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OPTIMIZATION OF THE ACYCLIC
ADDERS OF BINARY CODES

06’exkmom docridacenns € npedixcua Mooesb 0OUUCIEHHA CUZHANIE CYMU T NePEHECeHHs Y CXeMi NAPaLeIbHO20
cymamopa 3 napanresvium cnocobom nepeneceniis. Oonum 3 naubirvw npobreMHux Mmicyb npedixcnoi mooei
€ NPoyec BUPOONEHILS CUZHANIG CYMU | Nepenecens, Y KoMy nouamox obuucienns npedikca nepedbaueno
3 nepuiozo pospsdy cxemu. Le npusodums, y niocymxy, 00 HaAOIUUKOBOZ0 HAZPOMAONCEHISL | YCKAAOHEHHSL anapammoi
Yacmuny nPUCmMpor.

Y x00i docridicenns suxopucmosysaraco mamemamuuna Mooesb 0OUUCIeHHS CUZHANIG CYMU | nepenecenis
Y CXeMi napaneivbHoz0 CYMamopa, wyo IpYHmMyEemvcs Ha 61ACMUBOCTISIX HANPABILEHO20 AUUKITUHO020 Zpada 3 06oma
MUNOBUMU ONEPAUIAMU.

Ompumano smenuwenns CKAA0HOCMi 102iuHOl CMPYKMypu cymamopa Oinapuux xooie, smenuenns aubunu
CXeMU MA 3MEHUEHHSL 3A2ANHOT NPOMSIHCHOCTNT 3’ €OHYBANLHUX NP0600i6. I]e n08’s13an0 3 muM, wo 3anponoHo8anHul
MeMOO 0OUUCIeNHS CUZHATIG CYMU | NePeHecents MA€E PO 0COOGAUBOCMEN CUHMESY CXeMU NPUCTPOIO, 30KPeMa
3aCMOCYBAHHS MAMEMAUYHOT MOOEL, WO TPYHMYEMbCSL HA BAACMUBOCTNSX AUUKIIYHOZ0 2PAda, PO3PAX0BAHO HA:

— npoyec nocaidosrnozo (01 MOLOOWUX PO3PAAI6 cCXeMU NPUCPOIO) | NAPALEILHOZ0 OOUUCICHHS CUZHALIE
cyMu i nepenecenst, wo, y niocyMKy, 0ae smenuenis CKIaoHoCmi anapammuoi Yacmuny npucmpoio ma 1e 36i1olye

Solomko M.

2nubuny cxemis;

— CNIBCMABAEHH S YUCIA OOUUCTIOBATLHUX KPOKIB OPIEHMOBAHO20 AUUKIIUHOZ0 2pApa 3 YUCTIOM NEePeHecetb 00U -
HuYi 00 cmapuL0zo po3psidy y cxemi cymamopa, w0 00360J5€ 6CMAHOBIIOBAMU ONMUMATLHHE YUCIO 0OUUCTI0BATLHUX

KPOKi6 OJisk CmpyKmypu npucmporo.

3asosaxu ypomy 3abe3neuyemvpes MONCAUBICID OMPUMANHL ONMUMAIGHUX 3HAUEH> NOKAZHUKIG CKAAOHOCMI
CMPYKMYpU ma 2AuOUHU CXeMU CYMAMOPA. 38 sI30K MidHC WUCLOM 0OUUCTIOBATILHUX KPOKIB OPIEHMOBAH020 AUUKITUHOZO
2pagha i wucaom nepeneceinv y cxemi napaierviozo CyMamopa 3 NApaieIoHuUM cnocoboM nepenecenis 6Kasye na
QOUiILHICMb CNIBCMABIEHIS CIMPYKMYPU CYMAMOPA 3 BI0N0GIOHUM OPIEHMOBAHUM AUUKIUHUM 2PADOM.

Y nopiensanni 3 ananoziunumu sidomumu cmpyxmypamu 8-bit npeixcuux cymamopis ye sabesneuye 36invuuers
noKasnuxa axocmi 8-bit QuUKITUHUX CYMAOPIE, HANPUKIAD, 3G eHEeP2OCNOICUBANHIM, NILOULEIO YINd, I 3ANEHCHOCTIE

610 o6panoi cmpyxmypu, na 10—-40 %.

Kmwouosi cnosa: ayuxiiuia modennv, npeikcna moderv, nanpasienui ayuxiiunuil zpagp, Ling Adder, Kogge-

Stone Adder, Brent-Kung Adder.

1. Introduction

The adder of binary codes is present in most digital elec-
tronic circuits, including digital signal processors (DSPs)
and is one of the means of microprocessor data proces-
sing. The performance of the addition operation in the
positional number system depends on the way the unit
is transferred to the high-order bit. A variant of such
transfer is, in particular, the technology of prefix adding
of numbers [1-4].

In this paper, applications of acyclic models for calcu-
lating adding and transport signals [5] for the synthesis
of parallel 8-bit adder of binary codes is presented. This
gives a new apparatus for synthesizing parallel multi-bit
adders with a parallel transfer method for their applica-
tion in digital technologies.

Methods of arithmetic operations are realized by gate
circuits of functional elements in bases consisting of func-
tions of the algebra of logic. From the structure of the
adder, the speed of the digital device depends on its reli-
ability and energy saving. In this connection, minimization
of complexity and depth of logic circuits is one of the
central and practically important problems in this theory,
which arises in the design of digital devices.

Processor evolution is the result of relentless optimization,
so the research remains topical, in particular, on the improve-
ment of such factors — manufacturing technologies, struc-
tural realization, power consumption, cost of digital devices.

2. The ohject of research
and its technological audit

The object of solving the problem of synthesizing the
circuit of the adder of binary codes is the acyclic model
of one-stage calculation of adding and carry signals, based
on the properties of a directed acyclic graph with two
typical operations (Fig. 1, 2).

The acyclic model is designed for the logical structure
of the adder with a series-parallel method of calculating
the prefix, which, in the end, leads to a reduction in the
complexity of the device hardware. The mathematical ap-
paratus of the directed acyclic graph allows one to unam-
biguously obtain the values of the adding and carry signals
in one calculation step, so the latter is able to effectively
replace the three-stage prefix model for computing the
adding and carry signals (Fig. 3). This expands the apparatus
for synthesizing arithmetic devices for their application in
digital technologies.
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Fig. 1. Oriented acyclic graph — model of the computational circuit
of parallel 4-bit acyclic adder with parallel transfer method
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Fig. 2. Oriented acyclic graph — model of the computing circuit of parallel
4-hit acyclic adder with logical elements OR in the last bit
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Fig. 3. Model of the parallel prefix adder:
1 — organizational logic; 2 — group logic; 3 — binary code addition logic

The acyclic model of the adder is represented by two
typical operations — AND and XOR, admits ways of applying
the transfer condition of the unit to the high order (1),
which ultimately leads to the optimal complexity of the
arithmetic device circuit.

pi=aivb or p;=a;+b,. (1)

The acyclic model of an arithmetic device is able to
support aggregated structures for calculating adding and
carry signals, by combining with other apparatus of calcu-
lation methods, in particular with the Ling transfer logic.

The relative lack of acyclic models of calculating ad-
ding and carry signals is currently associated with a small
volume of theoretical developments in this direction, so the
prospect of the method is based on practical chances of
synthesizing the optimal structure of an arithmetic device.

3. The aim and ohjectives of research

The aim of research is synthesis of 8-bit optimal paral-
lel acyclic adders of binary codes.

To achieve this aim, it is necessary to solve the fol-
lowing tasks:

1. To establish the adequacy of the mathematical model
on the basis of an oriented acyclic graph with two typical
operations.

2. To estimate the dynamics of increasing the depth
of the circuit of a parallel acyclic adder with increasing
the bit capacity of the circuit.

3. To carry out a comparable analysis of the complexity
of the structure and speed of the adders obtained using
acyclic and prefix models for calculating adding and carry
signals.

4. Research of existing solutions
of the prohlem

The cascade circuit, as a computational mechanism in
the composition of the prefix adder model, which uses the
logical structure of the three-step computation of adding
and carry signals (Fig. 3), is presented in [6]. Let’s note
that the acyclic model for calculating adding and carry
signals (Fig. 1, 2) is calculated for the logical structure of
the adder with a sequentially parallel method of calculating
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the prefix and uses the structure of a one-step computa-
tion. Thus, the prefix and acyclic models are distinguished
by objects-they have different principles (principles) for
computation, and so they have different capabilities in
terms of computing speed, chip area and energy saving.

To improve the computational efficiency in [7], prefix
structures of Kogge-Stone and Ladner-Fischer are inves-
tigated. A comparison with other calculation circuits is
presented, in particular with RCA, Carry Skip Adder (CSA).
The project uses the Xilinx-ISE tool.

Modified Parallel Prefix Han-Carlson Adder are pre-
sented in [8], which uses various stages of synthesis of
Brent-Kung and Kogge-Stone prefix structure, which makes
it possible to reduce the complexity of the adder design.

Methods for reducing the delay in calculating adding
and carry signals in the adder circuit using the parallel
prefix structure are discussed in [9], since such structure
precompensates the transfers. The structures of Kogge-Stone
and Brent-Kung prefix are considered. The simulation and
synthesis process is performed using the model sim6.4b,
Xilinx ISE9.2i.

A hybrid prefix architecture for the synthesis of 8-,
16- and 32-bit parallel adders is presented in [10]. Compari-
sons of delay, energy saving, the number of computational
nodes with classical prefix structures are conducted. The
comparison results show a smaller delay and energy con-
sumption in the proposed computing structures. To simu-
late the adder on the technology of 180 nm and 130 nm,
the Tanner EDA tool is used.

Hybrid prefixed architecture of Han Carlson Adder
to reduce power consumption and delay in parallel pre-
fix adding (PPA) is considered in [11]. Comparison with
other prefix structures is made.

In [12], the development and comparison of high-speed
supplementary elements of the prefix, such as Kogge-Stone,
Brent-Kung, Sklansky and Ling, are presented. It is revealed
that the structure of Kogge-Stone-Ling is more effective
than other prefix structures. Design uses CMOS logic.
Design and simulation is performed using 65-nm technology.

It is noted in [13] that each type of parallel prefix
adder has its advantages and disadvantages and is selected
in accordance with the requirements of the claimed design.
In this paper, we mainly study two types of structures
that contain combined trees and the Kogge-Stone adder
and compare them. The projects are implemented on the
Xilinx Virtex 5 FPGA. It is found that combined trees
occupy a smaller area than Kogge-Stone structure.

A method for minimizing power consumption by ob-
taining the optimal structure of the parallel Kogge-Stone
and Ladner-Fischer adder for 32-, 64-, 128, and 256-bit
for 45 nm CMOS technology is investigated in [14]. The
results of the study show a decrease in energy consump-
tion by 22-50 % for the optimal structure of the adder
with unchanged computational performance.

It is noted in [15] that prefix structures are efficient
for the implementation of ASIC, but these advantages
are not enough for the FPGA development. There are
various types of parallel prefixes for comparison and selec-
tion. Verilog HDL, Xilinx ISE13.2 software and Cadence
RTL compiler are used to develop applications. Among
all Kogge-Stone applications, the adder provides better
performance in the ASIC implementation, but it is not
suitable for FPGA development. In order to make it suit-
able for the FPGA implementation of Kogge-Stone, the

adder is modified with the help of fast logic, it ensures
optimal performance.

Patent [16] represents the pyramidal structure of a com-
bination adder with vertical and horizontal information
links between single-bit binary half-adders. The technical
result of the patent is expansion of the device functionality,
reducing hardware complexity due to the introduction of
high-speed single-bit half-adder, which contain three logic
elements, and improve the device performance.

In contrast to the publications reviewed in this pa-
per, the object for synthesizing the structure of adders
of binary codes is the acyclic model, the description of
which is given in Section 2.

5. Methods of research

5.1. Prefix model of hinary codes adder. The prefix
sum or simply the prefix of the sequence of numbers x,
X1, X9, ..., X, is another sequence of bits yo, y1, ¥2, ., Yn»
which is calculated from the original one according to
this principle:

Yo = Xo,
Y1 =x0txy,

Y2 = Xotx1txo,

Yn=X0F... T Xy 1%y

In the cascade adder, the carry bit ¢; is calculated at
time i. The values of @; and b; are known from the begin-
ning. In some cases, they specify the carr bit ¢;

if a;=b;=0, then ¢;=0 (carry is <kill»),
if a;=b;=1, then ¢;=1 (carry is «generated»).

However, if one of the bits @; or b; is 1 and the other
is 0, then ¢; ¢ has an essential content for the carry, that is:

if a;#0b;, then ¢;=c;_y (carry is propagated).

Each category, therefore, corresponds to one of the
three carry statuses: k (kill), g (generate), or p (propa-
gate). This type is known in advance, which allows to
reduce the time of the addition operation.

Since the type of carry for neighboring bits ((i—1)-th
and i-th) is known, it is possible to determine the type
of carry to combine them, considering ¢; 1 as the input
bit, and ¢+ as the output one. Thus, getting informa-
tion about how the carry bit changes at each step, it is
possible to calculate what happens in two steps, that is,
how depends c¢;+1 on ¢;_y. If the i-th bit has a carry type
p, then the carry type for the union is the same as the
type of the (i—1)-th bit (Table 1).
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Table 1 can be considered as the definition of an ope-
ration (a composition of carry types) on the set {&, p, g};
it is denoted by the symbol O and is associative. The
operation O determines the carry type of some part of the
adder if the carry types of its individual bits are known.

Let’s denote by x; the carry type of transfer in the
i-th bit:

k, if a;=b,=0;
x; =18, if a;=b =1
p, if a; 2D,

Then the dependence, for example, bit ¢; on ¢4 is de-
termined by the composition:

x50x60x7.

Since the carry of a unit to a zero bit from the least
significant bits is not carried out, conditionally xy=~ is
assumed. Then the transfer at the output of the i-th bit
is determined by the composition xyOx;..0x;: ¢;=0 if the
composition is k, and ¢;=1 if the composition is g. The
value of p for the composition is impossible, because for
this all members must be equal to p, and this is not
true for xy.

More formally, it is written like this. Let’s take yo=~
and define y1, yo, ..., y, in the form:

Yi= xiOyH = JC()OX1O...OXZ‘.

Then the elements yy, y3, .., y, are prefixes of the
expression x(Oxi...0x,,.

Thus, the calculation of the sum of the transmission
bits of ¢; unit in a cascade adder can be reduced to the
calculation of prefixes.

The parallel prefix method emerged as the fastest pro-
cess of adding unit-shifting bits in binary code addition
operations for high-performance data processing systems,
which original ideas can be found in early works [1-4].
Further publications [17-20] confirmed this assessment
of such technologies.

When determining the transfer in a parallel multi-bit
adder, the principle of obtaining a prefix sum on the se-
quence of numbers xq, x1, X9, ..., X, extends to obtaining the
prefix sum on the sequence of pairs of transfer functions
of the unit (go, po), (&1, P1), - (&1, Pr-1) (Table 2):

— carry generation function:

g =ab;

— carry propagation function:

The transfer of a unit at the output of the i-th bit
is determined by the composition:

(80, P0)O(81, P1)O...0(8k-2, Pie-2)O(8k-1, Pi—1)-

The operator defining the transfer O is associative,
but not commutative:

[(81, P1)O(g2, P2)]O(g3, p3) = (&1, P1)O[ (&2, P2)O(&3, P3)].

The carry propagation function (1) can more accurately
be called a function of the condition of carry of the unit
to the high-order bit. Often the carry propagation func-
tion (2) (carry condition) is defined as a function (1).

If p;=1, then the propagation of the unit to the
subsequent bits will be possible, in the case when p;=0
the propagation of the unit to subsequent bits is impos-

sible (Fig. 4).

Fig. 4. Demonstration of the function of the carry condition of the unit
to the high-order bit

Taking into account Fig. 4 it is possible to see that
in the case when the DD1 element, which realizes the
carry condition function p=Av B on the output, will get
the value of the logical unit (p=1), it will be possible
to transfer the unit PO to the element DD2 (output
DD2 =output DD1(1)P0(1)=1). In the case where the
output of the DD1 element is a logical zero, the transfer
of the unit PO to the DD2 element will be impossible
(output DD2 = output DD1(0)PO(1) = 0).

The condition of carry of a unit to the high-order bit
can be demonstrated by the operation of adding binary
numbers to a column (Table 3).

From the variants of adding single-bit binary numbers
it is possible to see that if AvB =1, the unit from the least
significant bit Py is carried to the high-order (second) bit
of the sum (Py=1). If AvB=0, the sum remains single-bit,
the unit from the least significant bit Py to the high-
order (second) bit of the sum is not carried (P;=0).
A similar condition for the carry of a unit to the high-order
bit is preserved when adding multi-bit binary numbers.

Parallel prefix adders have been used as the most ef-
ficient circuits in the operations of adding binary codes
of digital systems. Their regular structure and high per-
formance make them especially attractive for the creation

pi=a;®b,. (2) of SLIC (super-large integrated circuits).
Table 2
Calculations of the prefix sum on the sequence of pairs of carry functions
of the unit (g0, po), (g1, P1), -, (Gee1, Pact)
Given (g0, Po) (g1, p1) (Gr2, Pr2) (g1, Prt)
Find (g(0,0], pl0,00) (g(0,1], pl0,1]) (g(0,k-2], pl0,k-2]) (g(0,k-1], p(0,k-1))
Carry of a unit at the output of the i-th level =] Co Cp1 cy
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Tahle 3 — the parallel one-to-many structure of a prefix adder
Adding binary numbers to a column generally has fewer links and may occupy several ranks
Possible aptions for adding of the circuit. This, at least from the technological
side, is not an effective indicator in comparison with
The unit from the lower bit (Fy) ! ! ! ! the acyclic computation model. And from this, there
Number A 0 0 1 1 may be a contradiction between the requirements for
Number B 0 1 0 1 the speed of calculating adding and carry signals and
energy consumption, as well as the area of the device,
Sum ! 10 10 1 in particular in the SLIC design system.
These adders provide a theoretical basis [~
cers co o
for compromises in terms of delay, area and > " s 07{
power, in order to provide a wide range of a0 S0 1 ] so
services in the design process. b0— -
The parallel prefix adder (PPA) uses the ho — D"_..l___
logical structure shown in Fig. 3, which pro- $1 0710 g9
vides for the calculation in three stages: St 140
. o . al T - ‘r
— pre-processing (pre-processing or initia- b1 10 s2 oo
lization phase): a2 s21 |, 82
_ — L
gi=ab;, b2— H21 & >'_—>'—..|\
83 0|,
=a - S3
pi=a; ®b; 31 |4
— prefix calculation (signal generation net- ] s4 u—g
work): a3 T32 11 E s41_[,] S4
J— 1 I E—
Giiry = Gijy+ BijiGrjmuas ad— Has . & .
b4 85 0,
| s5
P|i:k| = [f:j]RH;u; S5 1_1(
(1 s6 0o
— post-processing (after prefix processing :1.5_, Ts4 [:H 2 s61 |4 | S6
or summation): [ L~
a6 — E Hes & D l —[>'—.L
Cin= G[i:(]] +P[i:oj -Cy, b6 57070 57
s71 |4
S,' =pi &) Ci- E 0 sg
a7 T76 F
Prefix architectures for the calculation of b7 [ E {
the carry signal are known, for example: 0
. Hs7 | S9
- 1966: Ling adder; so 1"
L

— 1973: Kogge-Stone adder;

— 1980: Ladner-Fisher adder;

— 1982: Brent-Kung adder;

— 1987: Han Carlson adder;

— 1999: S. Knowles. 3)

Among the known prefix structures, the main one is
the parallel prefix adder with the Ling and Kogge-Stone
prefix carry structure, which is the final case of a large
list of summing circuits, each of which is unique with
its minimal logical capacity property.

Ling adder (Fig. 5) [21-23] has the least delay compared
to other methods of prefix carry, but requires relatively
larger chip area and power consumption.

The drawbacks of the prefix model for calculating
adding and carry signals include:

— the process of parallel computation of the prefix

by architectures (3) provides for the beginning of the

calculation from the first bit of the circuit, leads, in
the end, to excessive accumulation and complications
of the hardware part of the device;

— the principle of three-stage generation of the adding

and carry signal (Fig. 3), which specifies a certain

complexity of such calculation, in particular complicates
the didactics of the method;

Fig. 5. 8-bit Ling Adder (21-23)

5.2. The acyclic model of hinary codes adder. The cal-
culation principle for the model of an acyclic adder is
determined by an acyclic graph, when adjacent pairs of
terms are added simultaneously, and then their sums are
added (Table 4). This is a doubling algorithm (or a loga-
rithmic addition algorithm), which ultimately gives a one-
step method for generating adding and carry signals.

Table 4
Doubling algorithm (n=2%=8)
Steps Xy X2 X3 X4 X5 X5 X7 Xg
1 X1+Xx2 X3+Xy X5+Xg X7+Xg
2 X1+ Xo+X3+X4 X5+Xg+X7+Xg
3 X1+ X2+ X3+ X4+ X5+ X5+ X7+Xg

Bitwise addition of binary codes is possible with the
help of the doubling algorithm, similar to the process of
multi-operative summation. If n=2* where n — the number

TECHNOLOGY AUDIT AND PRODUCTION RESERVES — Ne 3/2(41), 2018
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of addends, then the doubling algorithm consists of % steps:
in the first stage, n/2 additions are executed, on the se-
cond stage — n/4, .., on the last stage — one addition.
The number of steps k is determined by the formula:

k=log,n. (4)

This version of the multi-operand addition is realized
using an acyclic graph or a cascade circuit [24].

Using the procedure of multi- operand addition using
a cascade circuit, it is easy to see that for the process of
parallel addition of binary codes, data pairs here will be
bits of the same name bits, for each of which the adding
and carry signal is calculated. Further, similarly to the
procedure of multi-operand addition, all the obtained sums
of the same-named bit pairs of binary codes, with their
specificity, are also divided into pairs and addition of pair
values, etc. is performed again.

As a result, the value of the high-order bit of the sum
of binary codes can be compared with the value of the
total amount for multi-operand additions. In addition to
the sum of the high-order bit, in the process of parallel
addition of binary codes, intermediate results automati-
cally appear as sums of the previous bits of binary codes.

The computational circuit for the parallel addition of
4-bit binary codes can be defined by an oriented acyclic
graph (Fig. 1), which is a binary tree, where in particular
the following parameters are accepted:

k — the number of steps in time;

® — the total number of operations of the algorithm;

T — the execution time of one step;

T=1-k — the execution time of the algorithm;

L — number of transaction types, etc.

The computer circuit in Fig. 1 is also a model of a 4-bit
acyclic parallel adder of binary codes with a parallel carry
method.

The model of the computational circuit of the acyclic
adder in Fig. 1 uses two logical operations — AND and
XOR, the number of computational steps in it is equal to
the bit depth of the binary codes. For example, to parallel
add 4-bit binary codes, it is necessary four steps (Fig. 1).

The model of a 4-bit acyclic adder of binary codes with
logical elements OR in the last bit is shown in Fig. 2.

Application of acyclic models is calculated on:

— the process of sequential (for lower-order device

circuits) and parallel calculation of adding and carry

signals, which, in the end, leads to a reduction in the
complexity of the hardware of the device and does
not increase the depth of the circuit;

— the establishment of the optimal number of com-

putational steps.

In [24] it is shown that the number of computational
steps determines the minimally sufficient number of carries
in the circuit of an acyclic adder. In the case where the
synthesized adder has received a larger number of carries
than the number of computational steps of the corresponding
oriented acyclic graph, then such adder will not be opti-
mal relative to the number of computational operations.

The logical equations of an optimized 4-bit adder with
a carry number (4), for example:

Sy =ay ®by;

S$1=(a;®b)®(ay Aby);

S, =(a, ®b)®((a; Ab)V ((a; v by) A(ay Aby)));

Sy=(asvby)v(a, Aby)v((ayvby) A(a Ab))v
v((ay v ) A((a; v b)) A(ay nby))).

The variant of the circuit of a 4-bit acyclic adder,
which is determined by the computational model in Fig. 2
!

is shown in Fig. 6.
1 s1
O

&

a2 —
it
&
1
&

al

a3

5Tt

Fig. 6. 4-bit acyclic adder of binary codes

The model of the computational circuit of a parallel
8-bit acyclic adder of binary codes will be similar to the
computational circuits shown in Fig. 1, 2, with the dif-
ference that here the number of computational steps will
be equal to eight. The first four logical equations of an
8-bit acyclic adder can, for example, be:

S() =d @ b(),
S, = aybya, b, + bya, b, + aya, b, + byab, + ayab, + aybyaiby;

S, = aphya ajbj + aohoby ;2172 +a;by ;252 + ;1171“2 Ez +

+ bybyay by + agbayb, + byayay by + aya,a, by + aybyash, +

+ bob1azb2 + a0b1a2b2 + boa1a2b2 + a0a1a2b2 +
+ ayboa,a,b, + agbybiasb, + aibasby;

53 = aoboa1a2 as bg + aob0b1a2 as b3 + a1b1a2 as bg +

+ aob()a1b2 as b’; + aob()b1b2 as bg + a1b1b2 as ba; + a2b2 as b3 +

+ ;21772“317: +a;b bﬂ:sb: +bybybyay lTs +agbibyas E +

+ bya, byaz bs + aya, byaz by + a,byasas by + bybya,as bs +

+ aybiasay by + byayaxa; by + aya,a,az by +

+ aybyasby + a b byazbs + byb,a, a;by + ayb byasbs +

+ byabyazbs + aya, by azbs + a,bya, azbs + bybya, azbs +

+ aybayasb, + bya,a,asbs + aya,a,asbs + aybyaasasby +
+ aybybiasasbs + a,biasasbs + aybya,byasbs + aybybbyasbs +
+ a1b1bzagb3 + a2b2613b3.

Circuits of 8-bit acyclic adders are shown in Fig. 8,
10, 12. With the increase in the bit capacity of the acyclic
adder (16-, 32-, 64-bit ...), the number of computational
steps will be determined by the logarithmic law (Fig. 7).

;SO
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The computing process of the 8-bit Ling

%C 2(5) Adder PPA adder (Fig. 9) uses such logical
22 2 S —— operations: XOR — 13, AND - 27, OR - 24,
53 0 Inventor — 6. 8-bit PAA adder (Fig. 8) uses:
= ° 5 4 ‘ XOR -9, AND - 19, OR - 19, Inventor — 3.
e 0 8 16 32 64 128 256 512 | 1024 | 2048 Given that the logic of the XOR element
[=—PAA[ 8 10 12 14 16 18 20 22 24 uses four logic elements, including Inven-

Adder digit (n) tor, it is possible to estimate the quality

Fig. 7. Dynamics of increasing the depth of the circuit of the acyclic adder (PAA)

6. Research results

B6.1. 8-hit acyclic adder with a depth of 8 elements. To
ensure the same comparison conditions, let’s represent
the circuits of prefix (PPA) and acyclic (PAA) adders
with logical elements OR in the last bit.

Fig. 8 shows an acyclic 8-bit PAA with logical ele-
ments OR in the last bit and depth of the circuit 8 typical
2-input elements. The complexity of the circuit in Fig. 8
is 77 discrete elements.

a0 T
b0 —
&
al T
bl —
&
a2 ]
“Th
&
a3 ]
“Th
&

(2] ]e]]

Fig. 8. Acyclic 8-bit PAA with logical elements OB in the last bit
and depth of circuit of 8 typical 2-input elements

Prefix 8-bit Ling Adder [21-23] with logical ele-
ments OR in the last bit is shown in Fig. 9. The circuit
determines the depth of the adder circuit in Fig. 9 sepa-
rated by a thick line and is accompanied by the numbering
of logical elements along this chain. Thus, the depth of
the 8-bit Ling Adder circuit [21-23] PPA (Fig. 9) is
8 typical logic elements, the complexity of the circuit is
109 elements. In accordance with the structure of the
prefix model (Fig. 3), the third stage of calculating the
sum signal in the adder in Fig. 9 is realized by a multi-
plexer in each bit of the circuit.

score S (for example, on energy saving) of
the 8-bit PAA adder (Fig. 8):

T, 109
=—=—=14156=41.56 %,
T,

S 77

where Ty, Ty — the number of discrete logic elements 8-bit
Ling Adder PPA and 8-bit PAA, respectively.

0
:Oﬁi DJ—@O
&
a_ 2l = o
b1 1] o1& [=1] (& 1|51
:LE&—kfg — i
L Tl2
a2 ] \
b2+ 1 =y & (=1 1&|1]s2
ﬁ&— on %&&
"L m
et ry e a2 a1
baﬁ_ 2 | &] [=1 (& 1|53
&fthl = &
=2 &l 3 I
g, B
= el
WEstry o] I a1
ba el el =2 | &~ [s4
ﬁ&* s e ﬂ %&&
,k&‘ | &L
Sini=AilIEEEAE
A
:5 1 | & ‘ =1 &155
— | j)_l L LT 61— [
&[T | Hal 4 BF&
— 4
LT 1 1015 78
a6
L @
WHE
, Ha
a &)
Sl

Fig. 9. Prefix 8-bit Ling Adder PPA [21-23] with logical
elements OR in the last bit

6.2. 8-hit acyclic adder with a depth of 9 elements.
Fig. 10 shows an acyclic 8-bit PAA with logical elements
OR in the last bit and the depth of circuit of 9 of the
typical 2-input elements. The complexity of the circuit
in Fig. 10 is 72 discrete elements.

The prefix 8-bit Kogge-Stone PPA [24] with the lo-
gical elements OR in the last bit is shown in Fig. 11.
The circuit determines the depth of the adder circuit in
Fig. 11 separated by a thick line and is accompanied by
the numbering of logical elements along this chain. Thus,
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the depth of the 8-bit Kogge-Stone PPA circuit (Fig. 11)
is 9 typical logic elements, the complexity of the circuit
is 90 elements.

The computing process of the 8-bit Kogge-Stone PPA
adder (Fig. 11) uses such logical operations: XOR — 13,
AND - 22, OR — 26. The 8-bit PAA adder (Fig. 10)
uses: XOR — 9, AND - 16, OR — 18, Inventor — 2. The
quality indicator S (for example, on energy saving) of the

0 —
:oﬁi 8-bit PAA adder (Fig. 10) is as follows:
&
— 5=l Py 9595
1 =—=—=1.25=25%,
:1ﬁi L, 72
&
a2 — where Ty, Ty — the number of discrete logic elements of
bzﬁi 8-bit Kogge-Stone PPA and 8-bit PAA, respectively.
a3 & 6.3. 8-hit acyclic adder with a depth of 10 elements.
b3 1 Fig. 12 shows the acyclic 8-bit PAA with the logical ele-
ﬁ; ments OR in the last bit and the depth of the circuit
_ of 10 of the typical 2-input elements. The complexity of
:: 1] the circuit in Fig. 12 is 66 discrete elements.
T
~ w ik
bo ||
a5 ] &
bsﬁi _
al
= il
a2 T
6 ] il
ZGﬁ 1 bzﬁi
& a3 1
2 3itn
1] o
| | | | | | | | | Steps il
0 1 2 3 4 5 6 7 8 b4ﬁ &|
Fig. 10. Acyclic 8-bit PAA with logical elements OR in the last bit
and depth of circuit of 9 of the typical 2-input elements a5 ]
=Tl
a0 ab T
1 b6 — &
b0 ; [ 9 SO a7ﬁ£ %
al st b7 L1 —
2 E.J | | 1 L
b@; L9 E % 0 1 2 304 5 6 78 9 10
a2z — 1 Fig. 12. Acyclic 8-bit PAA with logical elements OR in the last bit
b2 11 ‘(l,\_‘@ '4@2 and the depth of circuit of 10 of typical 2-input elements
%— V& &
T3 1 The prefix 8-bit Brent-Kung PPA [24] with logical
B elements OR in the last bit is shown in Fig. 13.
bﬁz E—L@ The circuit determines the depth of the adder circuit
T & in Fig. 13 separated by a thick line and is accompanied by
&2 3 the numbering of logical elements along this chain. Thus,
4_ the depth of the 8-bit Brent-Kung PPA circuit (Fig. 13)
bﬁ_ K [ — is 10 typical logic elements, the complexity of the circuit
B He Ei is 72 discrete elements. Let’s note that the XOR element
=l L &] has a three-discrete circuit depth and consists of four dis-
R —?E} crete logic elements, including Inventor.
bsT | L —6:@ e — The computing process of the 8-bit Brent-Kung PPA
& | | g & adder (Fig. 13) uses such logical operations: XOR — 13,
e Ha AND - 10, OR — 10. 8-bit PAA (Fig. 12) uses: XOR - 5,
6 e F'l — AND - 20, OR - 22, Inventor — 4. The quality indica-
1 _6:@ ‘ tor S (for example, on energy saving) of the 8-bit PAA
b6 L] H [&] adder (Fig. 12) is as follows:
find I e - Il
& s
L& Il L 72
7] B 5=%=%=1.09o9=9.09 %,
b7 ’
Fig. 11. Prefix 8-bit Kogge-Stone PPA with logical OR elements where Ty, Ty — the number of discrete logic elements of
in the last hit [24] 8-bit Brent-Kung PPA and 8-bit PAA, respectively.
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Fig. 13. Prefix 8-bit Brent-Kung PPA with logical elements OR
in the last bit [24]

circuits of binary codes negates the prefix computatio-
nal model.

Table 5
Comparison table of parameters of prefix
and acyclic adders
Parallel adder of binary codes Circuit Circuit | Adder’s
with parallel carry depth | complexity | it
Acyclic adder Fig. 8 8 77 8-bit
Prefix adder Ling Adder (Fig. 9) 8 109 8-bit
Acyclic adder Fig. 10 9 72 8-bit
Prefix adder Kogge-Stone (Fig. 11) 9 90 8-bit
Acyclic adder Fig. 12 10 66 8-bit
Prefix adder Brent-Kung (Fig. 13) 10 72 B8-hit
Tahle 6

Comparative table of quality indicators for energy consumption
of prefix and acyclic adders

6.4. Comparative analysis of acyclic and prefix models Parallel adder of binary codes Duality indicator
for calculating adding and carry signals. The parameters with parallel carry of the acyclic adder
of the synthesized circuits of acyclic and prefix adders
are summarized in a comparative Table 5. Acvclic adder Fi 8

Considering Table 5 it is possible to see that for the v g
selected depth of the circuit, the complexity of the circuits 41.58 %
of acyclic adders is smaller. Prefix adder Ling Adder (Fig. 9)

Indicators of the quality of acyclic adders, for example,
energy consumption are presented in Table 6. Acyclic adder Fig. 10

Fig. 14 shows the dynamics of increasing the depth of 25 9
the circui.t for thr'ee acycli'c adders' (PAA) (Fig. 8,.10, 12) Prefix adder Kogge-Stone (Fig. 11)
with an increase in the bit capacity of the circuit.

Table 7 presents a comparison of the prefix [1-4] and
acyclic models for calculating adding and carry signals in Acyclic adder Fig. 12
the adder circuit. 9.09 %

Considering Table 7 it follows that the acyclic mo- Prefix adder Brent-Kung (Fig. 13)
del for calculating adding and carry signals for adders’

30
3 25
o
g 20 "
B
g: 15
=
% 10 f—g ‘é
|93
2 s
0 8 16 32 64 128 256 512 | 1024 | 2048
——PAA, Fig. 12| 10 12 14 16 18 20 22 24 26
——PAA, Fig. 10 11 13 15 17 19 21 23 25
—o—PAA, Fig. 8 8 10 12 14 16 18 20 22 24
Adder’s bit (n)
Fig. 14. Dynamics of increasing the depth of the circuit of acyclic adders (PAA)
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Comparison table of two models for

Tahle 7

calculating adding and carry signals

Prefix model

Acyclic model

Method of prefix calculation

Prefix model involves the process of prefix calculation, starting with the first
digit of the circuit, leads, in the end, to excessive accumulation and complica-
tions of the hardware of the device

Application of acyclic models is calculated on:

— logical structure of the adder circuit with a sequentially parallel method of
calculating the prefix, which, in the end, reduces the complexity of the hardware
of the device and does not increase the depth of the circuit;

— determination of the optimal number of computational steps

Number of cal

culation stages

The prefix model uses three stages to generate adding and carry signals (Fig. 3)

The acyclic model uses one stage of generating adding and carry signals (Fig. 1, 2)

The parallelism of

the adder structure

The parallel one-to-many structure of the prefix adder (Fig. 9, 11, 13) gene-
rally has fewer links than the acyclic adder

The parallel «one to many» structure of the acyclic adder (Fig. 8, 10, 12)
generally has a larger number of links than the prefix adder, which certifies
a high degree of parallelism of the circuit of the acyclic adder

7. SWOT analysis of research results

Strengths. To the strong side, acyclic models for cal-
culating adding and carry signals include didactic sim-
plifications and hardware compactness of the method,
which allows to replace the three-stage prefix model by
a one-stage acyclic model for calculating adding and carry
signals. This will give an extension of the apparatus for
synthesizing arithmetic devices for their use in digital
technologies.

The connection between the number of computational
steps of an oriented acyclic graph and the number of unit
transfers to the highest degree causes the process of com-
paring the structure of the adder with the corresponding
oriented acyclic graph. The purpose of this comparison is
establishing the minimum sufficient number of carries for
the operation of adding binary numbers in the circuit of
a parallel adder with a parallel method of transfer. In the
case where the synthesized adder has received a larger
number of transfers than the number of computational
steps of the corresponding oriented acyclic graph, then
such adder will not be optimal relative to the number
of computational operations.

The acyclic model is able to support aggregated struc-
tures for calculating adding and carry signals, by combining
with other apparatus computational methods, in particular
with the Ling transfer logic.

This is more advantageous in comparison with ana-
logues for the following factors:

— lower cost of development and implementation,

because the acyclic model defines a relatively simple

structure of the adder;

— the presence of an optimization criterion — the number

of computational steps of an acyclic graph indicates

a minimally sufficient number of transfers of a unit

to the high-order bit.

Weaknesses. The weak side of the acyclic models of
calculating adding and carry signals is associated with an
increase in the complexity of the synthesis of the compu-
tational structure and insufficient study of this synthesis
with an increase in the device circuit capacity.

Negative internal factors inherent in acyclic models
consist in increasing the time of obtaining the optimal
calculation structure with the increase in the bit capacity
of the adder circuit.

Opportunities. The prospect of further studies of acyclic
models can be the development of a protocol for optimal
alternation of the Ling transfer logic and transfer logic
acyclic models with the aim of reducing the complexity
of the adder circuit.

Additional possibilities that the introduction of acyclic
models can bring are the study of variants of applying the
transfer condition of the unit to the highest order (1).
This will make it possible to obtain the optimal complexity
of the computational structure of an arithmetic device.

Threats. The protocol for calculating the adding and
carry signals of acyclic models does not depend on the
protocols of other calculation methods, therefore there is
no threat of negative impact on the object of research
of external factors.

To a certain extent, the acyclic synthesis model of
the adder circuit is a prefix model. At the moment, the
prefix model is better because it has already created and
implemented arithmetic devices with prefix structure of
calculation.

1. It is revealed that the calculation of the adding
and transport signal in the circuit of a parallel acyclic
adder is carried out by the algorithm of logarithmic ad-
dition. The number of computational steps of an acyclic
graph determines the optimal number of transfers in the
parallel adder circuit with a parallel carry method.

2. The estimation of the dynamics of increasing the
depth of the circuit of an acyclic adder is O(n) and is
linear for n<8. With an increase in the circuit capacity
from n> 8, the estimation of the dynamics of increasing
the depth of the circuit of an acyclic adder is O (logn)
and is logarithmic.

3. The effectiveness of acyclic models is demonstra-
ted by examples of the synthesis of 8-bit parallel adders,
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borrowed from the works of other authors for the purpose
of comparison:

— Ling adder circuit (Fig. 9) [21-23] and the cir-

cuit of an acyclic 8-bit parallel adder with a depth

of 8 elements circuit (Fig. 8);

— circuit of Kogge-Stone prefix adder (Fig. 11) [24]

and circuit of acyclic 8-bit parallel adder with depth

of 9 elements circuit (Fig. 10);

— circuit of the Brent-Kung prefix adder (Fig. 13) [24]

and the circuit of an acyclic 8-bit parallel adder with

a depth of 10 elements circuit (Fig. 12).

Given these examples of parallel adders, the acyclic
model gives grounds for the expediency of its application
in the processes of synthesis of arithmetic devices for
processing digital data, since these circuits are capable of:

— increase the speed;

— reduce power consumption and heat dissipation of

a digital device, integrated circuit.
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