REBORGSIONSRESEARCHSPROJECHS

UDC 004.75:004.042
DOI: 10.15587/2312-8372.2020.205151

DESIGN AND IMPLEMENTATION OF
THE DISTRIBUTED SYSTEM USING AN
ORCHESTRATOR BASED ON THE DATA
FLOW PARADIGM

O6’ckmom docaioncennsa danoi pobomu € po3nodizeni cucmemu nio Ynpasriniam opkecmpamopy na 6asi na-
paduemu Kepysanus NOMOKAMU OAHUX, 4 MAKON Memoou ynpasiinus mikpocepgicamu. O0num 3 nabinvul npo-
OREMHUX MICUb CYUACHUX POZNOOLIEHUX cUCTeM € 6UOID MemOody Ynpasiinms 102ikow podomu Mikpocepeicie ma
npouyecamu 83aemo0ii mixe numu. Ienyroui Konyenyii opxecmpauii ma xopeozpadii MiKkpocepeicie ne 003601510Mb
8 NOGHIU MIPi ehexMmuUHO BUKOPUCMOBYSAMU MA PO3NOOLLIMU HABANMANCEHIH PIBHOMIDHO NO 6CIll cucmemi, uo
n06’s13an0 Y neputy uepzy 3 Has6HiCMIO 2eMepPoeHH020 XapaKxmepy po3noodilenozo cepedosuila.

B pamxax docuioicenns npononyemvcsa Konuenyis 2iopuonoi opkecmpayii na ocnogsi napaouzmi Kepyeanis.
nomoxamu oanux. Jlanuil nioxio 00360156 BUKOPUCTNOBYEAMU OPKECMPAMOp Juue 01s iHiyiayii <xeuris oouuc-
JleHb no depesy MiKpocepesicie, a 3a nooaivule 00UUCLeHst Ma PO3N0ECIO0NCEHH OAHUX HECYMb 8I0N06I0AILHICY
cami mixpocepsicu. /lanuil nioxio, na 6iominy 6i0 inwux, noconaes y codi Giivu ONMUMALLHI AKOCT OPKeCMpPauii:
npocme ma 3poymiie, Ha KOJICHOMY emani 00uuUCienis, Ynpasiinms CUCmemolo, KoopouHosanicmy 0ill MiKkpocep-
gicie. Taxoo, 6UKOPUCMANHS CNEUIANI308a4H020 2i0PUOH020 OPKECMPAMOPA YCYHYLO 00U 3 20JI06HUX HeDOIKiE,
a came — IMeHWUL0 6i0N06I0AILHICID MA KIALKICTb 00UUCTIOBANDIHO20 HABAHMANCCHISL, NOKAAOCHUX HA OPKECMPa-
mop po3nodiienoi cucmemu, ma sy3au oobuucienv. B peayivmami nposedenns eKxcnepumenmy 3 6UKOPUCMAHHIM
PO3n0diNenol cucmemu 3 opKecmpamopom na 6asi napaduemu Kepyeanus NOMoKamu 0anux 6yio 00csznymo
aMenwenns Yy Kiloka pasie nasanmanicenus na cam opxecmpamop. Ile daro moxciusicmv euxopucmogyeamu
mixpoxoumpoaepu muny ESP8266, ESP32, Raspberry Pi y sixocmi posnodinenoi cucmemu. Taxi mikpoxonmpoe-
DU MONCYMb SUCTIYNAMU He MILbKU opKecmpamopamu, aie i sysiamu obuuciens (dataflow nodes). Y moii sce
uac, napaduzma Ynpasiinis nomoxami 0anux 003601€ PIBHOMIPHO MaA MAKCUMATLHO eQeKmuUsHo po3nooiisamu
HABANMANCEHHS NO CUCTNEM 3G PAXYHOK 020, U0 6XIONI Oani cucmemu nooaomves i 6uzisoi 00UUCII08AIBHOZ0
zpay, de Kogcen 8y301 npedcmasiie codor oKpeMull MiKpocepeic.

Kmouosi cnosa: napaduzma kepyeanins nomoxamu 0anux, posnoodiieni Cucmemu, 6UCOKONOMYICHT 00UUCeNILS,
npucmpoi inmepnemy peuetl, xopeozpaqis Mikpocepeicis.

Kuhiuk Y.,
Kharchenko K.

Received date: 12.02.2020
Accepted date: 18.03.2020
Published date: 30.06.2020

1. Introduction

The data flow management paradigm appeared in the
early 70s of the last century and found itself in many
aspects of distributed systems. Within the framework of
this paradigm, the computational problem has the form of
a directed graph, where the nodes represent operations on
the data, and the connections between the nodes show the
incoming and outgoing points for calculations. At the same
time, the architecture of a modern microservice system has
reached the level when the number of services reaches
several tens or even hundreds of microservices [1]. Tt is
customary to apply more intelligent approaches to such
systems when setting up coordinated interaction of compo-
nents, as well as in the process of controlling them [2—4].
In the case of data flow control systems [53], as well as
systems based on the data flow paradigm [6, 7], the issue
of orchestration or control of microservices becomes even
more relevant. Indeed, the operation of the entire system
will depend on how communication and interaction between
the components is carried out. The presence of confusing

Copyright © 2020, Kubiuk Y., Kharchenko K.
This is an open access article under the CC BY license
(http.//creativecommons.org/licenses/by,/4.0)

communication in a system with many components leads
to a decrease in the speed of the system itself, as well
as to a slowdown in the development and debugging of
such a system. This paper presents an implementation of
an orchestrator based on the data flow control paradigm,
as well as an option to build a microservice system using
this orchestrator. So, the object of research is distributed
systems under the control of an orchestrator based on
the data flow control paradigm, as well as microservice
management methods. And the aim of research is to create
an orchestrator based on the data flow control paradigm
for a distributed system.

2. Methods of research

To achieve this aim, a study is conducted of existing
solutions for microservice orchestration using the data
flow paradigm. Among the analyzed solutions, it is worth
highlighting the following:

— Netflix Conductor [8]. It uses a central management

node to manage system services. All calculation opera-

;38

TECHNOLOGY AUDIT AND PRODUCTION RESERVES — Ne 3/2(53), 2020

I55N 2664-93969

INI-'I]RMATIIJN AND CONTROL SYSTEMS:
REPORTS ON RESEARCH PROJECTS)

tions are tied to the control node, including interaction

with the database.

— ZeeBe [9]. It uses a message bus to communicate

with services, and the data (or status) of the system is

stored on the nodes of the system itself and, if neces-
sary, is replicated to several services.

— Uber Cadence [10]. It also uses a message bus for

inter-service communication, however, unlike ZeeBe, it

has a centralized data storage, as in Netflix Conductor,
which reduces system fault tolerance.

The use of the message bus leads to an uncontrolla-
bility of the calculation process in the system, therefore
this approach was rejected in favor of a centralized con-
trol node. The scheme of operation of the system with
a centralized node is shown in Fig. 1.

Microservice

Orchestrator

User

Microservice

Fig. 1. The principle of orchestrator operation with a centralized control unit

The obvious drawback of such a system is that too
many operations are concentrated on the orchestrator, that
is, it plays the role of a kind of gateway that not only
controls the calculation process, but also passes the entire
data stream from microservices through itself. To solve this
problem — reducing the load on the orchestrator, subject to
the availability of a controlled data stream, let’s propose
such a model of orchestration, which made it possible to
reduce and transfer the load to other services. This model
of orchestration is presented in Fig. 2.

As shown in Fig. 2, the orchestrator takes part in the
calculation process only at the initialization and receiving
stage, while each microservice performs one operation of
receiving and sending data. The peculiarity of this model is
that while maintaining the centralized service management
approach and the ability to monitor the state of the compu-
tational task, it is possible to reduce the load on the control
node, making the system more balanced in terms of load.

3. Research results and discussion

As part of the study of the operation of the system
with an orchestrator, based on the data flow control para-
digm, 2 types of services are created:

1) orchestrator;

2) service worker.

The orchestrator is designed to control data flows in
a distributed system, and also acts as a gateway between
the user and the system.

The service worker acts as a wrapper over the business
logic of the system, and also introduces functionality for
interacting with the orchestrator and other service providers.

The UML class diagram of the designed system can
be seen in Fig. 3.

Each service was launched in a sepa-
rate Docker container. The structure of
the system configuration file is shown
in Fig. 4.

According to the system confi-
guration file with the orchestrator
based on the data flow control para-
digm, the number of services that took
part in the experiment is 4, of which:
1 service orchestrator and 3 service
executors.

This configuration file corresponds to
the following system structure (Fig. 5).

Microservice

Microservice

Orchestrator

- state: Object
- workers: Worker([]

+ execute(job: Job): SessionToken
+ getResult(token: SessionToken): Object

h 4
Worker

- state: Object
- workers: Worker[]

+ execute(job Job): void
- getTaskImpl(taskID: string): Function

Fig. 3. UML class diagram of a system
with an orchestrator based on a data flow control paradigm

Microservice

Microservice

L

Orchestrator

Microservice Microservice —

User
Microservice

AR

Microservice

Fig. 2. The principle of the hybrid orchestrator based on the data flow control paradigm

TECHNOLOGY AUDIT AND PRODUCTION RESERVES — Ne 3/2(53), 2020

39—)

— INFORMATION AND CONTROL SYSTEMS:
REPORTS ON RESEARCH PROJECTS

I55N 2664-9969

version: '3’

services:
orchestrator:
image: "porbs/df:orchestrator"
ports:
- "3000:3000"
workerl:
image: "porbs/df:worker"
ports:
- "3001:3000"
worker2:
image: "porbs/df:worker"
ports:
- "3002:3000"
worker3:
image: "porbs/df:worker"
ports:

- "3003:3000"

Fig. 4. System configuration file with an orchestrator based
on the data flow control paradigm

The system works as follows:

1. The user makes a POST/execute request to the
orchestrator and transmits the configuration file of the
computational task (in the form of a directed graph).

2. As soon as the orchestrator receives the configura-
tion, it begins to act according to the following protocol:

1) the orchestrator performs the procedure of assigning
a separate service to the computing node in the configura-
tion file according to the round-robin principle;

2) the orchestrator calculates which nodes (services) of
the system have all the input data for starting the calcu-
lation (in fact, the orchestrator searches for the <«leaves»
of the calculation tree) and distributes the configuration
file to them using the POST /execute request.

3. Assoon as the service provider receives the configura-
tion, it begins to act according to the following protocol:

1) the service provider checks that all incoming data
is available. If not, the service will wait. If all the data
for the calculation is already available, then perform the
calculation;

2) the service worker writes the calculation result to the
configuration file and distributes it using the POST /execute
request, according to the configuration file. If the source
node for this microservice is the orchestrator itself, then in-
stead of POST /execute request, a POST /result/:key request
is executed, where key is the request parameter that con-
tains the key of the computing session.

An example of a configuration file for a computational
task in JSON format is shown in Fig. 6.

{
"$a": {
"inputs": [3, 2],
"outputs": ["$c"]
1
"$b": {
"inputs": [3, 4],
"outputs": ["$c"]
I
"$c": {
"inputs": ["$a", "$b"],
"outputs": ["$result"]
}
}

Fig. 6. Example of a configuration file for a computational task

The working machine on which all tests were performed
has the following configuration:

— CPU: 3.4 GHzx6;

- RAM: 8 GB.

The resource consumption of the system described above
is shown in Table 1.

Tahle 1

Consumption of resources of the orchestrator system
and service provider

Container Data stream
5 0,
Service CPU (%) HAM (ME) size (MB) | volume (KB)
orchestrator 0.44 42.8 55 0.235
worker 0.45-0.46 47-48 55 0.235-0.244

Thus, taking into account the results of the test of
load and consumption of system resources, it is possible
to conclude that the created orchestrator can be used on
devices of the Internet of things.

4. Conclusions

As a result of the research, a system with an orches-
trator is designed and implemented based on the data
flow control paradigm. This system has several advantages
compared to similar orchestration systems [8—10]:

1) relatively small size and low level of resource con-
sumption;

2) uniform distribution of load on the system;

3) controlled data flow;

4) non-blocking calculation operations (several inde-
pendent tasks can be performed simultaneously).

POST /result/key

Microservice
y
Q POST /execute
GET /result/key g Orchestrator Microservice

User

Microservice
Fig. §. Scheme of the work process of the orchestrator system based on the data flow control paradigm
; 40 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — Ne 3/2(53), 2020

I55N 2664-93969

INI-'I]RMATIIJN AND CONTROL SYSTEMS:
REPORTS ON RESEARCH PROJECTS)

The system was tested on a prototype code and imple-
mented in JavaScript in Node.js. This environment allows to
execute JavaScript code and interact with the file system.

The following stages of work are planned to investigate
and implement the following tasks:

1) lack of service discovery services (to eliminate the
need for manual configuration of services);

2) lack of fault tolerance services;

3) lack of a gateway software service that would allow
traffic to be encrypted between the user and the system.

In general, the system showed that the implementa-
tion of an orchestrator for managing data flows can be
quickly and efficiently implemented in a scripting language
environment, for example, in JavaScript. This makes it
possible to use this approach to build an orchestra for
low-power computing systems, for example, in the devices
of the Internet of things.

References

1. Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Mon-
tesi, E, Mustafin, R., Safina, L. (2017). Microservices: yesterday,
today, and tomorrow. Present and ulterior software engineering.
Cham: Springer, 195-216. doi: http://doi.org/10.1007,/978-3-
319-67425-4_12

2. Petrenko, A. 1., Bulakh, B. V. (2018). Intelligent Service Dis-
covery and Orchestration. Proc. of 2018 IEEE First International
Conference on System Analysis and Intelligent Computing (SAIC).
Kyiv, 201-205. doi: http://doi.org/10.1109/saic.2018.8516723

3. Petrenko, A., Bulakh, B. (2019). Automatic Service Orchestra-
tion for e-Health Application. Advances in Science, Technology
and Engineering Systems Journal, 4 (4), 244—-250. doi: http://
doi.org/10.25046,/aj040430

4. Petrenko, O. O. (2015). Porivniannia typiv arkhitektury system
servisiv. Systemni doslidzhennia i informatsiini tekhnolohii, 4, 48—62.

5. Kharchenko, K. V. (2016). An Architecture and Test Imple-
mentation of Data Flow Virtual Machine. System Analysis and
Informatin Technology Conference. Kyiv: IASANTUU-KPI, 268.

6. Kharchenko, K., Beznosyk, O., Romanov, V. (2018). Implemen-
tation of Neural Networks with Help of a Data Flow Virtual
Machine. 2018 IEEE Second International Conference on Data
Stream Mining & Processing (DSMP), 407-409. doi: http://
doi.org/10.1109/dsmp.2018.8478455

7. Kharchenko, K., Beznosyk, O., Romanov, V. (2017). A set of
instructions for data flow virtual machine. 2017 IEEE First Ukraine
Conference on Electrical and Computer Engineering (UKRCON).
Kyiv, 931-934. doi: http://doi.org/10.1109 /ukrcon.2017.8100385

8. Netflix Conductor. Available at: https://netflix.github.io/conductor/

9. Zeebe. Available at: https://docs.zeebe.io/index.html

10. Uber Cadence. Available at: https://cadenceworkflow.io/

Kubiuk Yevhenii, Department of System Design, National Technical
University of Ukraine <Igor Sikorsky Kyiv Polytechnic Institutes,
Ukraine, e-mail: eugen.kubiuk@gmail.com, ORCID: http.//orcid.org/
0000-0002-7086-0976

Kharchenko Kostiantyn, PhD, Department of System Design, Na-
tional Technical University of Ukraine <Igor Sikorsky Kyio Polytechnic
Institute», Ukraine, e-mail: konst1970@gmail.com, ORCID: http://
orcid.org/0000-0002-7334-8038

TECHNOLOGY AUDIT AND PRODUCTION RESERVES — Ne 3/2(53), 2020

41—

