УДК 536.2:536.7 DOI: 10.15587/2312-8372.2019.165711

АНАЛІЗ ОСОБЛИВОСТЕЙ ГІДРОДИНАМІКИ В ПОГРАНИЧНОМУ ШАРІ НАСАДКИ РОЗВИНЕНОЇ ПОВЕРХНІ

Шибецький В. Ю., Костик С. І.

1. Вступ

Використання розвинених поверхонь тепломасообміну, на сьогоднішній день, знаходить широке використання в різноманітних галузях промисловості [1, 2]. В біотехнології досить часто використовують насадкові масообмінні апарати, які являють собою колони заповнені насадками різноманітної форми, тобто тілами геометрична форма яких є суттєво розвинена в порівняння з їх об'ємом [3]. Контакт газу (рідини) з флюїдом відбувається на змоченій поверхні насадки, по якій стікає рідина абсорбент. Течія рідини по насадці зазвичай носить плівковий характер, тому найчастіше їх відносять до плівкових [4]. Створення нових конструкцій насадок з більш розвиненою питомою поверхнею є актуальною задачею. Однак при проектуванні необхідно враховувати деякі лімітуючі параметри, такі як: гідродинаміка в пограничному шарі насадки, особливості виготовлення насадки та використання інертних матеріалів [5]. Оскільки рух рідини поблизу поверхні насадки носить суто ламінарний режим, що суттєво впливає на тепломасообмін, тому об'єктом дослідженням є гідродинаміка пограничного шару насадкового елементу запропонованої конструкції. А метою дослідження є моделювання гідродинаміки насадки розвиненої поверхні запропонованої конструкції в середовищі ANSYS. Встановлення особливостей гідродинаміки поблизу насадки запропонованої конструкції дасть можливість встановити оптимальні параметри і оцінити можливість використання насадок запропонованої конструкції в насадкових масообмінних апаратах.

2. Методика проведення досліджень

2.1. Моделювання гідродинаміки пористого шару в замкнутому об'ємі в середовищі ANSYS

Для проведення комп'ютерного моделювання процесу протікання рідини через пористу насадку використовується середовище ANSYS, а саме модуль CFX. Для адекватності моделі реальним процесам необхідно сформувати умови однозначності.

Геометричні умови. Перед моделюванням процесу будуємо геометрію об'єму внутрішньої порожнини біореактора в середовищі SolidWorks, в якій знаходиться рідина в процесі культивування. Розбиваємо цей об'єм на три домени (рис. 1). Висота зони розміщення насадки 80 мм, діаметр внутрішньої порожнини 95 мм, загальна висота об'єму 120 мм.

Рис. 1. Геометрія об'єму, що моделюється: 1, 3 – домен, в якому може знаходитися тільки рідина; 2 – домен, в якому розміщена насадка

Фізичні умови. Перед встановленням фізичних умов необхідно розбити домени на кінцеві елементи. Для цього з використанням модуля Mesh створюємо вмовчуванням. використовуючи параметри за Формування сітку, сітки виконується з використанням форми трикутних пірамід, так як використання даного типу розбиття хоч і збільшує необхідну розрахункову потужність, однак дає можливість оцінити гідродинамічні особливості на більш глибокому рівні. Мінімальний розмір елементу становить 1,07 · 10-5 м, а максимальний розмір поверхні 1,07 10-3 м. Для створення сітки обрані параметри Relevance Centre: Fine i Smoothing: High. Далі для кожного з доменів визначаємо фізичні умови. Середовище, яке омиває насадки, представляє собою рідину з теплофізичними параметрами води, насадка – алюмінієві елементи з пористістю 0,6.

Граничні умови. На верхньому торці об'єму задаємо швидкість руху рідини *w*, а на нижньому вихід рідини без додаткового гідравлічного опору *P*. Зовнішні поверхні циліндра визначаються, як адіабатична стінка без проковзування рідини.

2.2. Моделювання гідродинаміки пограничного шару насадки запропонованої конструкції в середовищі ANSYS

По аналогічній методиці проводимо моделювання гідродинаміки насадки запропонованої конструкції. Для цього створюємо її геометрію в середовищі SolidWorks. Вона представляє собою суцільний об'єм, в якому може знаходитися рідина, з якого вирізано об'єм насадки для зменшення необхідної розрахункової потужності комп'ютера (рис. 2).

Рис. 2. Геометрії моделі

Далі об'єм розбиваємо на сітку методом кінцевих елементів і задаємо початкові, фізичні та граничні умови. Фізичні умови: рідина — вода. Граничні умови: швидкість на вході в об'єм; тиск на виході; всі інші поверхні — симетричні, тобто такі, які не впливають на рух рідини. Початкові умови: об'єм рідини нерухомий в початковий момент часу.

3. Результати досліджень та обговорення

3.1. Гідродинаміка пористого шару в замкнутому об'ємі в середовищі ANSYS

За результатами розрахунку отриманий градієнт розподілу тиску в насадці (рис. 3). З отриманих результатів видно, що тиск перерозподіляється майже лінійно, хоча в пристінній області насадки присутні збурення.

Рис. 3. Градієнт розподілу тиску

При аналізі впливу швидкості руху рідини на величину гідравлічного опору було проведено дослідження для наступних швидкосте руху: 0,1 м/с; 1 м/с; 2 м/с. Так, при швидкості 0,1 м/с величина гідравлічного опору шару насадки складає 2 Па, при 1 м/с – 35 Па, а при 2 м/с – 105 Па. Отримані значення майже не відрізняються від значень, отриманих при експериментальних дослідженнях [6]. Це дає можливість стверджувати, що побудована модель достатньо адекватно оцінює гідродинамічну обстановку при протіканні рідини через насадку та може бути

використана для оцінки гідравлічного опору при масштабуванні процесів і використанні нових насадкових елементів.

3.2. Гідродинаміка одиничної насадки в середовищі ANSYS

При поперечному омиванні насадки величина гідравлічного опору фактично не змінюється і лежить в межах значення 101,3 кПа, в той час, як при повздовжньому омиванні значення перепаду тиску суттєво змінюється і лежить в межах від 98,96 кПа до 102,7 кПа (рис. 4). Цей факт дає змогу стверджувати, що розташування насадочних елементів в потоці рідини повинно носити переважно поперечний характер, що сприятиме зменшенню гідравлічного опору шару насадок.

Рис. 4. Поля розподілу тисків поблизу насадки: *а* – при поперечному омиванні насадки; *б* – при повздовжньому омиванні насадки

Аналізуючи отримані результати полів та векторів швидкостей в пограничному шарі насадки, було встановлено наступні особливості (рис. 5). При поперечному омиванні насадки величина векторів швидкостей знаходиться в межах від 0 до 1,511 м/с, в той час, як при повздовжньому омиванні діапазон значень швидкостей змінюється більш широко, і лежить в межах від 0 до 1,968 м/с.

Рис. 5. Поля швидкостей в пограничному шарі рідини насадки: *а* – при поперечному омиванні насадки; *б* – при повздовжньому омиванні насадки

Також слід зазначити, що величина контуру, в якому швидкість потоку рідини близька до 0 м/с в декілька десятків разів більша у випадку поперечного обтікання насадки, що свідчить про високу імовірність виникнення так званих зон застою, в яких неможливо створити інтенсивний тепломасообмін (рис. 5). Цей факт дає змогу стверджувати, що розташування насадочних елементів в потоці рідини, з точки зору уникнення можливості виникнення зон застою, повинно носити переважно повздовжній характер, що сприятиме підвищенню ефективності коефіцієнтів тепломасопереносу [7]. Однією з найважливіших характеристик під час використання насадок в масообмінних апаратах, особливо під час культивування поверхнево залежних клітин, є так звані напруження зсуву, величина яких пропорційна добутку швидкості зсуву потоку на коефіцієнт динамічної в'язкості (рис. 6).

Рис. 6. Швидкість зсуву потоку в пограничному шарі рідини насадки: *а* – при поперечному омиванні насадки; *б* – при повздовжньому омиванні насадки

Рухаючись в каналах складної форми, при значних швидкостях і невисоких значеннях в'язкості, рідина може створювати високоградієнтні зони із значними напруженнями зсуву, що можуть пошкоджувати клітини ссавців під час культивування [8, 9]. Тому під час проектування насадкових масообмінних апаратів (біореакторів) необхідно контролювати величину швидкості зсуву потоку, яка за літературними даними [10] для клітин ссавців не повинна перевищувати 10⁴ с⁻¹. Виходячи з цього, аналіз картини напружень зсуву показав, що при поперечному омиванні насадки величина швидкості зсуву потоку лежить в межах від 3,1 до 4,27·10³ с⁻¹, в той час, як при повздовжньому обтіканні насадки цей показник становить від 5,6 до 1,25·10⁴ с⁻¹ (рис. 6). Враховуючи мінімальний об'єм зон із значеннями швидкостей зсуву потоку більше 10⁴ с⁻¹, можна стверджувати, що особливого впливу на вихід життєздатних клітин потік не створює. Однак слід зауважити, що подальше збільшення швидкості потоку на вході, не є раціональним з точки зору зростання швидкості зсуву потоку і відповідно гідравлічного опору, створюваного шаром насадок [10].

4. Висновки

Проведено моделювання гідродинаміки пористого шару насадок в замкнутому об'ємі та моделювання гідродинаміки окремої насадки, що омивається потоком рідини в повздовжньому та поперечному напрямку. розташування повинно носити Встановлено, що насадок переважно ефективності коефіцієнтів повздовжній характер, для підвищення тепломасопереносу. Але, з іншого боку, для зменшення гідравлічного опору шару насадок розташування насадочних елементів в потоці рідини повинно носити переважно поперечний характер. Тому в кожному конкретному випадку необхідно обирати, який із параметрів більш суттєвий, і оптимізувати процес з огляду на поставлене завдання.

Література

1. Zhang C., Li Y. Thermodynamic analysis on theoretical models of cycle combined heat exchange process: The reversible heat exchange process // Energy. 2017. Vol. 124. P. 565–578. doi: http://doi.org/10.1016/j.energy.2017.02.103

2. Ободович О. М. Особливості тепловіддачі при вимушеній конвекції в роторно-дисковому плівковому випарному апараті // Промышленная теплотехника. 2016. № 6 (37). С. 22.

3. Experimental investigation of convective heat transfer from sewage in heat exchange pipes and the construction of a fouling resistance-based mathematical model / Song J., Liu Z., Ma Z., Zhang J. // Energy and Buildings. 2017. Vol. 150. P. 412–420. doi: http://doi.org/10.1016/j.enbuild.2017.06.025

4. Heat Exchange Numerical Modeling of a Submarine Pipeline for Crude Oil Transport / Lanzafame R., Mauro S., Messina M., Brusca S. // Energy Procedia. 2017. Vol. 126. P. 18–25. doi: http://doi.org/10.1016/j.egypro.2017.08.048

5. Influence of various aspects of low Reynolds number $k - \varepsilon$ turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids / Zhao C.-R., Zhang Z., Jiang P.-X., Bo H.-L. // Nuclear Engineering and Design. 2017. Vol. 313. P. 401–413. doi: http://doi.org/10.1016/j.nucengdes.2016.12.033

6. Jafari M., Farhadi M., Sedighi K. Thermal performance enhancement in a heat exchanging tube via a four-lobe swirl generator: An experimental and numerical approach // Applied Thermal Engineering. 2017. Vol. 124. P. 883–896. doi: http://doi.org/10.1016/j.applthermaleng.2017.06.095

7. Shybetskiy V., Semeniuk S., Kostyk S. Design of construction and hydrodynamic modeling in a roller bioreactor with surface cultivation of cell cultures // ScienceRise. 2017. Vol. 7, Issue 36. P. 53–59. doi: http://doi.org/10.15587/2313-8416.2017.107176

8. Hydrodynamics of fermenter with multi-shaft stirrer / Zakomornyi D. M., Kutovyi M. H., Kostyk S. I., Povodzynskyi V. M., Shybetskyi V. Yu. // ScienceRise. 2016. Vol. 5, Issue 2 (22). P. 65–70. doi: http://doi.org/10.15587/2313-8416.2016.69451

9. Mathematical simulation of hydrodynamics of the mixing device with magnetic drive / Kostyk S. I., Ruzhynska L. I., Shybetskyi V. Yu., Revtov O. O. // ScienceRise. 2016. Vol. 4, Issue 2 (21). P. 27–31. doi: http://doi.org/10.15587/2313-8416.2016.67275

10. Cell Membranes Resist Flow / Shi Z., Graber Z. T., Baumgart T., Stone H. A., Cohen A. E. // Cell. 2018. Vol. 175, Issue 7. P. 1769. doi: http://doi.org/10.1016/j.cell.2018.09.054