DOI: 10.15587/2312-8372.2018.143747

АНАЛІЗ КРИСТАЛІЧНОЇ СТРУКТУРИ СПОЛУКИ К2GeF6

Заводянний В. В.

1. Вступ

Гексафторогерманід калію K₂GeF₆ утворюється в результаті нагрівання двоокису германію з фтористоводневою кислотою та фторидом калію, що приводить до осаду безкольорових слабо розчинних кристалів [1]. Дана сіль не розкладається до температури 500 °C та плавиться при 730 °C.

Дана сполука отримується з використанням методу хімічного осаду, створюючи оптимальні умови підготовки для червоних люмінофорів K_2 GeF₆:Mn⁴⁺. Отримана тригональна фаза з просторовою групою симетрії P-3m1 сполуки K_2 GeF₆:Mn⁴⁺ показує ефективну червону емісію, колір високої чистоти, досить стабільну концентрацією Mn⁴⁺ та низьке термічне закалювання.

Також спостерігаються поліморфні перетворення при 400 °C в гексагональну сингонію з просторовою групою симетрії Р63тс та при 500 °C в кубічну сингонію з просторовою групою симетрії Fm3m. Дана сполука гексагональної сингонії має пік нульової червоної лінії з довжиною хвилі λ =621 нм. І в той же час в кубічній фазі немає емісії в червоній області спектру. Кристали K₂GeF₆:Mn⁴⁺ тригональної і гексагональної сингоній можуть бути перспективними матеріалами для комерційних червоних люмінофорів [2]. Тому дослідження кристалічної структури даної сполуки є актуальним.

2. Об'єкт дослідження та його технологічний аудит

Об'єктом дослідження є кристалічна структура сполуки K_2GeF_6 . Тригональна модифікація K_2GeF_6 синтезувалася шляхом додавання аквольного розчину MF до розчину гідрофлуоресцентної кислоти GeO₂ у молярному співвідношенні 1:1. Розчин випарювали на водяній бані, поки не утворився осад. Гексагональна модифікація K_2GeF_6 , була отримана шляхом нагрівання тригональної модифікації протягом 18 годин при температурі від 350 °C [3].

Одним з найбільш проблемних місць є наявність великого числа дифракційних спектрів, відзнятих для даної сполуки, отриманих методом Брег-Бертрано на мідному фільтрованому випромінюванні. Так, в базі даних PDF-2 за 2004 р. [4] міститься сім дифракційних спектрів різної якості, отриманих для сполуки K₂GeF₆, синтезованої різними методами.

3. Мета та задачі дослідження.

Мета роботи – запропонувати структурну модель для дифракційного спектру сполуки К₂GeF₆ під номером 00-037-11543 в базі даних PDF-2 за 2004 р.

Для досягнення поставленої мети необхідно вирішити наступні задачі:

1. Провести індексування дифракційного спектру досліджуваної сполуки та визначити періоди решітки, сингонію та просторову групу симетрії.

2. Провести уточнення мікростуктурних параметрів для обраної моделі методом Рітвельда.

4. Дослідження існуючих рішень проблеми

Із аналізу літератури відомо про дві існуючі структурні моделі поліморфних модифікацій сполуки. А саме з [5] слідує, що сполука K₂GeF₆ має структуру типу beta-Rb₂GeF₆ ПГС (просторова група симетрії) Р63mc (№ 186) з періодами решітки *a*=5.7100 A°, *b*=5.7100 A°, *c*=9.2700 A°, *α*=90°, *β*=90°, *γ*=120°. Величини мікроструктурних параметрів приведені в табл. 1. Кристалічна структура зображена на рис. 1.

Таблиця 1

Атом	Правильна система точок	льна система Коефіцієнт заповнення точок позицій		Y	Z			
Ge	2(b)	1	0.3333	0.6667	0.2500			
Kl	2(b)	1	0.3333	0.6667	0.8900			
К2	2(a)	1	0.0000	0.0000	0.6100			
Fl	6(c)	1	0.1800	0.8200	0.3500			
F2	6(c)	1	0.4900	0.5100	0.1500			

Мікроструктурні параметри сполуки K₂GeF₆ згідно з [5]

Згідно з [5] слідує, що сполука K₂GeF₆ має тригональну структуру ПГС Р-3m1 (\mathbb{N} 164) з періодами решітки *a*=5.6200 A°, *b*=5.6200 A°, *c* = 4.6500 A°, α =90°, β =90°, γ =120°. Величини мікроструктурних параметрів приведені в табл. 2. Кристалічна структура зображена на рис. 2.

Таблиця 2

Атом	Правильна система точок	Коефіцієнт заповнення позицій	Х	у	Z
К	2(d)	1	0.3333	0.6667	0.300
Ge	1(a)	1	0.0000	0.0000	0.0000
F	6(i)	1	0.8520	0.1480	0.2200

Мікроструктурні параметри сполуки К₂GeF₆ згідно з [5]

В базі даних PDF-2 за 2004 рік [4] існує сім дифракційних спектрів зазначеної сполуки, отримані за допомогою рентгенівської порошкової дифракції (метод Брег-Бертрано) різної якості. Відомості про їх кристалічну структуру приведені в табл. 3.

Таблиця 3

			J 1	<u> </u>	
№ 3/П	Сполука	Сингонія, ПГС	Періоди ре- шітки, А°	№ картки в базі pdf-2	Якість дифракцій- ного спектру
1	2	3	4	5	6
1	K ₂ GeF ₆	Тригональна Р-3m1	a=5.632 b=5.632 c=4.668	00-007-0241	Найвища якість дифракційного спектру [6]
2	K ₂ GeF ₆	Гексагональна	a=5.71 b=5.71 c=9.27	00-031-1021	Низька точність спектру [7]
3	K ₂ GeF ₆	Кубічна Fm-3m	a = 8.357 b = 8.357 c = 8.357	00-037-1154	Чиста фаза [8]

Відомості про кристалічну структуру K₂GeF₆

Продовження таблиці 3

1	2	3	4	5	6
4	K ₂ GeF ₆	Кубічна Fm-3m	a=8.1673 b=8.673 c=8.673	00-037-1155	Проіндексована [8]
5	K ₂ GeF ₆	Гексагональна Р63тс	a=5.908 b=5.908 c=9.659	00-038-0854	Проіндексована [8]
6	K ₂ GeF ₆	Тригональна Р-3m1	a=5.62 b=5.62 c=4.65	01-073-1531	Обчислений спектр за структу- рною моделлю [5]
7	K ₂ GeF ₆	Гексагональна Р63тс	a=5.71 b=5.71 c=9.27	01-075-0951	Обчислений спектр за структу- рною моделлю [4]

В роботі [7] приведений дифракційний спектр сполуки K₂GeF₆ високої якості і відповідає тригональній сингонії кристалу, модель структури якого була запропонована в роботі [6].

В роботі [8] запропоновано дифракційний спектр досліджуваної сполуки К₂GeF₆, який проіндексований в гексагональній сингонії, однак низька якість спектру викликає сумніви щодо відповідності даного спектру кристалічній структурі сполуки. Слід зазначити що запропонований спектр не співпадає з моделлю, запропонованою в роботі [5].

Згідно з [9] дифракційний спектр 00-037-1155 в базі даних PDF-2 сполуки K_2 GeF₆ отриманий при 500 °C, під номером 00-038-0854 – при 440 °C, а 00-037-1154 – при 25 °C.

Останній спектр заслуговує особливої уваги. Згідно з [9] даний дифракційний спектр індексується в кубічній сингонії і належить до просторової групи Fm3m. В [2] зазначено, що перехід до кубічної модифікації сполуки K_2 GeF₆ відбувається при температурі 500 °C.

В роботі [3] зафіксовано інфрачервоний спектр поглинання кристалів K_2GeF_6 тригональної і гексагональної сингоній. Гексагональна модифікація характеризусться низькою величиною інтегральної інтенсивності, що відповідає коливанням октаедричним іонам $[GeF_6]^{-2}$ (близько 20 %). Це пов'язано із збільшенням взаємодії і водночас зменшенням міжатомних відстаней метал-фтор. Про існування ще однієї структурної модифікації не зазначено.

Досліджувана сполука тригональної сингонії з просторовою групою симетрії P-3m1 спостерігається також авторами роботи [10]. Октаедри стискаються вздовж тригональної осі. Це приводить до виникнення місцевої симетрії, і впливає на спектри розсіювання даної сполуки, які викликані лазером Physics 165, і аналізувались за допомогою монохроматора та фотоприймача.

В роботах [11, 12] досліджуються оптичні властивості Mn^{4+} в деяких кристалах, зокрема і в K₂GeF₆, які тісно пов'язані з типом кристалічної ґратки досліджуваних матеріалів.

Зокрема, в [13] для отримання K₂GeF₆:Mn⁴⁺ застосовано метод простого синтезу червоних фосфорів шляхом мокрого хімічного травлення Ge у змішаному розчині HF/KMnO₄. В результаті отримана тригональна сингонія сполуки

з просторовою групою симетрії P-3m1. Помічено, що розчеплення ліній випромінювання відбувається за рахунок тригонального спотворення кристалічної структури сполуки.

Таким чином, аналіз результатів літератури вказує на те, що досліджувана сполука може бути використана як червоні люмінофори, кристалічна структура якої впливає на її фотолюмінісцентні властивості. Окрім того, помічено два поліморфних перетворення із тригональної в гексагональну, а потім кубічну сингонії сполуки при її нагріванні.

5. Методи дослідження

Дифракційний спектр для дослідження генерували за допомогою програми HiphScorePlus 3.0 та приєднаної до неї бази даних PDF-2 за 2004 р. у форматі UDF.

Аналіз запропонованої структурної моделі даного спектру проводили також за допомогою програми HiphScorePlus 3.0 методом Рітвельда.

6. Результати досліджень

Дифракційний спектр сполуки індексується в орторомбічній сингонії з періодами решітки a=5.929 A°; b=8.294 A°; c=5.914 A°. Можлива просторова група симетрії *Ітта* (74).

Аналіз запропонованої структурної моделі даного спектру проводили також за допомогою програми HiphScorePlus 3.0 методом Рітвельда.

Правильна система точок та уточнені їх координати для даного спектру представлені в табл. 4.

		1 17			0	
	Правиль-				Коефіцієнт	
Атом	на систе-	X	У	Z	заповнення	${\rm U_{iso}}^{ m a}$
	ма точок				позицій	
K1	16j	0.316837	0.636701	0.134786	0.500000	7.565899
Ge	16j	0.172086	0.353968	0.291034	0.250000	0.000000
F1	16j	-0.087285	0.119218	0.783618	0.500000	0.000000
F2	16j	0.406830	-0.603655	0.376365	0.500000	0.000000
F3	8f	0.581125	0.000000	0.000000	1.000000	6.566590

Мікроструктурні параметри К₂GeF₆

Величини міжплощинних відстаней та інтенсивності, що спостерігаються та обчислені за даною моделлю, приведені в табл. 5.

Таблиця 5

Таблиця 4

D ·		• •	• •	•	. بر
Кепицини міжпи	шинних в	алстаней та	111Тенсивності	IIIO CHOCTEPIITAIOI	
	ициппил I	лдотаной те		, що спостерн шот	

d _{cal} (A ^o)	d _{obs} (A°)	I _{cal}	I _{obs}	Н	K	L
1	2	3	4	5	6	7
4.85001	4.85394	100.00	100.00	1	0	1
4.19431	4.18895	0.21	50.29	0	1	1
4.18880		52.30	—	2	0	0
2.96527	2.96398	77.69	89.86	0	0	2

Продовження таблиці 5

1	2	3	4	5	6	7
2.95896	_	7.07	_	2	1	1
2.95657	_	6.18	_	0	2	0
2.52527	2.52099	9.96	59.83	1	1	2
2.52152	_	49.11	_	3	0	1
2.52123	_	9.76	_	1	2	1
2.41706	2.41399	24.69	49.98	2	0	2
2.41234	_	26.29	_	2	2	0
2.09115	2.08900	19.21	69.89	0	2	2
2.08841	_	52.74	_	4	0	0
1.92103	1.92100	3.53	5.13	1	0	3
1.91819	_	1.51	_	3	1	2
1.91641		2.35	_	3	2	1
1.87198	1.87399	4.52	5.14	0	1	3
1.86929	_	0.03	_	2	2	2
1.86782	_	3.48	_	4	1	1
1.86759	_	0.13	_	0	3	1
1.70776	1.70701	26.69	50.23	2	1	3
1.70580		6.40	_	4	0	2
1.70442		0.65	_	2	3	1
1.70414		0.55	_	4	2	0
1.60950	1.61001	24.51	50.22	3	0	3
1.60943	_	8.64	_	1	2	3
1.60768		3.57	_	1	3	2
1.60685		11.66	_	5	0	1
1.47949	1.47501	0.18	50.27	0	0	4
1.47635	_	1.05	_	4	2	2
1.47516		37.67	_	0	4	0
1.41417	1.41200	7.19	20.25	1	1	4
1.41256	_	1.71		3	2	3
1.41148		0.60		5	1	2
1.41138		0.25		3	3	2
1.41077		0.75	_	5	2	1
1.41062		2.59	_	1	4	1
1.39426	1.39000	0.02	5.11	2	0	4
1.39274	_	0.07	_	4	1	3
1.39265		0.58	_	0	3	3
1.39093	-	0.49	_	4	3	1
1.39082		0.52	_	6	0	0
1.39063	-	3.84	_	2	4	0
1.32219	1.32000	0.00	40.31	0	2	4
1.32085	-	5.33	_	2	3	3
1.31987		24.22	_	0	4	2
1.31947		12.82	_	6	1	1
1.27497	1.27400	8.30	30.31	3	1	4
1.27382	-	18.75	_	5	0	3
1.27236	-	3.19	_	3	4	1

Фактор розбіжності R=8.65453 %. Уточнені періоди решітки запропонованої структурної моделі a=8.332702 A°; b=5.891212 A°; c=5.908473 A°.

У табл. 6 приведені міжатомні відстані сполуки K_2GeF_6 під номером 00-037-1154 в базі даних PDF-2 за 2004 р.

Таблиця 6

A tom 1		Distance A ^o	A tom 1	Atom2	Distance A ^o
1	2	Distance, A	Atom	Atom2	Distance, A
I V1	<u> </u>	J 1 102	4 E2	J Co	0
	I'I V1	1.195	Γ2	E1	1.214
		1.333	_	F1	1.424
	F5 Ca	1.410	_	F2 F2	1.335
	V1	1.723	_		1.724
		1.739		E2	1.095
	F1 F1	1.803	_	Γ2 F 1	2.012
	F1 Co	2.034			2.012
	E2	2.034			2.033
	Г <u>2</u> И1	2.140	-		2.070
		2.208	-		2.140
	UL UL	2.234	_	F3 F2	2.308
_		2.265	-	F2	2.320
_	F2	2.342	-	KI V1	2.342
_	Ge	2.402	-	KI C	2.417
_	F2	2.417	—	Ge	2.434
	FI	2.421	-	F2	2.457
_	F3	2.437	-	Ge	2.501
_	Fl	2.441	_	Fl	2.511
_	F3	2.476	-	Fl	2.589
_	Ge	2.791	-	F3	2.725
_	F1	2.814	-	Ge	2.835
_	F2	2.854	_	<u>K1</u>	2.854
_	Ge	2.925	_	F3	2.876
_	F2	2.990	-	F1	2.906
_	F1	3.004	—	Ge	2.932
_	F3	3.027	-	K1	2.990
_	Ge	3.034	-	F1	2.994
_	K1	3.052	_	F2	3.010
-	F2	3.057	_	K1	3.057
-	Ge	3.070	_	F1	3.087
-	F2	3.118	_	F1	3.116
_	F3	3.173	_	K1	3.118
-	F2	3.189	_	Ge	3.139
_	F 1	3.200	_	K1	3.189
-	Ge	3.265	_	F3	3.226
-	F2	3.323	_	F1	3.272
	K1	3.332	_	F2	3.288
_	K1	3.349		F2	3.288
_	K1	3.349		K1	3.323
-	F2	3.353		K1	3.353
-	Ge	3.363	_	F1	3.433

Міжатомні відстані досліджуваної сполуки

Продовження таблиці 6

1	2	3	4	5	6
_	F1	3.403	_	K1	3.467
_	Ge	3.425	_	F2	3.469
—	F2	3.467	F3	F3	1.352
Ge	F2	1.214	—	K1	1.416
-	Ge	1.225	—	K1	1.416
_	Ge	1.386	_	Ge	1.685
-	F3	1.685	—	Ge	1.685
-	K1	1.725	—	F1	1.818
-	F1	1.771	-	F1	1.818
_	Ge	1.850	_	F1	2.296
_	F2	1.893	_	F 1	2.296
_	K1	2.034	-	F2	2.308
_	F2	2.035	-	F2	2.308
-	K1	2.254		K1	2.437
_	K1	2.402	—	K1	2.437
_	F2	2.434	-	K1	2.476
_	F2	2.501	-	K1	2.476
-	F3	2.539		Ge	2.539
-	F1	2.542		Ge	2.539
-	F3	2.592		Ge	2.592
_	F1	2.703		Ge	2.592
_	K1	2.791		F2	2.725
_	F3	2.815	-	F2	2.725
_	F2	2.835	-	F1	2.801
_	Ge	2.868	_	F1	2.801
_	F1	2.909	-	Ge	2.815
_	K1	2.925	-	Ge	2.815
_	F2	2.932	_	F2	2.876
_	F1	2.999	_	F2	2.876
-	Ge	3.010	—	F3	2.946
-	K1	3.034	—	F3	2.946
_	K1	3.070	—	K1	3.027
_	F1	3.084	—	K1	3.027
_	Ge	3.119	—	F1	3.124
_	F2	3.139	_	F1	3.124
_	F3	3.213	_	F1	3.132
-	F1	3.213	—	F1	3.132
-	F1	3.219	_	K1	3.173
_	K1	3.265	_	K1	3.173
-	F1	3.299	_	Ge	3.213
_	K1	3.363		Ge	3.213
	F1	3.376	—	F2	3.226
-	F3	3.396	_	F2	3.226
_	K1	3.425	_	F3	3.241
	F1	3.434	_	F3	3.241
-	F1	3.500	_	Ge	3.396
F1	K1	1.193	_	Ge	3.396
-	F2	1.424	_	_	_

Закінчення таблиці 6

1	2	3	4	5	6
_	F1	1.455	—	_	-
_	F1	1.541	—	-	-
-	Ge	1.771	—	-	—
-	F3	1.818	—	-	-
-	K1	1.865	—	—	-
_	K1	1.975	_	-	-
-	F2	2.012	—		-
_	F2	2.070	—	-	_
-	F1	2.119	—	—	—
-	F3	2.296	-	-	—
-	K1	2.421	-	—	—
-	K1	2.441	—	-	—
-	F2	2.511	-	-	—
_	Ge	2.542	-	—	_
_	F2	2.589	-	—	_
_	Ge	2.703	-	-	—
_	F1	2.741	-	_	_
-	F3	2.801	-	—	_
-	K1	2.814	—	—	—
-	F2	2.906	_	—	—
-	Ge	2.909	-	—	—
-	F1	2.917	-	—	—
-	F2	2.994	—	—	—
-	Ge	2.999	_	—	_
-	K1	3.004	-	—	_
-	Ge	3.084	-	—	_
-	F2	3.087	-	—	—
_	F2	3.116	-	—	_
-	F3	3.124	—	—	—
-	F3	3.132	—	—	—
_	F1	3.144	_	—	—
-	K1	3.200	—	—	—
-	Ge	3.213	—	—	—
-	Ge	3.219	—	—	—
_	F 1	3.260	—	—	_
-	F2	3.272	—	—	_
_	Ge	3.299	—	—	_
-	Ge	3.376	_	_	
_	K1	3.403	_	_	_
_	F2	3.433	_	_	_
-	Ge	3.434	_	_	_
-	Ge	3.500	_	_	_

А на рис. 3 приведена результуюча дифрактограма, згненерована та обчислена за запропонованими мікроструктурними параметрами сполуки K₂GeF₆.

Рис. 3. Результуюча дифрактограма сполуки K₂GeF₆

На рис. 4 зображена кристалічна структура K₂GeF₆ орторомбічної сингонії просторової групи Ітта, яка належить до власного типу структури.

Рис. 4. Зображення кристалічної структури сполуки K₂GeF₆

Як видно із рис. 4 атоми фтору та калію утворюють неправильні шестикутники. Крім цього дані позиції атомів можуть бути не повністю заповненими, як і для атомів германію.

7. SWOT-аналіз результатів досліджень

Strengths. В результаті проведеного дослідження запропоновану структурну модель для K_2 GeF₆ дифракційного спектру під номером 00-037-1154 в базі даних PDF-2 за 2004 рік. Перевірка за базою даних COD 2014 не виявила подібної структури. Тому можна припустити, що дана структурна модель належить до нового структурного типу.

Weaknesses. В запропонованій структурній моделі правильні системи точок 16 мають вакансії для атомів германію, калію та фтору (табл. 4). Така ситуація може приводити до спотворення кристалічної ґратки досліджуваної сполуки.

Opportunities. В роботі [2] зазначено поліморфне перетворення при 400 °C з тригональної в гексагональну і при 500 °C з гексагональної в кубічну. Однак можна зазначити, що представлений досліджуваний дифракційний спектр не належить до кубічної сингонії, а має орторомбічну сингонію з вакансіями в правильній системі точок 16j. Дані вакансії можуть займати атоми Mn, домішки якого додають в дану сполуку для покращення емісії в світлодіодах [12].

Threats. Існуючі вакансії в запропонованій структурній моделі для правильної системи точок 16 можуть також свідчити про можливе зміщення стехіометричного складу досліджуваного спектру, отриманого для сполуки K_2GeF_6 . Тому кристалічна структура даної сполуки може потребувати більш детальнішого вивчення. Зокрема методом монокристалу або отриманням більшої кількості рефлексів з геометрією зйомки Брег-Бертрано.

8. Висновки

1. Проведений рентгенівський фазовий аналіз не виявив присутності в досліджуваній сполуці декількох фаз, представлених в табл. 1. Отже робимо висновок, що сполука однофазна.

За допомогою програми TREOR проведено індексування рентгенограми сполуки K₂GeF₆ під номером 00-037-1154 в базі даних PDF-2 за 2004 рік.

Дифракційний спектр сполуки індексується в орторомбічній сингонії з періодами решітки a=5.929 A°; b=8.294 A°; c=5.914 A°. Можлива просторова група симетрії *Ітта* (74).

2. За допомогою програми HiphScorePlus 3.0 методом Рітвельда досліджено дифракційний спектр сполуки під номером 00-037-1154. Запропоновано структурну модель: просторова група симетрії *Imma* (74). Уточнені періоди решітки запропонованої структурної моделі a=8.3327 A°, b=5.891212 A°, c=5.908473 A°. Фактор розбіжності R=8.65453 %. Мікроструктурні параметри приведені у табл. 4.

Кристалічна структура даної сполуки може належати до нового типу структури.

Література

1. Fluorine Chemistry. Vol. 2 / ed. by Simons J. H. Academic Press, 1954. 576 p.

2. Photoluminescent Evolution Induced by Structural Transformation Through Thermal Treating in the Red Narrow-Band Phosphor $K_2GeF_6:Mn^{4+}$ / Wei L.-L. et. al. // ACS Applied Materials & Interfaces. 2015. Vol. 7, Issue 20. P. 10656–10659. doi: <u>http://doi.org/10.1021/acsami.5b02212</u>

3. Ignat'eva L. N., Sergienko V. I., Mirochnik A. G. The manifestation of polymorphism in the infrared absorption spectra of K_2GeF_6 and $Rb_2GeF_6//$ Journal of Structural Chemistry. 1980. Vol. 20, Issue 4. P. 573–577. doi: http://doi.org/10.1007/bf00746337

4. ICSD. URL: <u>http://ec-ifas.waterunites-ca.org/aral_basin/institutions/mkur/175-icsd.html</u>

5. Bode H., Brockmann R. Zur Kristallstruktur der Hexafluorogermanate // Zeitschrift Fuer Anorganische Und Allgemeine Chemie. 1952. Vol. 269, Issue 4-6. P. 173–178. doi: http://doi.org/10.1002/zaac.19522690403

6. Hoard J. L., Vincent W. B. Structures of Complex Fluorides. Potassium Hexafluogermanate and Ammonium Hexafluogermanate // Journal of the American Chemical Society. 1939. Vol. 61, Issue 10. P. 2849–2852. doi: http://doi.org/10.1021/ja01265a082

7. Howard E. Swanson Circular of the Bureau of Standards // Standard X-ray Diffraction Powder Patterns No. 539. 1956. Vol. 6. P. 41. doi: <u>http://doi.org/10.6028/nbs.circ.539v2</u>

8. Soviet physics, crystallography / Tseitlin M. et. al. 1974. Vol. 18. 525 p.

9. Kolditz L., Wilde W., Hilmer W. Rontgenographische Phasenbestimmungen zur thermischen Dissoziation und das Hydrolyseverhalten von Alkalihexafluorogermanaten bei hoheren Temperaturen // Zeitschrift Fur Anorganische Und Allgemeine Chemie. 1984. Vol. 512, Issue 5. P. 48–58. doi: http://doi.org/10.1002/zaac.19845120507

10. Polarized Raman spectra of the trigonal crystal $K_2 \text{ReF}_6$ / Bettinelli M. et. al. // Inorganica Chimica Acta. 1987. Vol. 133, Issue 1. P. 7–9. doi: <u>http://doi.org/10.1016/s0020-1693(00)84358-3</u>

11. Study of multiplet structures of Mn⁴⁺ activated in fluoride crystals / Novita M. et. al. // Journal of Luminescence. 2016. Vol. 169. P. 594–600. doi: http://doi.org/10.1016/j.jlumin.2014.12.067

12. Novita M., Ogasawara K. Comparative Study of Multiplet Structures of Mn4+in K_2SiF_6 , K_2GeF_6 , and K_2TiF_6 Based on First-Principles Configuration–Interaction Calculations // Japanese Journal of Applied Physics. 2012. Vol. 51, Issue 2R. P. 022604. doi: <u>http://doi.org/10.7567/jjap.51.022604</u>

13. Adachi S., Takahashi T. Photoluminescent properties of $K_2GeF_6:Mn^{4+}$ red phosphor synthesized from aqueous HF/KMnO₄ solution // Journal of Applied Physics. 2009. Vol. 106, Issue 1. P. 013516. doi: <u>http://doi.org/10.1063/1.3160303</u>