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PRESENTATION OF REED-SOLOMON 
CODES BASED ON AUTOMATON 
THEORY

The object of research is the processes of error-correcting coding in telecommunication and computer systems. 
The main attention is paid to Reed-Solomon (RS) codes, which belong to the very widespread error-correcting 
codes. Despite the 60-year existence of these codes, the complexity of their decoding still remains a problem. This 
problem is mainly due to the use of an algebraic approach to their description.

The article proposes to use the theory of linear finite-state machine (LFSM) for RS codes as a mathematical 
basis, which is a combination of the theory of digital filters and finite automaton over nonbinary Galois fields.  
In the course of research, 12 types of LFSMs are considered for the first time: the recursive LFSMs of 8 types and 
the non-recursive LFSMs of 4 types.

The recursive LFSMs are used for systematic encoding and form a circuit for dividing of polynomials, and the 
non-recursive LFSMs are used for non-systematic encoding and form a circuit for multiplying of polynomials.  
All types of LFSMs give the same result for encoding and decoding, but with different complexity, which is impor-
tant for practical implementation.

The automaton representation is the most suitable for RS codes, since it takes into account the cyclicity property 
and other features of these codes to the maximum. In contrast to algebraic methods, automaton decoding methods 
have a simple software and hardware implementation and high performance. With the help of automaton-graphical 
models, it can accurately estimate the corrective capability of the code. Automaton representation combines known 
methods of representing Reed-Solomon codes (polynomial, matrix, algebraic) and provides mutual transitions 
between them.

The article attention is spare to the fact that automaton methods for encoding and decoding (n,  k)-codes  
of RS using quantum computers give a gain in time n times.
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1. Introduction

This paper is the extended version of conference paper [1].
The Reed-Solomon (RS) codes appeared 60 years ago 

and until now they have included into the best error-
correcting codes. This is evidenced by the scope of use 
of these codes: fiber-optic communication lines, mobile 
communications, digital television, optical discs, etc.  [2].

In recent years, new codes and new principles for decod-
ing error-correcting codes began to appear, but in RS codes,  
as in other subclasses of cyclic codes, the laborious and 
inconvenient Berlekamp-Massey method remains the main 
decoding method  [3].

This situation has developed mainly because cyclic codes 
are considered only as a subclass of linear codes and, ac-
cordingly, universal algebraic methods for decoding linear 
codes are try adapted to these codes.

However, linear codes combine completely different 
codes and it is impossible to create encoding and decoding 
methods that would be effective for all subclasses of linear 
codes. Therefore, different types of linear codes should be 
considered separately, taking into account their properties 
and features.

In  [4], a new representation of cyclic codes was con-
sidered and with its help, automaton methods for encod-
ing and decoding these codes in Galois binary fields were 
substantiated. Therefore, it is important to ensure high 
validity and fault-tolerance of various technical devices and 
systems. Thus, the object of research is the processes of 
error correcting coding in telecommunication and computer 
systems. The aim of research is to improve the efficiency 
of means of transmission, storage, processing and protec-
tion of data through the development of new theoretical 
models of RS codes.

2. Methods of research

The general theoretical model for all subclasses of cyclic 
codes can be the mathematical apparatus of digital filters. 
The theory of error correcting coding and the theory of 
filtering are united by a common goal: restoration of use-
ful input signals against a background of interference by 
observing the corresponding output signals  [5].

It is known that the classical digital filter is a nonlinear 
system. Since cyclic codes belong to linear codes, therefore, 
the theory of filters can be applied to error-correcting coding 
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only after eliminating the phenomenon of nonlinearity. This 
problem can be solved with the help of the Galois fields.

On the other hand, the theory of filters is also close to the 
theory of automata, since a digital filter converts input auto
maton words into output automaton words. Thus, for a linear 
filter, it is possible to give an automatic way to describe it [6]:

s s T u B

w s R u Q
i i i

i i i

+ = +
= +

1 ;

,

where ui is the input word; wi is the output word; si is 
the state word; T B R Q, , ,  are the matrices which charac
terize the structure of the filter.

A traditional finite automaton is based on the Boolean 
algebra. If finite Galois fields are used as a basic mathe
matical apparatus, then a linear automaton (linear filter) 
will be obtained, the processes in which develop in time.

As a result, a new mathematical model will be obtained, 
which can be called a linear finite-state machine (LFSM).

According to [7], an LFSM with one input, one output 
and memory elements is a linear finite automaton, which 
at discrete time steps t over the Galois field GF q( ) is 
described by a transition function:

S t A S t B U t GF q( ) ( ) ( ), ( ),+ = × + ×1 	 (1)

and output function:

Y t C S t D U t GF q( ) ( ) ( ), ( ),= × + × 	 (2)

where U t ui( ) =
1
 is the input word; Y t yi( ) =

1
 is the output 

word; S t si r
( ) =  is the state word.

Let’s consider the classification of LFSM depending 
on the structure of their characteristic matrices. Let’s use 
the terminology of digital filters and algebraic polynomials 
in non-binary Galois fields.

From these positions, it is convenient to separate of 
all LFSMs into two groups: recursive (are used to divide 
of polynomials) and non-recursive (are used to multiply 
of polynomials).

In most publications, only LFSMs of the Galois type and 
Fibonacci type [8] are distinguished in consequence of a dif-
ference of structure of characteristic matrices these LFSMs.

If to consider the different structures of matrices A 
and B, and also distinguish between alternative directions 
of information transfer, then it is possible to get eight 
basic types of recursive LFSMs  [1]:

–	 left-sided LFSM of type 1 (Galois type) with matrices:
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–	 left-sided LFSM of type 2 with matrices:
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–	 left-sided LFSM of type 3 (Fibonacci type) with 
matrices:
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–	 left-sided LFSM of type 4 with matrices:
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–	 right-sided LFSM of type 1 (Galois type) with matrices:
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–	 right-sided LFSM of type 2 with matrices:
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–	 right-sided LFSM of type 3 (Fibonacci type) with 
matrices:

A

g g g g

B

r

= =

−

0 0 0

0 0 0

0 0 0

0

0

0

0

0

0

0 1 2 1
0

α
α

α
α

…
…

… … … … …
�
…

…, ; 	 (9)

–	 right-sided LFSM of type 4 with matrices:
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The entries of the last column of the matrix A from (3)  
and (4), the entries of the first row of the matrix A 
from (5) and (6), the entries of the first column of the 
matrix A  from (7) and (8), the entries of the last row 
of the matrix A  from (9) and (10), the entries of the 
matrix B  from (4), (6), (8) and (10) are the constant 
coefficients of the generator polynomial:

g x g g x g x g xr
r

r
r( ) ,= + + + +−

−
0 1 1

1
 	 (11)
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where degree r r n k( )= −  in the Galois field GF q( ). The 
coefficient g i  in (11) is equal to the j -th degree of the 
primitive element of the field GF q( ) ( ).j r= ÷ −0 1  For other 
matrices in (2), it is possible to choose constant values:

C D=   = [ ]α0 0, .

Let’s now consider the classification of non-recursive 
LFSMs. In contrast to the LFSMs considered above, sig-
nals to the inputs of non-recursive LFSMs never come 
from their outputs. As a result, it is possible to get four 
basic types of non-recursive LFSMs:

–	 non-recursive LFSM of type 1 with matrices:
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–	 non-recursive LFSM of type 2 with matrices:
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–	 non-recursive LFSM of type 3 with matrices:
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–	 non-recursive LFSM of type 4 with matrices:
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Another feature of non-recursive LFSMs is that all 
their characteristic matrices must be specified to explain 
of its functioning:

–	 non-recursive LFSM of type 1 has the matrices C and D:

C D= =  0 0 0 0 0
 α α, ; 	 (16)

–	 non-recursive LFSM of type 2 has the matrices C and D:

C g g g g Dr= =  −1 2 1 0
0

 , ;α 	 (17)

–	 non-recursive LFSM of type 3 has the matrices C and D:

C D= =  α α0 00 0 0 , ; 	 (18)

–	 non-recursive LFSM of type 4 has the matrices C and D:

C g g g g Dr= =  −0 1 2 1
0

 , .α 	 (19)

The matrix elements in (17) and (19) correspond to 
the coefficients of the polynomial (11).

It is important to note the relationship of the charac
teristic matrices of LFSM. For tasks of error-correcting 
coding, the matrices A and B must be chosen so that the 
recursive and non-recursive LFSM are r -controllable. The 
LFSM will be r -controllable if it is equal to the rank r  
of the ( )r r× -matrix:

L A B A B A B Br
r r= × × × 
− −1 2, , , , . 	 (20)

To calculate (20), the values of the matrices A and B 
are taken from formulas (3)–(10) or (12)–(15).

3.  Research results and discussion

3.1.  Definition of Reed-Solomon codes based on automaton 
models. Based on the above types of LFSM, it is possible 
to define the RS codes. Let’s name such LFSMs as the 
symbolic LFSM.

Let the LFSM be in some initial state S tbeg ( ),  for ex-
ample, in zero state. Let’s feed of n-symbol sequence L at 
its inputs so that the LFSM returns to the state S tbeg ( ) 
again after n  time clocks.

Definition 1. The set of all m -bit length sequences L 
that transferred the LFSM from any initial state S tbeg ( ) 
back to the state S tbeg ( ) creates the RS ( , )n k -code over 
the Galois field GF q( ). Each such sequence is a code-
word Z  of RS ( , )n k -code.

Polynomial (11), which is included in the description 
of LFSM of all types, is the generator polynomial of the 
RS code.

Since LFSM is a finite automaton, therefore, in addi-
tion to the automaton-analytical model of the RS code, 
there is an automaton-graphical model of the RS code.

Let’s suppose that, in strongly connected graph GFA 
(state graph and output graph of LFSM), i-th edge ei  
corresponds to the symbol zi  of the codeword Z  over 
the field GF q( ) ( , ).z Z i ni ∈ = ÷1  Then a sequence L of 
unidirectional edges creates in graph GFA a code path η of  
length n that will correspond to the codeword Z .

It is in automaton models of the RS code that the 
main property of this cyclic code is fully used – the cyclic  
property.

Let’s note that for calculation of the elements over 
GF q( ) it is possible to use with LFSM over GF( )2  that 
being described by own matrices Ab , Bb , Cb and Db . Let’s 
name it as the binary LFSM). This LFSM is based on 
the primitive polynomial of degree m over GF( ).2

For example, RS (15,11)-code, to which the generator 
polynomial (2):

g x x x x x GF( ) , ( ),= + + + +α α α α10 3 6 2 13 3 4 8

corresponds such characteristic matrices of a recursive 
left-sided symbolic LFSM of type 2:

A =
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.

For calculation of elements over GF( )8  can to use the  
binary LFSM of type 1 with matrices over GF( ):2
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Ab =

0 0 0 1

1 0 0 1

0 1 0 0

0 0 1 0

;  Bb =

1

0

0

0

,

which is based on primitive generator polynomial:

g x x x GF( ) , ( ).= + +1 24

3.2.  The encoding of Reed-Solomon codes based on 
automaton models. RS codes allow both systematic and 
unsystematic encoding. Let’s consider systematic encoding  
in more detail.

From the position of the automaton representation of 
RS ( , )n k -code, the systematic encoding procedure consists 
of two stages.

At the first stage, a k -symbol information word is fed 
to the input of the recursive LFSM, as a result of which 
the LFSM will move from the initial zero state S( )0  to 
the state S k( ) during the k  time clocks according to the 
formula that follows from (2):

S k A S L I GF qk
k( ) ( ) , ( ),= × + ×0

where L A B A B A B Bk
k k= × × × 

− −1 2, , , , .

At the second stage, the checkword Ψ must be sent 
to the input of the recursive LFSM so that the LFSM 
will transferred from state S k( ) to final state S n( ) during 
r  time clocks:

S n A S k L GF qr
r( ) ( ) , ( ).= × + × Ψ 	 (21)

Since after completing the encoding procedure, the LFSM 
should again return to its original state (i.  e. S n S( ) ( )= 0 ), 
therefore, equality (21) can be written as:

L A S k GF qr
r× = ×Ψ ( ), ( ).

From a mathematical point of view, all LFSMs are equiva-
lent, i.  e. give the same encoding and decoding results. 
However, they can have different software and hardware 
implementations and, accordingly, different complexity of 
the encoding procedures.

The fastest LFSM is of type 2 (both left-sided and 
right-sided). Using this LFSM, the encoding result will 
be obtained already at the k-th step, but not at the n-th  
step, as usual.

The LFSM of type 3 and type 4 require the most time  
costs for encoding.

3.3.  The decoding of Reed-Solomon codes based on 
automaton models. The decoding process of RS codes can 
also be splited into two stages:

1)  establishing the fact of the presence or absence of  
the errors;

2)  determination of error parameters, if any.
From the positions of the automaton representation 

of RS codes, the first stage consists in calculating the 
state S n( ) into which the LFSM will go after feeding  
a n-symbol codeword Z  to its input according to the re-
cursive formula, which follows from (2):

S j A S j B z GF z Z j nj j( ) ( ) , ( ), , .+ = × + × ∈ = ÷1 2 1

The state S n( ) is the error syndrome: a zero value of 
this state indicates the absence of errors in the transmit-
ted codeword within the corrective capacity of the code. 
If there is a multiplicity error τ  in the codeword Zerr

( ),τ  
a  nonzero error syndrome will be obtained Serr

( ).τ

It is with such calculations that the main property 
of the cyclic code (including the RS codes) – the cyclic 
property will be used to the maximum extent.

In [9], specific methods of encoding and decoding based 
on automaton models of cyclic and RS codes are considered.

3.4.  Hardware implementation of Reed-Solomon codes based 
on automaton models. Let’s consider now the features of the 
hardware implementation of the LFSM. The operations of 
automatic encoding and decoding are based on transition 
functions (1) and output functions (2).

The directly implementation of these functions can be 
replaced with the shift operation and several arithmetic 
operations. Consequently, a shift register with linear feedback 
can be chosen as the hardware implementation of the LFSM.

The number of adders and multipliers in the field GF q( ) 
is determined by the number of corresponding elementary 
operations in the mathematical LFSM model. The simplest 
hardware implementation has LFSM of type 1.

3.5.  The modelling of Reed-Solomon codes by help the 
quantum computer. RS codes are enough complex codes 
and the complexity of computations will increase in pro-
portion to the length n of the code and the number of 
errors τ to be corrected.

It is possible to significantly reduce the complexity and 
duration of encoding and decoding operations using parallel 
data processing. It is interesting to explore the impact of 
parallelism depending on the architecture of the computer.

It is known that the basis of a quantum computer (more 
precisely, the existing models of a quantum computer) is 
a r-symbol quantum register  [10, 11]. LFSM of any type 
is also implemented in hardware on the r-symbol register. 
Both registers store the state word S t( ) (Fig.  1).

r321 …1 2 3 … r

LFSM over GF(q)Quantum register 

r qubytes r classical bytes 

Fig. 1. The conformity between quantum register  
and linear finite-state machine (LFSM)

The fundamental difference between the two computa-
tion methods is as follows.

In classical computations, only one LFSM state is re-
cursively computed at each time step, which leads to an 
exponential increase in computational complexity even when 
using traditional parallelism.

Thanks to principle of quantum superposition and using 
linear algebra, the quantum register can be located in all 
2r  basic states at once. Such conditions are provided by 
the automaton model of codes. As a result of quantum 
parallelism, it is possible to get the result of calculations 
in one clock step.

The practical benefits of quantum parallelism can be 
obtained even now, in the absence of a full-fledged quantum 
computer. Consider the following task. Let the non-zero 
error syndrome Serr

( )τ  be obtained with the help of a classical 
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computer. Further, in order to find errors, it is possible 
to the software modelling based on a quantum computer.

Let’s note that quantum computations are usually con-
sidered based on individual qubits, which corresponds to 
binary cyclic codes in Galois fields GF( ).2  RS codes operate 
in non-binary fields GF m( ),2  which requires the grouping 
of qubits, for example, into qubytes  [12].

Let’s clarify that classical RS codes only are conside
red in the paper. To remove the errors in the quantum 
computer itself, quantum RS codes are needed.

4.  Conclusion

The article shows that the automaton representation of 
the RS codes is the most suitable for these codes, since 
it takes into account the cyclicity property and other fea-
tures of the RS codes as much as possible. The genera-
tor polynomial provides a close relationship between the 
automaton and other methods of describing cyclic codes, 
which makes it easy to switch from one method to another.

The recursive LFSMs of eight types and the non-recursive 
LFSMs of four types have been proposed, their mathemati-
cal properties have been analysed from the standpoint of 
error-correcting coding. The LFSMs of all types give the 
same result in encoding and decoding, but with different 
complexity. The fastest is LFSM type 2, and LFSM type 1  
has the smallest hardware implementation.

The future of error-correcting codes is determined by 
their adaptability to various computer architectures. Thanks 
to the automaton representation of RS codes, it is easy 
to implement the encoding and decoding of these codes 
on a quantum computer. With the help of quantum paral-
lelism, it is possible to radically speed up the decoding 
process of classical RS codes.

At the decision of dilemma old/new code, it is not to 
reject the well-known codes immediately. The history of 
technology has already given many examples of re-using tech-
nical solutions in new conditions, for example, when a new 
circuitry base appears. One more argument: economy of re-
sources, the possibility of using the existing communication 
infrastructure based on traditional error correcting codes.  
The above considerations touch the RS codes to a full degree.  

These codes and today included in three of the most wide-
spread error correcting codes, although not all of their 
reserves have been exhausted. RS codes will be in demand 
for future generations of computers.
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