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DEVELOPMENT OF IMPLICIT METHOD
FOR NUMERICAL MODELING OF
TURBOMACHINE BLADE THERMOELASTIC
VIBRATIONS

B ocmanui decsimunimmst cnocmepizacmocs menoenuyis 00 nioULes memMnepamypu 320Psiiis Naiued 6 2aso-
myp6innux deuzynax (I'T/). Ie dossonse nionsmu sx edpexmusnicmo pobomu 0euzyna, max i 6uxiony nomymncHicmo.
Y cyuacnux dsuzynax memnepamypu 8ionpaypbO8aHux 2a3ie ice iCMOMHO NEPESUYIOMb MEMNEPaAMmypY NAABLEHHS
mamepiany ronamox. Y 36°a3ky 3 uum npu npoexmyeanni mypoin I'T/] eunuxae neobxionicmv 6 3acmocyeani
yucerbHUX Memodis, aKi 00360110Mb HAUOLILUL 00CMOBIPHO MOOEII08aAMU HeCMAUIOHAPHT AePOMePMONPYICHI
eexmu. O0niero i3 ckradosux uacmun 3adaui aepomepmonpyicHOCMi € iHmezpyeanis HeCMAauionapHux PieHsIHb
MePMONPYICHOCME CRIALHO 3 pisHanHIMU aepodunamiru. OCKIAbKU Ui PIGHAHNA NOGUHHI SUPIULYEATMUC CRIIHHO
3 €0UNUM KPOKOM 30 4aACOM, HeoOXi0no siddasamu nepesazy nessHum vuceivium memooam inmezpyeamnis. 06 cx-
mom ocaioNcents € HeCMAUionapna 63aemoo0is MePMONPYNICHUX KOIUBAHD JONAMOK MypOinyu ma nomoxy 2a3y.

Y Oaniiit po6omi npedcmasnenuil nes8HUll YUCELHUTI MEMOO MOOCIIOEAHM MEPMONPYICHUX KOIUBAHD ele-
menmie xkonempyxyii mypoinu IT/, ¢ momy uucai ronamox myp6inu, 061A0HANUX KAHALAMU OX0JL00NCCHHS.
B ocnosi memody noxnadeno pisnsanis Linitinoi mepmonpyrcHocmi, SKi itmezpyromocs Memooom KiHuesux eie-
menmis. Jlocrioicysana obaacms po3dusacmvcs Ha KOMIPKIL, w0 Ymeopioioms PO3PAXYHKO8Y CimKy 3 2ekcaedpamu
3 dodamrosumu eysnamu. Pospaxynxosi 6ysiu eubupanmvcs makum wunoM, wob na o0un eiemenm npunaoaio
20 sysnis. Anpoxcumayis napamempio 6 eiemMenmi 6UKOHYEMbCsL 3a 00N0MO2010 NOJTHOMIE MPEemb0z0 CMynens.
Inmezpysansi 3a uacom nPoBOOUMbCS MAKONC 3 MPEMIM NOPAOKOM MOUHOCTII.

THokasani pesyrvmamu mecmyeanhs. Memoody Ha MOOCIbHUX 3A0auax, a MAaKo# NOPICHSIHHSL Pe3yivmamis
MOOen0eans KoIUGANs JTONAMKU cmanoapmuoi xougizypayii 3 pesyisvmamamu inwux asmopie. Posbixcnicmo
pesyavmamis He nepesuuye 0,4 % 0nst modenvnoi sadauii 0,7 % oas xonusanv ronamxu. Ompumani pesyavmamu
ceiduamo npo me, wo NPeocmasieHuil Memoo MOIHA BUKOPUCTNOBYBAMU 05l WUCETBHOZ0 MOOCTIOBAHHSL HECAUIO0-
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1. Introduction

The most common way to increase the efficiency of
modern gas turbine engines is to increase the tempera-
ture at the inlet to the first stages of the turbine. The
reason for using high temperatures lies in the increase in
pressure for the adiabatic expansion process, therefore,
in the possibility of creating greater specific work when
expanding the gas in the turbine. Today, the inlet tem-
peratures of the gas turbine impeller have reached a level
far exceeding the melting temperature of the turbine ma-
terial. The problem of determining the level of dynamic
and thermal stresses in turbine blades is too complicated
for experimental studies, therefore, by introducing modern
methods and means of numerical modeling into practice,
it is possible to significantly reduce the cost of an experi-
mental search for optimal materials and modes of efficient
operation of the turbine. That is, an urgent problem is the
numerical simulation of the interaction of the streamlined
flow and the vibrations of the blades, taking into account
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the significant temperature unevenness and the complex
design of the blades in the first stages of gas and steam
turbines.

The importance of taking into account the temperature
distribution and the interaction of the blade with the
flow is confirmed by studies of other authors [1]. It is
also necessary to take into account the complex design
of the blade equipped with cooling. The solution to this
problem is to integrate the thermoelasticity equations.
To date, various models are used to solve the problem:

— model of thin shells [2, 3];

— model of a thin plate with variable thickness [4];

— model of vibrations of the blade taking into account

the spatial shape of the blade [5, 6].

For this problem, the most suitable model is the model
of blade vibrations taking into account the spatial shape
and material, since it allows taking into account both the
design of the blade and the uneven temperature and pro-
perties. There are several solutions for this model, includ-
ing the modal approach [5, 6] and the method of direct
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integration of the equations of motion [7]. The modal
approach consists in finding a solution in the form of
a linear combination of the eigenmodes of vibration of
the blade, the coefficients of which depend on time and
are calculated at each time step. The general problem of
flow around the crown blade and blade vibrations using
the modal method is considered in [8]. The disadvantage
of this method is the need to re-determine the eigenmodes
and frequencies when changing the physical properties of
the material of the blade, in terms of computational costs,
it can be less effective than with direct integration of the
equations of motion. Thus, the most suitable method for
modeling blade vibrations in this problem is the method
of direct integration of the equations of motion. The main
method for solving the problem of thermoelasticity is the
finite element method [9, 10].

Thus, the object of research is the unsteady interaction
of thermoelastic vibrations of the turbine blades and gas
flow. The aim of research is development of an effec-
tive method and software for the numerical simulation of
thermoelastic vibrations of turbine engine blades.

2. Methods of research

2.1. Source equations. Vibrations of a turbomachine
blade are described by dynamic thermoelastic equations
for a solid in three spatial dimensions [11-13]:
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where i — displacement vector of the coordinates of the
point in the body; p — density; f — vector of mass forces;
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M:

— Lamé coefficients; E — Young’s modulus; v — Poisson’s ratio;
v=(31+2u)o; o — coefficient of linear thermal expansion;
0=T —T, — temperature deviation; y — coefficient of thermal
diffusivity; n=vT,/k; k — coefficient of thermal conductivity;
Q — heat source.

Equations (1) are supplemented by the boundary con-
ditions on the surfaces of the blade:

— in the root section #=0;

— on the surface:
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where 6; — stress tensor; n; — vector normal to the surface;
p; — vector of external forces.

For 6, a value is set at the boundaries of the body
0=0,, or heat flux
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In the case of interaction with the surrounding fluid,
the vector of external forces is defined as p; = pn; (p is the

fluid pressure). Equation (1) is also supplemented by the
initial conditions:
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2.2. Numerical simulation methoed. There are various
methods for the numerical integration of equations (1).
Among the most common, the method of finite differences,
finite volumes, and finite elements is used [9, 10]. The
finite difference method requires the use of generalized
coordinates, complicates the equation. The finite volume
method for obtaining acceptable results requires the use
of high-order approximations. At the same time, the finite
element method provides an efficient algorithm that al-
lows applying approximation of various orders on different
computational grids. In this paper, let’s apply the finite
element method, built on the use of third-degree elements
on a grid with a hexahedron.

At each time step, elastic forces are calculated at the
nodes of the computational grid for each cell according
to the formula [10]:
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where r — vector containing the components of the force
vectors of the vertices of the cell; § — vector containing the
components of the displacement vectors of the cell vertices;
f¢ — vector of mass forces in the cell; B — transformation ma-
trix of the displacement vector & into a vector containing the
components of the strain tensor €, £ = B; D — transformation
matrix of the vector € into a vector containing the components
of the stress tensor o, o =Deg; N — transformation matrix of
the vector 8 into the displacement vector inside the cell u?,
=N; Q — cell volume.

Next, the integration of the equation of motion of the

grid nodes is performed:
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where R; — transformation matrix of the components of the
vector r into the components of the force vector of the i-th
node of the computational grid; u; — displacement vector of
the i-th node, the summation is carried out over all cells
of the computational grid.

For the numerical integration of equations (1), a com-
bination of previously developed methods is used. The
equation for temperature is integrated by the method of
finite volumes of the second order in spatial coordinates
described in [14]. The equations of motion are integrated
by the finite element method, which can be obtained by
modifying the method described in [15].

The hexagonal cell of the computational grid is selected
as the finite element. The approximation of variables by an
element is performed using a polynomial of the third degree:

3
u= z agx'ylz'.

i,j,k=0

The matrix a; has twenty nonzero elements, that is,
for approximation, the values of variables at 20 points of
each cell are used.
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Thus, the equation of motion (1) after discretization by
the nodes of the computational grid and time steps turns
into a system of linear equations:

Bu, =5u, —4u, »+u, 5+ F,

B=(2-Ar’A), (2)

where At — time step; n — time step number; u, — vector of
displacements in the nodes of the computational grid; F —
vector of external forces.

Implicit discretization of the equations of motion (2)
provides a third order of approximation with respect to
spatial variables and time and is absolutely stable at any
values of the Courant number. The matrix B of equations (2)
does not have dominant diagonals, which limits the use
of iterative methods, does not allow splitting in coor-
dinates, and is too large for direct inversion methods.
Therefore, to solve equations (2), the following approxi-
mation is proposed:

B'= (z CiBi)_1 = ZC:‘BF1:

where B; — matrix of equations (2) for one cell with num-
ber i; C; — corresponding matrix of the connection of the
nodes of cell i with other cells. This matrix has a dominant
unit main diagonal ((C;); =1).

Matrices B; are rotated using the classical Gauss-Jordan
method. The integration of equations (1) is carried out
jointly using the same time step.

3. Research results and discussion

As the first test object of the numerical method, a beam
of 1 m square 0.05 mx0.05 m in length, rigidly fixed at
one end and free at the other, was chosen. The beam
volume was divided into identical rectangular hexagonal
cells, forming a computational grid of size 30x1x1. As
the initial condition, a bend along one of the coordinate
planes corresponding to one of the first 4 eigenmodes of
bending vibrations of the beam was chosen [16]. As a re-
sult, the vibration frequencies are obtained corresponding
to the chosen eigenmodes. Table 1 presents the theoreti-
cal [16] and calculated values of the eigenfrequencies for
the given characteristics of the beam material: Young’s
modulus £=2.1-108 Pa; Poisson’s ratio v=0.3; density
p=7.8-10% kg/m?.

Tahle 1
Eigenfrequencies of bending vibrations of the beam
Mode 1 2 3 4
Frequency (theory), Hz 23.549 | 147.595 | 413.313 | 809.946
Frequency (calculation), Hz | 23.584 | 146.863 | 412.095 | 806.731

The average difference between theoretical and calcu-
lated data does not exceed 0.4 %. The torsional vibration
frequencies of the beam of the first 4 eigenmodes were
also obtained. The results are presented in Table 2.

The average difference of the presented data for tor-
sional vibrations does not exceed 0.16 %.

Tahle 2
Eigenfrequencies of torsional vibrations of the beam
Mode 1 2 3 4
Frequency (theory), Hz 257.7 773.2 1288.7 | 1804.1
Frequency (calculation), Hz | 257.6 775.1 1288.1 | 1798.8

The second object was a turbine blade of the last stage
of a steam turbine with characteristic dimensions: height
h=0.775 m; the chord in the root section ¢=0.11 m, in
the peripheral section — ¢=0.0945 m. For this blade, the
eigenmodes and eigenfrequencies of elastic vibrations were
determined by a third-party method [17] for the clamping
conditions at the root and free end of the blade. As an
initial condition, one of 5 eigenmodes was chosen, for which
the corresponding eigenfrequency was determined. The
computational H-grid was an 8x38x1: 8 rows uniformly
in height, 38 rows along the chord, 1 row in thickness.
Table 3 presents the initial and calculated values of the
eigenfrequencies for the given characteristics of the mate-
rial of the blade: Young’s modulus E=2.1-10% Pa; Poisson’s
ratio v=0.3; density p=7.8-10% kg/m?.

Tahle 3
Eigenfrequencies of the blade
Mode 1 2 3 4 5
Frequency ([17)), Hz | 41.263 | 99.109 | 216.320 | 220.832 | 320.555
Frequency 41,563 | 98.815 | 216.005 | 221.626 | 319.582
(calculation), Hz

The average relative difference between the data for
blade vibrations in the Table 3 does not exceed 0.7 %.

4. Conclusions

A method and software for numerical modeling of
thermoelastic vibrations of a turbomachine blade with
a higher approximation order are developed. The results of
numerical modeling of elastic vibrations of various bodies
of complex shape are presented. They demonstrate suf-
ficient efficiency and accuracy of the developed numeri-
cal method. This method allows the use of sophisticated
models of turbomachine blades. Further development of
the method for solving the problems of thermoelasticity
allows its use to solve the problem of aerothermoelastics
of turbomachines.
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