунтується на властивостях ациклічного графа, розраховано на:

–  процес послідовного (для молодших розрядів схеми пристрою) і паралельного обчислення сигналів 
суми і перенесення, що, у підсумку, дає зменшення складності апаратної частини пристрою та не збільшує 
глибину схеми;

–  співставлення числа обчислювальних кроків орієнтованого ациклічного графа з числом перенесень оди
ниці до старшого розряду у схемі суматора, що дозволяє встановлювати оптимальне число обчислювальних 
кроків для структури пристрою.

Завдяки цьому забезпечується можливість отримання оптимальних значень показників складності 
структури та глибини схеми суматора. Зв’язок між числом обчислювальних кроків орієнтованого ациклічного 
графа і числом перенесень у схемі паралельного суматора з паралельним способом перенесення вказує на 
доцільність співставлення структури суматора з відповідним орієнтованим ациклічним графом.

У порівнянні з аналогічними відомими структурами 8-bit префіксних суматорів це забезпечує збільшення 
показника якості 8-bit ациклічних суматорів, наприклад, за енергоспоживанням, площею чіпа, у залежності 
від обраної структури, на 10–40 %.

Ключові слова: ациклічна модель, префіксна модель, направлений ациклічний граф, Ling Adder, Kogge-
Stone Adder, Brent-Kung Adder.

Solomko M.

1.  Introduction

The adder of binary codes is present in most digital elec-
tronic circuits, including digital signal processors  (DSPs) 
and is one of the means of microprocessor data proces
sing. The performance of the addition operation in the 
positional number system depends on the way the unit 
is transferred to the high-order bit. A variant of such 
transfer is, in particular, the technology of prefix adding 
of numbers  [1–4].

In this paper, applications of acyclic models for calcu-
lating adding and transport signals [5] for the synthesis 
of parallel 8-bit adder of binary codes is presented. This 
gives a new apparatus for synthesizing parallel multi-bit 
adders with a parallel transfer method for their applica-
tion in digital technologies.

Methods of arithmetic operations are realized by gate 
circuits of functional elements in bases consisting of func-
tions of the algebra of logic. From the structure of the 
adder, the speed of the digital device depends on its reli-
ability and energy saving. In this connection, minimization 
of complexity and depth of logic circuits is one of the 
central and practically important problems in this theory, 
which arises in the design of digital devices.

Processor evolution is the result of relentless optimization, 
so the research remains topical, in particular, on the improve-
ment of such factors – manufacturing technologies, struc-
tural realization, power consumption, cost of digital devices.

2. � The object of research  
and its technological audit

The object of solving the problem of synthesizing the 
circuit of the adder of binary codes is the acyclic model 
of one-stage calculation of adding and carry signals, based 
on the properties of a directed acyclic graph with two 
typical operations (Fig.  1,  2).

The acyclic model is designed for the logical structure 
of the adder with a series-parallel method of calculating 
the prefix, which, in the end, leads to a reduction in the 
complexity of the device hardware. The mathematical ap-
paratus of the directed acyclic graph allows one to unam-
biguously obtain the values of the adding and carry signals 
in one calculation step, so the latter is able to effectively 
replace the three-stage prefix model for computing the  
adding and carry signals (Fig. 3). This expands the apparatus 
for synthesizing arithmetic devices for their application in 
digital technologies.
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Fig. 1. Oriented acyclic graph – model of the computational circuit  
of parallel 4-bit acyclic adder with parallel transfer method
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Fig. 2. Oriented acyclic graph – model of the computing circuit of parallel 
4-bit acyclic adder with logical elements OR in the last bit
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Fig. 3. Model of the parallel prefix adder:  
1 – organizational logic; 2 – group logic; 3 – binary code addition logic

The acyclic model of the adder is represented by two 
typical operations – AND and XOR, admits ways of applying 
the transfer condition of the unit to the high order (1),  
which ultimately leads to the optimal complexity of the 
arithmetic device circuit.

p a b p a bi i i i i i= ∨ = +  or  . 	 (1)

The acyclic model of an arithmetic device is able to 
support aggregated structures for calculating adding and 
carry signals, by combining with other apparatus of calcu-
lation methods, in particular with the Ling transfer logic.

The relative lack of acyclic models of calculating ad
ding and carry signals is currently associated with a small 
volume of theoretical developments in this direction, so the 
prospect of the method is based on practical chances of 
synthesizing the optimal structure of an arithmetic device.

3.  The aim and objectives of research

The aim of research is synthesis of 8-bit optimal paral-
lel acyclic adders of binary codes.

To achieve this aim, it is necessary to solve the fol-
lowing tasks:

1.	 To establish the adequacy of the mathematical model 
on the basis of an oriented acyclic graph with two typical 
operations.

2.	 To estimate the dynamics of increasing the depth 
of the circuit of a parallel acyclic adder with increasing 
the bit capacity of the circuit.

3.	 To carry out a comparable analysis of the complexity 
of the structure and speed of the adders obtained using 
acyclic and prefix models for calculating adding and carry 
signals.

4. � Research of existing solutions  
of the problem

The cascade circuit, as a computational mechanism in 
the composition of the prefix adder model, which uses the 
logical structure of the three-step computation of adding 
and carry signals  (Fig.  3), is presented in  [6]. Let’s note 
that the acyclic model for calculating adding and carry 
signals  (Fig.  1,  2) is calculated for the logical structure of 
the adder with a sequentially parallel method of calculating  
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the prefix and uses the structure of a one-step computa-
tion. Thus, the prefix and acyclic models are distinguished 
by objects-they have different principles  (principles) for 
computation, and so they have different capabilities in 
terms of computing speed, chip area and energy saving.

To improve the computational efficiency in  [7], prefix 
structures of Kogge-Stone and Ladner-Fischer are inves-
tigated. A comparison with other calculation circuits is 
presented, in particular with RCA, Carry Skip Adder (CSA). 
The project uses the Xilinx-ISE tool.

Modified Parallel Prefix Han-Carlson Adder are pre-
sented in  [8], which uses various stages of synthesis of 
Brent-Kung and Kogge-Stone prefix structure, which makes 
it possible to reduce the complexity of the adder design.

Methods for reducing the delay in calculating adding 
and carry signals in the adder circuit using the parallel 
prefix structure are discussed in  [9], since such structure 
precompensates the transfers. The structures of Kogge-Stone 
and Brent-Kung prefix are considered. The simulation and 
synthesis process is performed using the model sim6.4b, 
Xilinx ISE9.2i.

A hybrid prefix architecture for the synthesis of 8-, 
16- and 32-bit parallel adders is presented in [10]. Compari-
sons of delay, energy saving, the number of computational 
nodes with classical prefix structures are conducted. The 
comparison results show a smaller delay and energy con-
sumption in the proposed computing structures. To simu-
late the adder on the technology of 180  nm and 130  nm,  
the Tanner EDA tool is used.

Hybrid prefixed architecture of Han Carlson Adder 
to reduce power consumption and delay in parallel pre-
fix adding  (PPA) is considered in  [11]. Comparison with 
other prefix structures is made.

In [12], the development and comparison of high-speed 
supplementary elements of the prefix, such as Kogge-Stone, 
Brent-Kung, Sklansky and Ling, are presented. It is revealed 
that the structure of Kogge-Stone-Ling is more effective 
than other prefix structures. Design uses CMOS logic. 
Design and simulation is performed using 65-nm technology.

It is noted in [13] that each type of parallel prefix 
adder has its advantages and disadvantages and is selected 
in accordance with the requirements of the claimed design. 
In this paper, we mainly study two types of structures 
that contain combined trees and the Kogge-Stone adder 
and compare them. The projects are implemented on the 
Xilinx Virtex 5 FPGA. It is found that combined trees 
occupy a smaller area than Kogge-Stone structure.

A method for minimizing power consumption by ob-
taining the optimal structure of the parallel Kogge-Stone 
and Ladner-Fischer adder for 32-, 64-, 128, and 256-bit 
for 45  nm CMOS technology is investigated in [14]. The 
results of the study show a decrease in energy consump-
tion by 22–50  % for the optimal structure of the adder 
with unchanged computational performance.

It is noted in [15] that prefix structures are efficient 
for the implementation of ASIC, but these advantages 
are not enough for the FPGA development. There are 
various types of parallel prefixes for comparison and selec-
tion. Verilog HDL, Xilinx ISE13.2 software and Cadence 
RTL compiler are used to develop applications. Among 
all Kogge-Stone applications, the adder provides better 
performance in the ASIC implementation, but it is not 
suitable for FPGA development. In order to make it suit-
able for the FPGA implementation of Kogge-Stone, the 

adder is modified with the help of fast logic, it ensures 
optimal performance.

Patent [16] represents the pyramidal structure of a com-
bination adder with vertical and horizontal information 
links between single-bit binary half-adders. The technical 
result of the patent is expansion of the device functionality, 
reducing hardware complexity due to the introduction of 
high-speed single-bit half-adder, which contain three logic 
elements, and improve the device performance.

In contrast to the publications reviewed in this pa-
per, the object for synthesizing the structure of adders 
of binary codes is the acyclic model, the description of 
which is given in Section  2.

5.  Methods of research

5.1.  Prefix model of binary codes adder. The prefix 
sum or simply the prefix of the sequence of numbers x0, 
x1, x2, …, xn is another sequence of bits y0, y1, y2, …, yn, 
which is calculated from the original one according to 
this principle:

y0 = x0,

y1 = x0+x1,

y2 = x0+x1+x2,

...

yn = x0+…+xn–1+xn.

In the cascade adder, the carry bit ci is calculated at 
time i. The values of ai and bi are known from the begin-
ning. In some cases, they specify the carr bit ci:

if ai = bi = 0, then ci = 0 (carry is «kill»),
if ai = bi = 1, then ci = 1 (carry is «generated»).

However, if one of the bits ai or bi is 1 and the other 
is 0, then ci–1 has an essential content for the carry, that is:

if ai ≠ bi, then ci = ci–1 (carry is propagated).

Each category, therefore, corresponds to one of the 
three carry statuses: k  (kill), g  (generate), or p  (propa-
gate). This type is known in advance, which allows to 
reduce the time of the addition operation.

Since the type of carry for neighboring bits ((i–1)-th 
and i-th) is known, it is possible to determine the type 
of carry to combine them, considering ci–1 as the input 
bit, and ci+1 as the output one. Thus, getting informa-
tion about how the carry bit changes at each step, it is 
possible to calculate what happens in two steps, that is, 
how depends ci+1 on ci–1. If the i-th bit has a carry type 
p, then the carry type for the union is the same as the 
type of the (i–1)-th bit  (Table  1).

Table 1

Table of operation 

FAi

k p g

FAi–1

k k k g

p k p g

g k k g
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Table  1 can be considered as the definition of an ope
ration (a composition of carry types) on the set {k,  p,  g}; 
it is denoted by the symbol  and is associative. The 
operation  determines the carry type of some part of the 
adder if the carry types of its individual bits are known.

Let’s denote by xi the carry type of transfer in the 
i-th bit:

x

k a b

g a b

p a b
i

i i

i i

i i

=
= =
= =
≠







, ;

, ;

, .

if

if

if

0

1

Then the dependence, for example, bit с7 on с4 is de-
termined by the composition:

x5 x6 x7.

Since the carry of a unit to a zero bit from the least 
significant bits is not carried out, conditionally x0 = k is 
assumed. Then the transfer at the output of the i-th bit 
is determined by the composition x0 x1… xi : сi = 0 if the 
composition is k, and сі = 1 if the composition is g. The 
value of p for the composition is impossible, because for 
this all members must be equal to p, and this is not 
true for x0.

More formally, it is written like this. Let’s take y0 = k 
and define y1, y2, …, yn in the form:

yi = xi yi–1 = x0 x1 … xi.

Then the elements y1, y2, …, yn are prefixes of the 
expression x0 x1… xn.

Thus, the calculation of the sum of the transmission 
bits of сі unit in a cascade adder can be reduced to the 
calculation of prefixes.

The parallel prefix method emerged as the fastest pro-
cess of adding unit-shifting bits in binary code addition 
operations for high-performance data processing systems, 
which original ideas can be found in early works  [1–4]. 
Further publications [17–20] confirmed this assessment 
of such technologies.

When determining the transfer in a parallel multi-bit 
adder, the principle of obtaining a prefix sum on the se-
quence of numbers x0, x1, x2, …, xn extends to obtaining the 
prefix sum on the sequence of pairs of transfer functions 
of the unit (g0,  p0), (g1,  p1), …, (gk–1,  pk–1) (Table  2):

– carry generation function:

g a bi i i= ;

– carry propagation function:

p a bi i i= ⊕ .	 (2)

The transfer of a unit at the output of the i-th bit 
is determined by the composition:

(g0, p0) (g1, p1) ... (gk–2, pk–2) (gk–1, pk–1).

The operator defining the transfer  is associative, 
but not commutative:

[(g1, p1) (g2, p2)] (g3, p3) = (g1, p1) [(g2, p2) (g3, p3)].

The carry propagation function (1) can more accurately 
be called a function of the condition of carry of the unit 
to the high-order bit. Often the carry propagation func-
tion (2) (carry condition) is defined as a function (1).

If pi = 1, then the propagation of the unit to the 
subsequent bits will be possible, in the case when pi = 0 
the propagation of the unit to subsequent bits is impos-
sible  (Fig.  4).

Fig. 4. Demonstration of the function of the carry condition of the unit  
to the high-order bit

Taking into account Fig.  4 it is possible to see that 
in the case when the DD1 element, which realizes the 
carry condition function p A B= ∨  on the output, will get 
the value of the logical unit ( ),p = 1  it will be possible 
to transfer the unit P0 to the element DD2 (output 
DD2 = output DD1(1)P0(1) = 1). In the case where the 
output of the DD1 element is a logical zero, the transfer 
of the unit P0 to the DD2 element will be impossible 
(output DD2 = output DD1(0)P0(1) = 0).

The condition of carry of a unit to the high-order bit 
can be demonstrated by the operation of adding binary 
numbers to a column (Table  3).

From the variants of adding single-bit binary numbers 
it is possible to see that if A∨B = 1, the unit from the least 
significant bit Р0 is carried to the high-order (second) bit 
of the sum (Р1 = 1). If A∨B = 0, the sum remains single-bit, 
the unit from the least significant bit Р0 to the high- 
order  (second) bit of the sum is not carried (Р1 = 0).  
A similar condition for the carry of a unit to the high-order 
bit is preserved when adding multi-bit binary numbers.

Parallel prefix adders have been used as the most ef-
ficient circuits in the operations of adding binary codes 
of digital systems. Their regular structure and high per-
formance make them especially attractive for the creation 
of SLIC (super-large integrated circuits).

Table 2

Calculations of the prefix sum on the sequence of pairs of carry functions  
of the unit (g0, p0), (g1, p1), …, (gk–1, pk–1)

Given (g0, p0) (g1, p1) … (gk–2, pk–2) (gk–1, pk–1)

Find (g[0,0], p[0,0]) (g[0,1], p[0,1]) … (g[0,k–2], p[0,k–2]) (g [0,k–1], p[0,k–1])

Carry of a unit at the output of the i-th level c1 c2 … ck–1 ck
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Table 3
Adding binary numbers to a column

Possible options for adding

The unit from the lower bit (Р0) 1 1 1 1

Number А 0 0 1 1

Number В 0 1 0 1

Sum 1 10 10 11

These adders provide a theoretical basis 
for compromises in terms of delay, area and 
power, in order to provide a  wide range of 
services in the design process.

The parallel prefix adder (PPA) uses the 
logical structure shown in Fig.  3, which pro-
vides for the calculation in three stages:

–	 pre-processing (pre-processing or initia
lization phase):

g a bi i i= ,

p a bi i i= ⊕ ;

–	 prefix calculation (signal generation net-
work):

G G P Gi k i j i j j k[ : ] [ : ] [ : ] [ : ],= + −1

P P Pi k i j j k[ : ] [ : ] [ : ];= −1

–	 post-processing (after prefix processing 
or summation):

C G P Ci i i+ = + ⋅1 0 0 0[ : ] [ : ] ,

S p Ci i i= ⊕ .

Prefix architectures for the calculation of 
the carry signal are known, for example:

–	 1966: Ling adder;
–	 1973: Kogge-Stone adder;
–	 1980: Ladner-Fisher adder;
–	 1982: Brent-Kung adder;
–	 1987: Han Carlson adder;
–	 1999: S. Knowles.	 (3)
Among the known prefix structures, the main one is 

the parallel prefix adder with the Ling and Kogge-Stone 
prefix carry structure, which is the final case of a large 
list of summing circuits, each of which is unique with 
its minimal logical capacity property.

Ling adder (Fig. 5) [21–23] has the least delay compared 
to other methods of prefix carry, but requires relatively 
larger chip area and power consumption.

The drawbacks of the prefix model for calculating 
adding and carry signals include:

–	 the process of parallel computation of the prefix 
by architectures (3) provides for the beginning of the 
calculation from the first bit of the circuit, leads, in 
the end, to excessive accumulation and complications 
of the hardware part of the device;
–	 the principle of three-stage generation of the adding 
and carry signal (Fig.  3), which specifies a certain 
complexity of such calculation, in particular complicates 
the didactics of the method;

–	 the parallel one-to-many structure of a prefix adder 
generally has fewer links and may occupy several ranks 
of the circuit. This, at least from the technological 
side, is not an effective indicator in comparison with 
the acyclic computation model. And from this, there 
may be a contradiction between the requirements for 
the speed of calculating adding and carry signals and 
energy consumption, as well as the area of the device, 
in particular in the SLIC design system.

5.2.  The acyclic model of binary codes adder. The  cal-
culation principle for the model of an acyclic adder is 
determined by an acyclic graph, when adjacent pairs of 
terms are added simultaneously, and then their sums are  
added  (Table  4). This is a doubling algorithm (or a loga
rithmic addition algorithm), which ultimately gives a one-
step method for generating adding and carry signals.

Table 4

Doubling algorithm (n = 23 = 8)

Steps x1 x2 x3 x4 x5 x6 x7 x8

1 x1+x2 x3 +x4 x5+x6 x7+x8

2 x1+ x2+x3+x4 x5+x6+x7+x8

3 x1+x2+x3+x4+x5+x6+x7+x8

Bitwise addition of binary codes is possible with the 
help of the doubling algorithm, similar to the process of 
multi-operative summation. If n = 2k, where n – the number  

Fig. 5. 8-bit Ling Adder [21–23]



ІНФОРМАЦІЙНО-КЕРУЮЧІ СИСТЕМИ:
МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ

60 ТЕХНОЛОГІЧНИЙ АУДИТ ТА РЕЗЕРВИ ВИРОБНИЦТВА — № 3/2(41), 2018

ISSN 2226-3780

of addends, then the doubling algorithm consists of k steps:  
in the first stage, n/2 additions are executed, on the se
cond stage – n/4, ..., on the last stage – one addition. 
The number of steps k is determined by the formula:

k n= log .2 	 (4)

This version of the multi-operand addition is realized 
using an acyclic graph or a cascade circuit [24].

Using the procedure of multi- operand addition using 
a cascade circuit, it is easy to see that for the process of 
parallel addition of binary codes, data pairs here will be 
bits of the same name bits, for each of which the adding  
and carry signal is calculated. Further, similarly to the 
procedure of multi-operand addition, all the obtained sums 
of the same-named bit pairs of binary codes, with their 
specificity, are also divided into pairs and addition of pair 
values, etc. is performed again.

As a result, the value of the high-order bit of the sum 
of binary codes can be compared with the value of the 
total amount for multi-operand additions. In addition to 
the sum of the high-order bit, in the process of parallel 
addition of binary codes, intermediate results automati-
cally appear as sums of the previous bits of binary codes.

The computational circuit for the parallel addition of 
4-bit binary codes can be defined by an oriented acyclic 
graph  (Fig.  1), which is a binary tree, where in particular 
the following parameters are accepted:

k – the number of steps in time;
ω – the total number of operations of the algorithm;
τ – the execution time of one step;
T = τ ·k – the execution time of the algorithm;
L – number of transaction types, etc.
The computer circuit in Fig. 1 is also a model of a 4-bit  

acyclic parallel adder of binary codes with a parallel carry 
method.

The model of the computational circuit of the acyclic 
adder in Fig.  1 uses two logical operations – AND and 
XOR, the number of computational steps in it is equal to 
the bit depth of the binary codes. For example, to parallel 
add 4-bit binary codes, it is necessary four steps (Fig.  1).

The model of a 4-bit acyclic adder of binary codes with 
logical elements OR in the last bit is shown in Fig.  2.

Application of acyclic models is calculated on:
–	 the process of sequential (for lower-order device 
circuits) and parallel calculation of adding and carry 
signals, which, in the end, leads to a reduction in the 
complexity of the hardware of the device and does 
not increase the depth of the circuit;
–	 the establishment of the optimal number of com-
putational steps.
In [24] it is shown that the number of computational 

steps determines the minimally sufficient number of carries 
in the circuit of an acyclic adder. In the case where the 
synthesized adder has received a larger number of carries 
than the number of computational steps of the corresponding  
oriented acyclic graph, then such adder will not be opti-
mal relative to the number of computational operations.

The logical equations of an optimized 4-bit adder with 
a carry number (4), for example:

S a b0 0 0= ⊕ ;

S a b a b1 1 1 0 0= ⊕ ⊕ ∧( ) ( );

S a b a b a b a b2 2 2 1 1 1 1 0 0= ⊕ ⊕ ∧ ∨ ∨ ∧ ∧( ) (( ) (( ) ( )));

S a b a b a b a b3 3 3 2 2 2 2 1 1= ∨ ∨ ∧ ∨ ∨ ∧ ∧ ∨( ) ( ) (( ) ( ))

∨ ∨ ∧ ∨ ∧ ∧(( ) (( ) ( ))).a b a b a b2 2 1 1 0 0

The variant of the circuit of a 4-bit acyclic adder, 
which is determined by the computational model in Fig. 2 
is shown in Fig.  6.

Fig. 6. 4-bit acyclic adder of binary codes

The model of the computational circuit of a parallel 
8-bit acyclic adder of binary codes will be similar to the 
computational circuits shown in Fig.  1,  2, with the dif-
ference that here the number of computational steps will 
be equal to eight. The first four logical equations of an 
8-bit acyclic adder can, for example, be:

S a b0 0 0= ⊕ ;

S a b a b b a b a a b b a b a a b a b a b1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1= + + + + + ;

S a b a a b a b b a b a b a b a b a b

b b a b a b a

2 0 0 1 2 2 0 0 1 2 2 1 1 2 2 1 1 2 2

0 1 2 2 0 1

= + + + +

+ + 22 2 0 1 2 2 0 1 2 2 1 1 2 2

0 1 2 2 0 1 2 2 0 1 2

b b a a b a a a b a b a b

b b a b a b a b b a a b

+ + + +

+ + + 22 0 1 2 2

0 0 1 2 2 0 0 1 2 2 1 1 2 2

+ +
+ + +

a a a b

a b a a b a b b a b a b a b ;

S a b a a a b a b b a a b a b a a b

a b a b a b a b

3 0 0 1 2 3 3 0 0 1 2 3 3 1 1 2 3 3

0 0 1 2 3 3 0 0

= + + +

+ + bb b a b a b b a b a b a b

a b a b a b b a b b b b a

1 2 3 3 1 1 2 3 3 2 2 3 3

2 2 3 3 1 1 2 3 3 0 1 2

+ + +

+ + + 33 3 0 1 2 3 3

0 1 2 3 3 0 1 2 3 3 1 1 2 3 3 0 1 2 3

b a b b a b

b a b a b a a b a b a b a a b b b a a

+ +

+ + + + bb

a b a a b b a a a b a a a a b

a b a b a b b a b

3

0 1 2 3 3 0 1 2 3 3 0 1 2 3 3

2 2 3 3 1 1 2 3 3

+

+ + + +

+ + ++ + +

+ + + +

b b a a b a b b a b

b a b a b a a b a b a b a a b

0 1 2 3 3 0 1 2 3 3

0 1 2 3 3 0 1 2 3 3 1 1 2 3 3 bb b a a b

a b a a b b a a a b a a a a b a b a a a b

0 1 2 3 3

0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 0 0 1 2 3 3

+

+ + + + ++
+ + + + +
+

a b b a a b a b a a b a b a b a b a b b b a b

a b
0 0 1 2 3 3 1 1 2 3 3 0 0 1 2 3 3 0 0 1 2 3 3

1 1bb a b a b a b2 3 3 2 2 3 3+ .

Circuits of 8-bit acyclic adders are shown in Fig.  8, 
10, 12. With the increase in the bit capacity of the acyclic 
adder (16-, 32-, 64-bit  ...), the number of computational 
steps will be determined by the logarithmic law (Fig.  7).
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6.  Research results

6.1.  8-bit acyclic adder with a depth of 8 elements. To 
ensure the same comparison conditions, let’s represent 
the circuits of prefix (PPA) and acyclic (PAA) adders 
with logical elements OR in the last bit.

Fig.  8 shows an acyclic 8-bit PAA with logical ele
ments OR in the last bit and depth of the circuit 8 typical 
2-input elements. The complexity of the circuit in Fig.  8 
is 77 discrete elements.

Fig. 8. Acyclic 8-bit PAA with logical elements OR in the last bit  
and depth of circuit of 8 typical 2-input elements

Prefix 8-bit Ling Adder  [21–23] with logical ele-
ments  OR in the last bit is shown in Fig.  9. The circuit 
determines the depth of the adder circuit in Fig.  9 sepa-
rated by a thick line and is accompanied by the numbering  
of logical elements along this chain. Thus, the depth of 
the 8-bit Ling Adder circuit [21–23] PPA (Fig.  9) is 
8  typical logic elements, the complexity of the circuit is 
109  elements. In accordance with the structure of the 
prefix model  (Fig.  3), the third stage of calculating the 
sum signal in the adder in Fig.  9 is realized by a multi-
plexer in each bit of the circuit.

The computing process of the 8-bit Ling 
Adder PPA adder  (Fig.  9) uses such logical 
operations: XOR – 13, AND – 27, OR – 24, 
Inventor – 6. 8-bit PAA adder (Fig. 8) uses: 
XOR – 9, AND – 19, OR – 19, Inventor – 3.  
Given that the logic of the XOR element 
uses four logic elements, including Inven-
tor, it is possible to estimate the quality 
score  S (for example, on energy saving) of 
the 8-bit PAA adder (Fig.  8):

S
T

T
= = = =1

2

109

77
1 4156 41 56. . %, 

where T1, T2 – the number of discrete logic elements 8-bit 
Ling Adder PPA and 8-bit PAA, respectively.

Fig. 9. Prefix 8-bit Ling Adder PPA [21–23] with logical  
elements OR in the last bit

6.2.  8-bit acyclic adder with a depth of 9  elements. 
Fig.  10 shows an acyclic 8-bit PAA with logical elements 
OR in the last bit and the depth of circuit of 9 of the 
typical 2-input elements. The complexity of the circuit 
in Fig.  10 is 72 discrete elements.

The prefix 8-bit Kogge-Stone PPA  [24] with the  lo
gical elements OR in the last bit is shown in Fig.  11. 
The circuit determines the depth of the adder circuit in 
Fig.  11 separated by a thick line and is accompanied by 
the numbering of logical elements along this chain. Thus, 
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Fig. 7. Dynamics of increasing the depth of the circuit of the acyclic adder (PAA)
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the depth of the 8-bit Kogge-Stone PPA circuit (Fig.  11) 
is 9  typical logic elements, the complexity of the circuit 
is 90  elements.

Fig. 10. Acyclic 8-bit PAA with logical elements OR in the last bit  
and depth of circuit of 9 of the typical 2-input elements

Fig. 11. Prefix 8-bit Kogge-Stone PPA with logical OR elements  
in the last bit [24]

The computing process of the 8-bit Kogge-Stone PPA 
adder  (Fig.  11) uses such logical operations: XOR – 13, 
AND – 22, OR – 26. The 8-bit PAA adder (Fig.  10) 
uses: XOR – 9, AND – 16, OR – 18, Inventor – 2. The 
quality indicator S (for example, on energy saving) of the 
8-bit PAA adder (Fig.  10) is as follows:

S
T

T
= = = =1

2

90

72
1 25 25. %, 

where T1, T2 – the number of discrete logic elements of  
8-bit Kogge-Stone PPA and 8-bit PAA, respectively.

6.3.  8-bit acyclic adder with a depth of 10  elements. 
Fig.  12 shows the acyclic 8-bit PAA with the logical ele-
ments OR in the last bit and the depth of the circuit 
of 10 of the typical 2-input elements. The complexity of 
the circuit in Fig.  12 is 66 discrete elements.

Fig. 12. Acyclic 8-bit PAA with logical elements OR in the last bit  
and the depth of circuit of 10 of typical 2-input elements

The prefix 8-bit Brent-Kung PPA  [24] with logical 
elements OR in the last bit is shown in Fig.  13.

The circuit determines the depth of the adder circuit 
in Fig. 13 separated by a thick line and is accompanied by 
the numbering of logical elements along this chain. Thus, 
the depth of the 8-bit Brent-Kung PPA circuit (Fig.  13) 
is 10  typical logic elements, the complexity of the circuit 
is 72  discrete elements. Let’s note that the XOR element 
has a three-discrete circuit depth and consists of four dis-
crete logic elements, including Inventor.

The computing process of the 8-bit Brent-Kung PPA 
adder  (Fig.  13) uses such logical operations: XOR – 13, 
AND – 10, OR – 10. 8-bit PAA  (Fig.  12) uses: XOR – 5,  
AND – 20, OR – 22, Inventor – 4. The quality indica-
tor S (for example, on energy saving) of the 8-bit PAA 
adder  (Fig.  12) is as follows:

S
T

T
= = = =1

2

72

66
1 0909 9 09. . %, 

where T1, T2 – the number of discrete logic elements of 
8-bit Brent-Kung PPA and 8-bit PAA, respectively.
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Fig. 13. Prefix 8-bit Brent-Kung PPA with logical elements OR  
in the last bit [24]

6.4.  Comparative analysis of acyclic and prefix models 
for calculating adding and carry signals. The parameters 
of the synthesized circuits of acyclic and prefix adders 
are summarized in a comparative Table  5.

Considering Table 5 it is possible to see that for the 
selected depth of the circuit, the complexity of the circuits 
of acyclic adders is smaller.

Indicators of the quality of acyclic adders, for example, 
energy consumption are presented in Table  6.

Fig.  14 shows the dynamics of increasing the depth of 
the circuit for three acyclic adders (PAA) (Fig.  8, 10, 12)  
with an increase in the bit capacity of the circuit.

Table  7 presents a comparison of the prefix [1–4] and 
acyclic models for calculating adding and carry signals in 
the adder circuit.

Considering Table  7 it follows that the acyclic mo
del for calculating adding and carry signals for adders’ 

circuits of binary codes negates the prefix computatio- 
nal model.

Table 5

Comparison table of parameters of prefix  
and acyclic adders

Parallel adder of binary codes  
with parallel carry

Circuit 
depth

Circuit 
complexity

Adder’s 
bit

Acyclic adder Fig. 8 8 77 8-bit

Prefix adder Ling Adder (Fig. 9) 8 109 8-bit

Acyclic adder Fig. 10 9 72 8-bit

Prefix adder Kogge-Stone (Fig. 11) 9 90 8-bit

Acyclic adder Fig. 12 10 66 8-bit

Prefix adder Brent-Kung (Fig. 13) 10 72 8-bit

Table 6

Comparative table of quality indicators for energy consumption  
of prefix and acyclic adders

Parallel adder of binary codes  
with parallel carry

Quality indicator  
of the acyclic adder

Acyclic adder Fig. 8

41.56 %

Prefix adder Ling Adder (Fig. 9)

Acyclic adder Fig. 10

25 %

Prefix adder Kogge-Stone (Fig. 11)

Acyclic adder Fig. 12

9.09 %

Prefix adder Brent-Kung (Fig. 13)
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Fig. 14. Dynamics of increasing the depth of the circuit of acyclic adders (PAA)



ІНФОРМАЦІЙНО-КЕРУЮЧІ СИСТЕМИ:
МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ

64 ТЕХНОЛОГІЧНИЙ АУДИТ ТА РЕЗЕРВИ ВИРОБНИЦТВА — № 3/2(41), 2018

ISSN 2226-3780

7.  SWOT analysis of research results

Strengths. To the strong side, acyclic models for cal-
culating adding and carry signals include didactic sim-
plifications and hardware compactness of the method, 
which allows to replace the three-stage prefix model by  
a one-stage acyclic model for calculating adding and carry 
signals. This will give an extension of the apparatus for 
synthesizing arithmetic devices for their use in digital 
technologies.

The connection between the number of computational 
steps of an oriented acyclic graph and the number of unit 
transfers to the highest degree causes the process of com-
paring the structure of the adder with the corresponding 
oriented acyclic graph. The purpose of this comparison is 
establishing the minimum sufficient number of carries for 
the operation of adding binary numbers in the circuit of 
a parallel adder with a parallel method of transfer. In the 
case where the synthesized adder has received a larger 
number of transfers than the number of computational 
steps of the corresponding oriented acyclic graph, then 
such adder will not be optimal relative to the number 
of computational operations.

The acyclic model is able to support aggregated struc-
tures for calculating adding and carry signals, by combining 
with other apparatus computational methods, in particular 
with the Ling transfer logic.

This is more advantageous in comparison with ana-
logues for the following factors:

–	 lower cost of development and implementation, 
because the acyclic model defines a relatively simple 
structure of the adder;
–	 the presence of an optimization criterion – the number 
of computational steps of an acyclic graph indicates  
a minimally sufficient number of transfers of a unit 
to the high-order bit.
Weaknesses. The weak side of the acyclic models of 

calculating adding and carry signals is associated with an 
increase in the complexity of the synthesis of the compu-
tational structure and insufficient study of this synthesis 
with an increase in the device circuit capacity.

Negative internal factors inherent in acyclic models 
consist in increasing the time of obtaining the optimal 
calculation structure with the increase in the bit capacity 
of the adder circuit.

Opportunities. The prospect of further studies of acyclic 
models can be the development of a protocol for optimal 
alternation of the Ling transfer logic and transfer logic 
acyclic models with the aim of reducing the complexity 
of the adder circuit.

Additional possibilities that the introduction of acyclic 
models can bring are the study of variants of applying the 
transfer condition of the unit to the highest order  (1). 
This will make it possible to obtain the optimal complexity 
of the computational structure of an arithmetic device.

Threats. The protocol for calculating the adding and 
carry signals of acyclic models does not depend on the 
protocols of other calculation methods, therefore there is 
no threat of negative impact on the object of research 
of external factors.

To a certain extent, the acyclic synthesis model of 
the adder circuit is a prefix model. At the moment, the 
prefix model is better because it has already created and 
implemented arithmetic devices with prefix structure of 
calculation.

8.  Conclusions

1.	 It is revealed that the calculation of the adding 
and transport signal in the circuit of a parallel acyclic 
adder is carried out by the algorithm of logarithmic ad-
dition. The number of computational steps of an acyclic 
graph determines the optimal number of transfers in the 
parallel adder circuit with a parallel carry method.

2.	 The estimation of the dynamics of increasing the 
depth of the circuit of an acyclic adder is O(n) and is 
linear for n ≤ 8. With an increase in the circuit capacity 
from n > 8, the estimation of the dynamics of increasing 
the depth of the circuit of an acyclic adder is O (logn) 
and is logarithmic.

3.	 The effectiveness of acyclic models is demonstra
ted by examples of the synthesis of 8-bit parallel adders,  

Table 7

Comparison table of two models for calculating adding and carry signals

Prefix model Acyclic model

Method of prefix calculation

Prefix model involves the process of prefix calculation, starting with the first 
digit of the circuit, leads, in the end, to excessive accumulation and complica-
tions of the hardware of the device

Application of acyclic models is calculated on:
–  logical structure of the adder circuit with a sequentially parallel method of 
calculating the prefix, which, in the end, reduces the complexity of the hardware 
of the device and does not increase the depth of the circuit;
–  determination of the optimal number of computational steps

Number of calculation stages

The prefix model uses three stages to generate adding and carry signals (Fig. 3) The acyclic model uses one stage of generating adding and carry signals (Fig. 1, 2)

The parallelism of the adder structure

The parallel one-to-many structure of the prefix adder (Fig. 9, 11, 13) gene
rally has fewer links than the acyclic adder

The parallel «one to many» structure of the acyclic adder (Fig.  8, 10, 12) 
generally has a larger number of links than the prefix adder, which certifies 
a high degree of parallelism of the circuit of the acyclic adder
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borrowed from the works of other authors for the purpose 
of comparison:

–	 Ling adder circuit (Fig. 9) [21–23] and the cir-
cuit of an acyclic 8-bit parallel adder with a depth 
of 8  elements circuit  (Fig.  8);
–	 circuit of Kogge-Stone prefix adder  (Fig.  11) [24] 
and circuit of acyclic 8-bit parallel adder with depth 
of 9 elements circuit  (Fig.  10);
–	 circuit of the Brent-Kung prefix adder (Fig. 13) [24] 
and the circuit of an acyclic 8-bit parallel adder with 
a depth of 10  elements circuit  (Fig.  12).
Given these examples of parallel adders, the acyclic 

model gives grounds for the expediency of its application 
in the processes of synthesis of arithmetic devices for 
processing digital data, since these circuits are capable of:

–	 increase the speed;
–	 reduce power consumption and heat dissipation of 
a digital device, integrated circuit.
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