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ANALYSIS OF FREE OSCILLATIONS OF 
A NON-HOMOGENEOUS PIPE ALONG 
THICKNESS AND LENGTH, TAKING INTO 
ACCOUNT THE RESISTANCE OF THE 
EXTERNAL ENVIRONMENT

Structural elements made of heterogeneous natural and artificial materials are widely used in the construction 
of modern building complexes and in many other areas. Among them is the use of boards and shells of different 
configurations. Currently, one of the most important requirements for designers and accountants is to properly 
assess the mechanical properties of the material of the structural element and the impact of the environment in 
contact during operation. Taking these into account, the mathematical solution of the problem becomes difficult, 
and if not, serious mistakes can be made. One of the most problematic places is considering the resistance of the 
external environment.

The objects of research are modern pipes exposed to the external environment.
Pasternak model, which is one of the mathematical models that accurately reflects the elastic real properties 

of the environment, Winkler model, which is characterized by two constants, the model of Karnet model and the 
model of Rjanitsin model are analysed.

In the course of the research, the method of separation of variables and then Bubnov-Galerkin method is 
used, which explain relationship between the dimensionless value of frequency, the parameters that characterize 
the non-homogeneous of the base, and the pipe. The selection of special frequencies is carried out by selecting 
the corresponding special equation and boundary conditions. There are nonlinear algebraic equations and their 
solution using computer technology. It is shown that when the mechanical properties of the pipe vary in length, the 
above solution method does not work and the determination of the characteristic parameters must be performed 
using other approximate analytical methods. In engineering practice, it is usually sufficient to find the basic tone 
of the frequency. As a result of the research it is shown that the external environment effects are important for 
non-homogeneous pipe and should be considered in the design of the structure-ground interaction. In the future, 
the proposed approach and should be considered in the design of the structure non-homogenous pipe interaction.
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1.  Introduction

It is known that modern pipelines for various purposes 
are operated in natural conditions with complex properties 
and are complex engineering structures. During the design 
and construction of pipelines, engineers are required to 
properly assess the properties of the pipeline (technological 
process, welding stresses, non-uniform composition, and 
properties of the substrate that are strongly dependent 
on natural conditions).

It is noted that taking into account these, it is difficult 
to determine the frequency-amplitude characteristics, and 
if errors are made.

Given that explosions, earthquakes, strong winds, and 
other causes can cause pipelines to vibrate  [1, 2].

Recently, in engineering practice, pipes made of non-
homogeneous materials made of natural and non-homoge-
nous materials are widely used and are operated in various 

natural conditions and exposed to external influences. As 
a result of inhomogeneity, its elastic modulus and density 
in materials are constantly changing. The most common 
non-homogeneous bases are those characterized by two 
constants and having viscous elastic properties.

Nowadays modern pipelines for various purposes are 
operated in natural conditions with complex properties and 
are complex engineering structures research are relevant.  
Thus, objects of research are modern pipes exposed to the 
external environment. The aim of this article is learn the 
relationship between the dimensional value of the frequency, 
the parameters that characterize the non-homogenous of 
the base, and the pipe.

2.  Methods of research

It is assumed that a straight section of the pipeline 
is located in an environment with complex properties.
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In engineering practice, the following mathematical 
models of the reaction of the external environment to 
natural conditions and other reasons are used  [3–5].

1.  Winkler model:

q kw= , 	 (1)

where q  – reaction of the environment; k N m( )3  – Winkler 
coefficient; w  – a bend.

2.  Pasternak model:

q k w k
d w

dx
= −1 2

2

2 , 	 (2)

where k1  – Winkler and k N m2
3( )  – Pasternak coefficient.

3.  Rjanitsin model:

q k w k
d w

dt
= +1 2

2

2 , 	 (3)

where k2  characterizes the viscosity; t – time.
4.  Karnet model (non-homogeneous):

q k x w k x
d w

dt
= +1 2

2

2( ) ( ) , 	 (4)

where k x1( )  and k x2( )  are involuntary environmental char-
acteristics and are determined experimentally.

3.  Research results and discussion

It is considered that, modulus of elasticity E  of the 
pipe material and density ρ  – thickness and length vary 
continuously  [6]:

E E f x f z x z= ( ) =0 1 2 0 1 2( ) ; ( ) ( ),ρ ρ ψ ψ 	 (5)

where E0 0, ρ  – corresponds to a homogeneous material; f x1 ( ) –  
the function itself and the derivative up to the second-order 
is an uninterrupted function.

Since the thickness of the pipe is a heterogeneous, 
non-homogeneous pipe, the neutral axis does not coincide 
with the midline, i.  e.:

σ σ1 10d dz M z z
h

h

h

h

= =
− −
∫ ∫, . 	 (6)

(6) in the system e z− =0 0χ .
The condition and the expression for the moment can 

be written as follows:

M E J Af x
w

x
=

∂
∂0 0

2

2( ) . 	 (7)

Considering (7), the equations of motion for each foun-
dation can be written as follows:

E J A
x

f x
w

x
x

w

t
k w

E J A
x

f

0 0

2

2 1

2

2 1

2

2 1

0 0

2

2

0
∂

∂
∂
∂









 +

∂
∂

+ =

∂
∂

( ) ( ) ;ρψ

11

2

2 1 2

2

2 1

2

2

0 0

2

2 1

0( ) ( ) ;x
w

x
k w k

w

x
x

w

t

E J A
x

f

∂
∂









 + −

∂
∂

+
∂
∂

=

∂
∂

ρψ

(( ) ( ( )) ;

( )

x
w

x
k w k x

w

t

E J A
x

f x

∂
∂









 + + +

∂
∂

=

∂
∂

∂

2

2 1 2 1

2

2

0 0

2

2 1

2

0ρψ

ww

x
k x w k x x

w

t

h z z
l

l

∂








 + + +

∂
∂

=

=
−

2 1 2 1

2

2

0 2

2

0( ) ( ( ) ( )) ,

( )
/

ψ

ρ ρ ψ d
//

.
2

∫ 	(8)

As can be seen from the above equations, the latter 
case covers the most general case.

The fourth case needs to be investigated in detail. The 
goal here, at the same time to take into account that the 
base is a non-homogeneous viscous elastic, taking into account  
the non-uniformity of the pipe.

As can be seen, the equation of motion is a differential 
equation with complex special derivative and its f x( ), ψ1( ).x   
It is difficult to determine the exact solution at arbitrary 
prices. Let’s solve the equation using approximate analytical 
methods. In the first stage let’s use the method of separation 
into variables, in the next stage Bubnov-Galerkin method [7, 8].

In the first stage, let’s look for the function as follows:

w x t w x ei t( , ) ( ) ,= 0
ω 	 (9)

where w0 – must meet border conditions; ω – frequency. Substi-
tuting the expression (9) in the fourth equation of (8); w x0( ) –  
obtain the usual derivative linear equation with respect to:
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The following symbols have been adopted here:
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Since equation (10) is complex, let’s solve it by the 
Bubnov-Galerkin orthogonalization method and look for 
the solution as follows:

w x a xi i
i

n

0
1

( ) ( ),=
=
∑ θ 	 (12)

where ai  – unknown constants; θi – each of them must meet 
the border conditions.

Error function (10) and (11) taking into account is 
written as follows:
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The orthogonalization condition is written as follows [9]:

η θ( ) ( ) , , .x x x q nq

l

d = =∫ 0 1
0

In arbitrary approximation ω2 (13) the algebraic line is 
determined from the system equation. Since the system consists 
of a system of homogeneous equations, the main determinant 
must be zero in the absence of its trivial solution  [6,  10]:

ω2 0= . 	 (14)

Equation (14) is a nonlinear algebraic equation and 
its solution does not cause any difficulties using computer 
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technology. In engineering practice, they are usually con-
tent with finding the basic tone of the frequency, i.  e.:

η θ( ) ( ) .x x x
l

1

0

0d =∫ 	 (15)

Conditionally paid and ω2  is appointed:

From to (16) equation when k2 0= , the solution of 
a  similar problem is obtained for a pipe located on a non-
homogeneous foundation:

from formulas (16) and (17) can be obtained the following 
relationship:
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If the external environment is not taken into account [4, 7]:
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When ρ ρ1 0=  from the above solutions only the length 
of ω1

2,  when ψ( )x = 1  if only the thickness is heteroge-
neous, similar problems are solved.

The report was carried out for the following situations: 
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Considering the above expressions, let’s obtain the fol-
lowing formula:

ω
μ

a μ1
2

1 0 5

1 0 5 1 0 5
=

+( )
+( ) + +( )

.

. .
.

c

The results of the report are shown in Tables  1,  2 
and Fig.  1,  2.

Tables  1,  2 calculate the value of the frequency ac-
cording to the values of the coefficients characterizing the 
non-homogeneous plate and Fig. 1, 2 show the relationship 

graphs between these values and the frequencies. It is 
also clear from the graphs that the effect of heterogeneity  
was manifested by a hyperbolic change in frequency. This 
effect has been shown to be significant and to be taken 
into account in engineering design.

Table 1

Variation of frequency parameters  
of the non-homogeneous foundations 

versus: c = 0; ε = 0

μ ω11
2 ω12

2

0 1 1.125

0.25 0.889 1

0.5 0.8 0.900

0.75 0.727 0.818

1 0.666 0.75

Table 2

Variation of frequency parameters  
of the non-homogeneous foundations 

versus: c = 1; a = 0; ε = 0

μ ω31
2 ω32

2

0 0.5 1.15

0.25 0.471 1.022

0.5 0.444 0.92

0.75 0.421 0.836

1 0.4 0.762
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Fig. 1. The relationship between the dimensionless value  
of frequency, the parameters that characterize the non-homogenous  

of the base, and the pipe
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Fig. 2. The relationship between the dimensional value  

of the frequency, the parameters that characterize the non-homogenous  
of the base, and the pipe

4.  Conclusions

Free frequency of a non-homogeneous pipe along thick-
ness and length, taking into account the resistance of the  
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external environment are analyzed. The problem of stabi
lity of the pipeline is solved and the value of the critical 
parameters is determined because the elastic modulus is 
inhomogeneous with the surface law. The solution of the 
problem is based on Bubnov-Galerkin method of orthogo-
nalization. A report is made and the value of the critical 
force, which depends on the heterogeneity and the resis-
tance of the base, is determined. Numerical reports are 
made on the specific values of the characteristic param-
eters and the results are presented in tables and contact 
curves. In the course of the research, it is obtained that 
the parameters that characterize the non-homogenous of 
the base, and the pipe so effected for materials frequency.

Nowadays, one of the most important requirements 
required of current designers and accountants is to properly 
assess the mechanical properties of the material of the 
structural element and the impact of the contact envi-
ronment during operation. Therefore the research results 
will be useful for engineering designers.
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