УДК 655.39

Васильева В. П., Турчинова Г. И.

ВОЗМОЖНОСТИ СОВРЕМЕННОЙ ЦВЕТОПРОБЫ

Были проведены исследования технологических возможностей струйного принтера Epson Stylus Photo 2100 для получения качественной цветопередачи оттисков. В ходе исследования протестировали спектрофотометр PULSE COLORElite System копании X-Rite и колориметр, входящий в комплект. Было достигнуто качественное воспроизведение цветов. Возникновения эффектов метамерии не обнаружено.

Ключевые слова: принтер, струйная печать, оттиск, тест-объект, оптическая-плотность, градация.

1. Введение

Проблемы цветовоспроизведения волновали и волнуют поколения полиграфистов.

Цветопроба — это микротиражная эмуляция того или иного печатного процесса. Необходимость цветопробы в полиграфической практике продиктована минимум двумя причинами:

— несовершенством устройств RGB-визуализации — мониторов: даже идеально отлаженный, калиброванный монитор, работающий в связке со спектрометрически построенным и грамотно используемым профайлом печатного устройства, не может дать исчерпывающего представления о том, как будет выглядеть изображение на типографском оттиске; — а также тем, что эволюционно человеческое зрение, в первую очередь, приспособлено к рассматриванию отражающих объектов.

2. Актуальность

Несмотря на ощутимую конкуренцию, рынок цифровой цветопробы уже устоялся. Главный вектор развития технологий цифровой пробы задают новинки рынка профессиональных струйных принтеров, именно поэтому разработчики RIP стараются тестировать их в своих лабораториях еще до появления моделей в свободной продаже. Цветопробные RIP поддерживают большее количество профессиональных принтеров и измерительных приборов, что дает пользователю возможность выбора конфигурации. Ассортимент программного обеспечения для изготовления цифровой цветопробы очень широк. Актуальность работы состоит в том, что у большинства струйных принтерах реализуется технологии пяти, семицветной, послойной цветной печати, благодаря которым достигается точная имитация цвета будущего оттиска. Преимуществ у струйных принтеров больше, чем ограничений. Это и низкая цена пробы, и возможность имитации практически любых печатных процессов (не только тех, на которые рассчитаны расходные материалы), а также качественная имитация смесевых цветов (Pantone).

3. Ограничения цифровой пробы

Технологии получения цифровой пробы, несмотря на их постоянное развитие, пока имеют несколько ограниче-

ний. Существуют трудности с печатью пробы на тиражном материале, хотя ассортимент цветопробных материалов достаточно широк. И точность имитации смесевых красок ограничивается цветовым охватом принтера и типом его красок. Обычные смесевые цвета, находящиеся вне границ охвата струйного принтера, также не могут быть точно воспроизведены на пробном оттиске. Снизить влияние данного ограничения помогает использование принтера с дополнительными красками, например серыми, светлоголубыми, светло-пурпурными чернилами. При печати цветопробы из растрированных данных (1 bit TIFF) трудно добиться четкости в имитации растровой точки при линиатуре более 150 lpi. Данное ограничение обусловлено разрешением струйных принтеров и ограничивает возможности в тех видах печати, где применяются большие линиатуры. В итоге широкое применение растрированная цифровая проба нашла во флексографии, для которой линиатура 150 lpi является достаточно высокой.

4. Цель работы

Целью данной работы является определение технологических возможностей струйного принтера Epson Stylus Photo 2100 для обеспечения точной имитации цвета оттиска при использовании бумаг Glossy Paper Photo Weight (215 Γ/M^2), Archival Matte Paper (192 Γ/M^2) и чернил Ultra Chrome. Качественный цветопробный оттиск, точность которого проверена, может выступать в роли контрактного, то есть подписного, листа. Предсказуемость печати является главным результатом внедрения цветопробы в технологический процесс. Как правило, при серьезном подходе к изготовлению цветопробы проводятся предварительные тесты стабильности печати, ее соответствия стандартам и нормам. На данный момент к точности цифровой цветопробы предъявляются следующие требования, зафиксированные в стандарте ISO 12647-7 («Цветопробные процессы, напрямую использующие цифровые данные для вывода»). Для обеспечения соответствия требованиям стандарта, EFI Colorproof XF может автоматически размещать на цветопробном оттиске проверочные шкалы, например, известную UGRA/Fogra Media Wedge.

5. Технологии и материалы

Для данной работы был выбран принтер фирмы Epson Stylus Photo 2100, который может печатать

форматы А3+ (329-483 мм). Возможность разместить его на столе рядом с компьютером и невысокая цена делают его возможным для персонального и домашнего использования. В этом принтере используется пьезоэлектрическая печатная головка, позволяющая печатать чернильными каплями переменного объема до четырех пиколитров. Это повышает разрешение печати до 2880 × 1440 dpi, улучшает качество детализации изображений и воспроизведение градаций. При печати принтер использует капли разных размеров для воспроизведения различных участков. Принтер может печатать как на листовом, так и на рулонном материале, на картоне и т. д. Устройство имеет автоматический резак рулонной бумаги и может печатать без полей. Для печати на матовой, офсетной и газетной бумаге возможна установка черного картриджа Matte Black вместо обычного Photo Black для повышенной оптической плотности печати.

На данном принтере используется (семикрасочная печать) с чернилами Ultra Chrome на основе пигментного красителя, для которых удалось решить не только проблему расширения цветового охвата, но и устранить эффекты метамерии. Метамеризм — явление, при котором два цвета воспринимаются одинаковыми при одних условиях наблюдения, но различаются при других. Учитывая, что офсетный и струйный оттиск имеют принципиально различную природу, именно за счет метамеризма они могут казаться нам как одинаковыми, так и разными. В самом деле, пигменты в офсетных красках и в чернилах для струйной печати применяются разные, да и количество цветов не совпадает.

Для решения задач по контролю качества печатной продукции и точности цветопередачи используют спектрофотометры, позволяющие рассчитывать цветовые координаты в различных цветовых системах. В данной работе был задействован комплект PULSE COLORElite System копании X-Rite, предназначенный специально для создания ICC-профилей различных устройств. Устройство является полностью автоматизированным и позволяет измерить серию цветных образцов за очень короткое время.

В чернилах Ultra Chrome для устранения метамерии введен дополнительный серый цвет к шести цветам, который стал стандартом для струйной печати (С, М, Y, К: с — «осветленный» С, т — «осветленный» М). Новый цвет, соответствующий примерно 25 % обычного черного, как раз и призван бороться с нарушениями нейтральности серого, а а также улучшить качество печати черно-белых изображений. Положительные свойства, характерные для пигментных чернил — повышенная стойкость к свету и влаге, высокая скорость высыхания и возможность печати на широком диапазоне материалов.

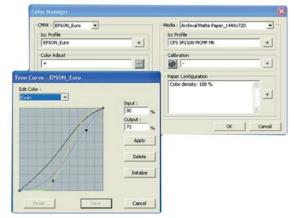
Бумага для струйной печати имеет свои особенности: — изготавливается с использованием высокотехнологичных химических процессов, поэтому должна быть плотнее, ярче и более гладкой;

должна обладать хорошей способностью впитывать чернила.

Исходя из рекомендаций производителя тестируемого принтера оптимального результата можно добиться при использовании оригинальных расходных материалов. Ведь только в этом случае драйвер принтера, чернила и носитель будут взаимодействовать в полной гармонии и гарантировать получение безупречных отпечатков. Тест проводился на следующих бумагах: глянцевой Glossy

Paper Photo Weight (215 г/м 2) и матовый Archival Matte Paper (192 г/м 2).

Glossy Paper Photo Weight — плотная глянцевая бумага с полимерным покрытием для печати изображений высокого качества. Предназначается для использования с пигментными чернилами EPSON. Обеспечивает широкий цветовой охват и четкую передачу деталей в темных областях. Хорошо ламинируется. Идеально подходит для печати презентационных материалов.


Archival Matte Paper — плотная матовая бумага с полимерным покрытием для печати фотоизображений, календарей, сертификатов, постеров, плакатов, оформительских работ. Сделанные на данной бумаге отпечатки обладают повышенной светостойкостью.

6. Тестирование

Качество цветопередачи было основной целью наших тестов

Перед началом тестирования была произведена калибровка при помощи колориметра, входящего в комплект PULSE COLORElite. После калибровки с выбранной температурой 5500 К, цвета на экране стали более теплые.

На данном принтере получены отпечатки с градационными шкалами по базовым цветам триады. Он использовался для коррекции кривых растрового процессора Stylus RIP Professional (рис. 1) для придания реалистичного растискивания и баланса серых тонов. Когда отпечатки с принтера стали соответствовать привычным нормам европейского стандарта, был сделан образец теста для оценки точности цветопробных устройств. Поля теста, представляющие собой света, полутона, тени СМҮКтриады и наиболее характерные цвета системы Pantone, измерены спектрофотометром. Результаты представлены в виде графиков, где диаметры шара равен погрешности ΔE в соответствующей точке координат (a, b) (рис. 2). Среднее значение погрешности для цветов СМҮК-пространства составляет 2-5, для цветов Pantone - 8-13. Причина более высокой погрешности при печати цветов Pantone отсутствие специальной поддержки таких цветов в растровом процессоре.

Рис. 1. Кривые для ручной коррекции градационных характеристик в Stylus RIP Professional

Используя спектрофотометр и возможности программы ColorShop попробовали оценить вероятность возникновения эффектов метамерии — не удалось обнаружить (рис. 3).

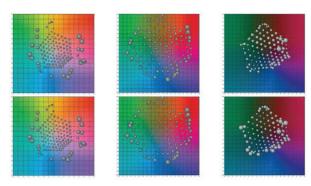
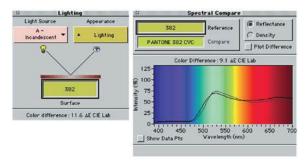



Рис. 2. Диаграммы точности цветопередачи устройства в светах (слева), полутонах (посередине) и тенях (справа) на глянцевой (вверху) и матовой (внизу) бумаге

Рис. 3. Сравнение спектральных характеристик цветов Pantone и аппроксимации, полученной на принтере

7. Выводы

Проведенный тест цветопередачи принтера Epson Stylus Photo 2100 показал хороший результат, доказавший, что это оборудование одно из лучших решений в качестве недорогой цветопробы, а также принтер интересен возможностью печати на материалах толщиной до 1,3 мм — может использоваться для изготовителей картонной упаковки.

Литература

- 1. Стефанов, С. Цвет в полиграфии и не только [Текст] : учеб. пособие / С. Стефанов, В. Тиханов. М. : Репроцентр М, 2003.-288 с.
- **2**. Сойфер, В. А. Методы компьютерной обработки изображений [Текст] / В. А. Сойфер. М. : ФИЗМАТЛИТ, 2003. 784 c
- **3**. Проверяем ПУЛЬС: X-Rite PULSE ColorElite System [Электронный ресурс] / М. «Курсив». Режим доступа: http://www.kursiv.ru/kursivnew/kursiv_magazine/archive/53/50.php#text/ 10.04.2013 г. Загл. с экрана.
- Проще не значит хуже Epson Stylus Photo 2100: настольный плоттер [Электронный ресурс] / М. «Курсив». Режим доступа: http://www.kursiv.ru/kursivnew/kursiv_magazine/archive/42/44.php#text/ 10.04.2013 г. Загл. с экрана.
- Захаржевский, Ю. Современная цветопроба: Состояние и перспективы цветопробных устройств [Текст] / Ю. Захаржевский // «Курсив». — 2008. — № 1. — С. 50–59.
- Юрков, В. Обзор возможностей и принципов работы современных цветопробных систем [Текст] / В. Юрков // «Компюарт». 2008. № 9. С. 12—16.
- F. A. Baqai, Je-Ho Lee, A. U. Agar, J. P. Allebach. Digital Color Halftoning [Text] / IEEE Signal Processing Magazine. — V. 22, № 11. — 2005. — pp. 87—96.

A. U. Agar, F. A. Baqai, J. P. Allebach. «Human visual model-based color halftoning» in «Digital Color Imaging Handbook» [Text] / G. Sharma, Ed. Boca Raton. — FL: CRC, 2003. — pp. 491—557.

можливості сучасної кольоропроби

Були проведені дослідження технологічних можливостей струменевого принтера Epson Stylus Photo 2100 для отримання якісної передачі кольору відбитків. У ході дослідження протестували спектрофотометр PULSE COLORElite System копанії X-Rite і колоріметр, що входить у комплект. Було досягнуто якісне відтворення кольорів. Виникнення ефектів метамерії не виявлено.

Ключові слова: принтер, струменевий друк, відбиток, тестоб'єкт, оптична-щільність, градація.

Васильева Виктория Павловна, кафедра медиасистемы и технологии, Харьковский национальный университет радиоэлектроники, Украина, e-mail: 4emerges@ukr.net.

Турчинова Галина Ивановна, старший преподаватель, кафедра медиасистемы и технологии, Харьковский национальный университет радиоэлектроники, Украина, **e-mail: Galinaturchinova@ru.**

Васильєва Вікторія Павлівна, кафедра медіасистеми і технології, Харківський національний університет радіоелектроніки, Україна.

Турчинова Галина Іванівна, старший викладач, кафедра медіасистеми і технології, Харківський національний університет радіоелектроніки, Україна.

Vasilyeva Victoria, Kharkiv National University of Radio Electronics, Ukraina, e-mail: 4emerges@ukr.net.

Turchinova Galina, Kharkiv National University of Radio Electronics, Ukraina, e-mail: Galinaturchinova@ru