
REPORTS ON RESEARCH PROJECTS

34 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(56), 2020

UDC 004.032.26
DOI: 10.15587/2706-5448.2020.217613

IMPACT OF THE COMPILATION METHOD
ON DETERMINING THE ACCURACY
OF THE ERROR LOSS IN NEURAL
NETWORK LEARNING

In the field of NLP (Natural Language Processing) research, the use of a neural network has become important.
The neural network is widely used in the semantic analysis of texts in different languages. In connection with the
actualization of the processing of big data in the Kazakh language, a neural network was built for deep learning.
In this study, the object is the learning process of a deep neural network, which evaluates the algorithm for construct-
ing an LDA model. One of the most problematic places is determining the correct arguments, which, when compiling
the model, will give an estimate of the algorithm’s performance. During the research, the compile () method from
the Keras modular library was used, the main arguments of which are the loss function, optimizers, and metrics. The
neural network is implemented in the Python programming language. The main arguments of the neural network
deep learning compiler for evaluating the LDA model is the selection of arguments to obtain the correct evaluation
of the algorithm of the constructed model using deep learning of the neural network. A corpus of text in the Kazakh
language with no more than 8000 words is presented as learning data. Using the above methods, an experiment
was carried out on the selection of arguments for the model compiler when learning a text corpus in the Kazakh
language. As a result, the optimizer – SGD, the loss function – binary_crossentropy, and the estimation metric –
‘cosine_proximity’ were chosen as the optimal arguments, which, as a result of learning, showed a tendency to 0
loss (errors) = 0.1984, and cosine_proximity (learning accuracy) = 0.2239, which is considered acceptable learning
measures. The results indicate the correct choice of compilation arguments. These arguments can be applied when
conducting deep learning of a neural network, where the sample data is a pair of «topic and keywords».

Keywords: assessment metric, learning quality, optimization algorithms, entropy error, neural network.

Akanova A.,
Kaldarova M.

Copyright © 2020, Akanova A., Kaldarova M.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0)

Received date: 12.08.2020

Accepted date: 22.09.2020

Published date: 31.12.2020

1. Introduction

The main action in deep learning is to adjust the
weights to reduce error using a series of learning examples,
which in turn boils down to finding the correlation bet-
ween the input and output layers. If no correlation is
present, then the error will never reach 0 [1]. Usually, for
learning, a neural network is created, taking into account
the parameters of the available data being processed. The
main trick of deep learning is using the estimate to adjust
the weights to reduce losses. This adjustment is carried
out by an optimizer that implements the so-called back
propagation algorithm: the central deep learning algo-
rithm [2]. The main learning parameters are usually: the
optimizer, the learning coefficient, the sample size, the
loss function, the metric for evaluating the correctness
of the mask construction, the number of learning epochs.

Therefore, it is relevant to address the following issues:
– studying the Keras library;
– study of the application of the loss function in deep
learning of a neural network;
– research of optimization algorithms;
– research of quality indicators.
All of the above parameters will be implemented in

the Keras library, and it is not necessary to perform the
computational process manually. But a combination of dif-

ferent parameters can show results that will be far from
real indicators.

Thus, the object of research is the process of learning
a deep neural network, which evaluates the algorithm for
constructing an LDA model. The aim of research is to
select the optimal parameters to determine the accuracy
of the loss of errors in deep learning of a neural network.

2. Methods of research

In deep learning of a neural network, the complexity of
the model is optimized along with accuracy. Complexity is
understood as the structural complexity of the model – this
is the number of model parameters, taking into account
their domain of definition. An alternative to this definition
is the statistical complexity of the model, that is, the output
of the minimum amount of information that is required to
convey information about the model and about the sample.

The optimizer is one of three parameters used in compil-
ing deep learning neural networks. Optimizers or otherwise
optimization algorithms are used when learning a neural
network, which serve to select weights in such a way as to
minimize the error on the learning dataset. Keras implements
such basic optimization algorithms as the gradient descent me-
thod, the stochastic gradient descent method – SGD, Adag-
rad, Adadelta, Adam (Adaptive Moment Estimation), etc.

INFORMATION AND CONTROL SYSTEMS:
REPORTS ON RESEARCH PROJECTS

35TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(56), 2020

ISSN 2664-9969

An optimizer is a value that shows the effect of a particular
feature on the distribution of a target variable. The SGD
optimizer was chosen to optimize the learning process. The
argument in this optimizer is learning_rate and the initial
learning level should be float> = 0. With SGD, the learning
rate depends on specific parameters, which are adapted to the
frequent parameter updates during learning. The more updates
the parameter receives, the lower the learning rate. In other
words, the stochastic gradient descent method (SGD) [3]
effectively redistributes the learning step for each individual
parameter, while taking into account all past gradients for
this parameter.

Learning rate refers to the relationship between the
learning and test data. For example, validation_split = 0.25
means that 75 % of the data will be used to learn the model
and the remaining 25 % will be used to test the model.

The sample size or batch_size determines the number
of learning samples that are processed per iteration of the
gradient descent algorithm.

The loss function or entropy is a measure of the error
generated by the system. One of the most popular loss
functions used in neural networks is cross-entropy, how-
ever, categorical, sparse, or binary cross-entropy is more
common in working with NLP. Entropy works directly
with the unknown, which is an important argument in
machine learning. Entropy is a function of the probability p.
The greater the probability of an event, the less its un-
certainty, that is, it is unknown whether the event will
occur or not [4].

And the third no less important parameter is the ac-
curacy metric (accuracy). Accuracy metrics are used in
case of unreliability in the sample, that is, representatives
of different classes can meet with different probabilities [5].
And to determine the reliability, Keras implements such
accuracy metrics as accuracy, binary_accuracy, categori-
cal_accuracy, sparse_categorical_accuracy, top_k_categori-
cal_accuracy, cosine_proximity, sparse_top_k_categori-
cal_accuracy, clone_metric. Accuracy defines the ratio of
correctly predicted objects to all other objects. Usually
accuracy is calculated by the formula:

Accuracy =
+

+ + +
TP TN

TP FP FN TN
, (1)

where TP – True positive (true-positive decision); TN –
True negative (true negative decision); FP – False posi-
tive (false positive decision); FN – False negative (false-
negative decision).

In this study, binary_accuracy was applied, which cal-
culates the coincidence rate of predictions with binary
labels, in which y_train should match or have parallel
data with y_true. For objective testing of the classifier
in problems with images, it is acceptable to use the MSE
error metrics [6], but the confusion matrix is more suit-
able for the text classifier.

To visualize the accuracy metric, the confusion matrix
is used, which is usually represented as in Fig. 1.

Each position is calculated with respect to formulas
(2)–(5), where n is the number of classes, the class label
takes the value +1 (positive class) or –1 (negative class).
4 values are entered, respectively:

TP a x y
i

n

i iTrue positive =() () = + = +[]
=
∑

0

1 1 , (2)

TN a x y
i

n

i iTrue negative() = () = − = −[]
=
∑

0

1 1 , (3)

FP a x y
i

n

i iFalse positive() = () = + = −[]
=
∑

0

1 1 , (4)

FN a x y
i

n

i iFalse negative() = () = − = +[]
=
∑

0

1 1 , (5)

where a(xi) – class with elements; yi – result of the learn-
ing algorithm.

 Prediction result

ac
tu

al
 k

no
w

le
dg

e positive negative
positive

TP FN
TP+FN

negative
FP TN

FP+TN

 TP+FP FN+TN

Fig. 1. Matrix of errors

Thus, the TP section shows the sum of the number of
classes a(xi) in which the pair «topic and keywords» have
high accuracy and are true both in terms of prediction and
the results of the уі learning algorithm (2). Section TN shows
the sum of the number of classes a(xi) in which the pair
«topic and keywords» has false accuracy, both in terms of
prediction and according to the results of the уі learning
algorithm (3). Section FP shows the sum of the number of
classes a(xi) in which the pair «topic and keywords» has
true prediction accuracy, and false according to the results
of the yi learning algorithm (4). Section FN shows the sum
of the number of classes a(xi) in which the pair «topic and
keywords» has false accuracy in prediction, and true accuracy
according to the results of the yi learning algorithm (5). In
the FN and FP section, the system shows the errors that
were received during learning. Experiments must take into
account a certain amount of data. If there is an increase
in the data threshold, then fewer false positives and more
false negatives are generated. Therefore, one of the curves
can rise, and the other – fall. Using this schedule, yi is
possible to choose the optimal threshold value. If there is
no such threshold, it is necessary to learn another algorithm.

3. Research results and their discussion

At the time of this study, there is a neural network
consisting of a sequence of layers: Embedding (), Spa-
tialDropout1D (), LSTM (dropout, recurrent_dropout),
Dense ()), which is a traditional multi-layer feedforward
network using back propagation of errors [7]. Previous
studies have identified regularization parameters in neu-
ral network layers that make up 70 % of the data for
the SpatialDropout1D layer, for the hidden dropout and
recurrent_dropout layers. As a result of the experiments,
a combination of optimal parameters in the compilation
of the neural network model was obtained. Here are some
examples from the experiments carried out [8]:

1st combination. model.compile (loss = ‘sparse_categori-
cal_crossentropy’, optimizer = ‘adam’), the result of which is
shown in Fig. 2. This combination shows that the number
of classes in shape changes by 1, then the process stops
and shows an error.

INFORMATION AND CONTROL SYSTEMS:
REPORTS ON RESEARCH PROJECTS

36 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(56), 2020

ISSN 2664-9969

2nd combination. model.compile (loss = ‘poisson’, opti-
mizer = ‘Adadelta’, metrics = [‘accuracy’]) – this combination
shows the tendency to 0.5 results of calculating errors
in the learning and the tendency to 0 of the learning
model [9]. And in the learning accuracy, neither the learn-
ing nor the learning model changes during learning.

This is inconsistent with the calculation results pro-
duced by accuracy (Fig. 3).

3rd combination. model.compile (loss = ‘poisson’, opti-
mizer = ‘adam’, metrics = [‘accuracy’]) – this combination of
parameters shows that the error function diverges after
the n-th iteration.

This indicates the need for relearning from the place
of discrepancy between the learners and the tested da-
ta; the accuracy, in turn, does not change during the

learning. This means that the result is unreliable in this
case (Fig. 4).

4th combination. model.compile (loss = ‘binary_cros-
sentropy’, optimizer = ‘SGD’, metrics = [‘cosine_proximity’])
– this combination of parameters shows that the error in
the learning data is approaching 0 in parallel.

This means that learning proceeds normally without
relearning. The accuracy in calculating the loss of error,
respectively, increases and tends to unity.

The result is loss (learning errors) = 0.1984, cosine_
proximity (error accuracy) = 0.2239, val_loss (testing er-
ror) = 0.1985, val_cosine_proximity (testing error accu-
racy) = 0.2235 (Fig. 5).

This is what was required to be obtained as a result
of the experiment.

Fig. 2. The result of applying the 1st combination of parameters

a

 b

Fig. 3. Result of the 2nd combination: a – error (loss, val_los); b – accuracy (acc, val_acc)

Fig. 4. Result of the 3rd combination: a – error (loss, val_los); b – accuracy (acc, val_acc)

a

b

INFORMATION AND CONTROL SYSTEMS:
REPORTS ON RESEARCH PROJECTS

37TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(56), 2020

ISSN 2664-9969

4. Conclusions

Thus, there is a sequential composition of the neural net-
work: Embedding (), SpatialDropout1D (0.7)), LSTM (64,
dropout = 0.7, recurrent_ dropout = 0.7)), Dense ()) with
the preliminary parameters emb_dim = 128, n_most_com-
mon_words = 8000, batch_size = 256, epochs = 500. As a result
of the experiments carried out using various combinations
of arguments in the compilation method of the model, the
optimal variant was identified. The optimal combination
of compiler arguments when determining the precision
of the error loss are the parameters: binary_crossentropy,
optimizer = SGD, metrics = cosine_proximity. The research
results are applied when conducting deep learning of a neu-
ral network, where the sample is text data. The arguments
are used in the compile () method of the Keras library
for the Python programming language [10].

References

1. Trask, E. (2020). Glubokoe obuchenie. Saint Petersburg: Pi-
ter, 352.

2. Sholle, F. (2018). Glubokoe obuchenie na Python. Saint Peter-
sburg: Piter, 400.

3. Duchi, J., Hazan, E., Singer, Y. (2011). Adaptive subgradient
methods for online learning and stochastic optimization. The
Journal of Machine Learning Research, 12, 2121–2159.

4. Kononiuk, A. E. (2011). Informatsiologiia. Obschaia teoriia
informatsii. Kniga 3. Kyiv: Osvіta Ukraini, 412.

5. Dzhulli, A., Pal, S. (2018). Biblioteka Keras – instrument glu-
bokogo obucheniia. Moscow: DMK Press, 294.

6. Koyuncu, H. (2020). Loss Function Selection in NN based Clas-
sifiers: Try-outs with a Novel Method. 2020 12th International
Conference on Electronics, Computers and Artificial Intelligence
(ECAI). doi: http://doi.org/10.1109/ecai50035.2020.9223208

7. Hung, C.-C., Song, E., Lan, Y. (2019). Foundation of Deep
Machine Learning in Neural Networks. Image Texture Analysis,
201–232. doi: http://doi.org/10.1007/978-3-030-13773-1_9

8. Metriki. Available at: https://ru-keras.com/metric/
9. Ketkar, N. (2017). Introduction to Keras. Deep Learning with

Python. Berkeley: Apress. doi: http://doi.org/10.1007/978-1-
4842-2766-4_7

10. Chollet, F. (2017). Deep Learning With Python. Black & White,
384. Available at: https://github.com/fchollet/deep-learning-
with-python-notebooks

Аkanova Akerke, Department of Computer Engineering and Soft-

ware, S. Seifullin Kazakh Agro Technical University, Nur-Sultan,

Kazakhstan, e-mail: akerkegansaj@mail.ru, ORCID: http://orcid.org/

0000-0002-7178-2121

Kaldarova Mira, Department of Computer Engineering and Soft-

ware, S. Seifullin Kazakh Agro Technical University, Nur-Sultan,

Kazakhstan, e-mail: kmiraj82@mail.ru, ORCID: http://orcid.org/

0000-0001-7494-9794

Fig. 5. Result of the 4th combination, specify the values: a – error (loss, val_los); b – accuracy (acc, val_acc)

a

b

