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IMPACT OF THE COMPILATION METHOD 
ON DETERMINING THE ACCURACY 
OF THE ERROR LOSS IN NEURAL 
NETWORK LEARNING

In the field of NLP (Natural Language Processing) research, the use of a neural network has become important. 
The neural network is widely used in the semantic analysis of texts in different languages. In connection with the 
actualization of the processing of big data in the Kazakh language, a neural network was built for deep learning.  
In this study, the object is the learning process of a deep neural network, which evaluates the algorithm for construct-
ing an LDA model. One of the most problematic places is determining the correct arguments, which, when compiling 
the model, will give an estimate of the algorithm’s performance. During the research, the compile () method from 
the Keras modular library was used, the main arguments of which are the loss function, optimizers, and metrics. The 
neural network is implemented in the Python programming language. The main arguments of the neural network 
deep learning compiler for evaluating the LDA model is the selection of arguments to obtain the correct evaluation 
of the algorithm of the constructed model using deep learning of the neural network. A corpus of text in the Kazakh 
language with no more than 8000 words is presented as learning data. Using the above methods, an experiment 
was carried out on the selection of arguments for the model compiler when learning a text corpus in the Kazakh 
language. As a result, the optimizer – SGD, the loss function – binary_crossentropy, and the estimation metric – 
‘cosine_proximity’ were chosen as the optimal arguments, which, as a result of learning, showed a tendency to 0 
loss (errors) = 0.1984, and cosine_proximity (learning accuracy) = 0.2239, which is considered acceptable learning 
measures. The results indicate the correct choice of compilation arguments. These arguments can be applied when 
conducting deep learning of a neural network, where the sample data is a pair of «topic and keywords».
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1.  Introduction

The main action in deep learning is to adjust the 
weights to reduce error using a series of learning examples, 
which in turn boils down to finding the correlation bet-
ween the input and output layers. If no correlation is 
present, then the error will never reach 0 [1]. Usually, for 
learning, a neural network is created, taking into account 
the parameters of the available data being processed. The 
main trick of deep learning is using the estimate to adjust 
the weights to reduce losses. This adjustment is carried 
out by an optimizer that implements the so-called back  
propagation algorithm: the central deep learning algo-
rithm [2]. The main learning parameters are usually: the 
optimizer, the learning coefficient, the sample size, the 
loss function, the metric for evaluating the correctness 
of the mask construction, the number of learning epochs.

Therefore, it is relevant to address the following issues:
– studying the Keras library;
– study of the application of the loss function in deep 
learning of a neural network;
– research of optimization algorithms;
– research of quality indicators.
All of the above parameters will be implemented in 

the Keras library, and it is not necessary to perform the 
computational process manually. But a combination of dif-

ferent parameters can show results that will be far from 
real indicators.

Thus, the object of research is the process of learning 
a deep neural network, which evaluates the algorithm for 
constructing an LDA model. The aim of research is to 
select the optimal parameters to determine the accuracy 
of the loss of errors in deep learning of a neural network.

2.  Methods of research

In deep learning of a neural network, the complexity of 
the model is optimized along with accuracy. Complexity is 
understood as the structural complexity of the model – this 
is the number of model parameters, taking into account 
their domain of definition. An alternative to this definition 
is the statistical complexity of the model, that is, the output 
of the minimum amount of information that is required to 
convey information about the model and about the sample.

The optimizer is one of three parameters used in compil-
ing deep learning neural networks. Optimizers or otherwise 
optimization algorithms are used when learning a neural 
network, which serve to select weights in such a way as to 
minimize the error on the learning dataset. Keras implements 
such basic optimization algorithms as the gradient descent me-
thod, the stochastic gradient descent method – SGD, Adag-
rad, Adadelta, Adam (Adaptive Moment Estimation), etc.  



INFORMATION AND CONTROL SYSTEMS:
REPORTS ON RESEARCH PROJECTS

35TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(56), 2020

ISSN 2664-9969

An optimizer is a value that shows the effect of a particular 
feature on the distribution of a target variable. The SGD 
optimizer was chosen to optimize the learning process. The 
argument in this optimizer is learning_rate and the initial 
learning level should be float> = 0. With SGD, the learning 
rate depends on specific parameters, which are adapted to the 
frequent parameter updates during learning. The more updates 
the parameter receives, the lower the learning rate. In other 
words, the stochastic gradient descent method (SGD) [3]  
effectively redistributes the learning step for each individual 
parameter, while taking into account all past gradients for 
this parameter.

Learning rate refers to the relationship between the 
learning and test data. For example, validation_split = 0.25 
means that 75 % of the data will be used to learn the model 
and the remaining 25 % will be used to test the model.

The sample size or batch_size determines the number 
of learning samples that are processed per iteration of the 
gradient descent algorithm.

The loss function or entropy is a measure of the error 
generated by the system. One of the most popular loss 
functions used in neural networks is cross-entropy, how-
ever, categorical, sparse, or binary cross-entropy is more 
common in working with NLP. Entropy works directly 
with the unknown, which is an important argument in 
machine learning. Entropy is a function of the probability p.  
The greater the probability of an event, the less its un-
certainty, that is, it is unknown whether the event will 
occur or not [4].

And the third no less important parameter is the ac-
curacy metric (accuracy). Accuracy metrics are used in 
case of unreliability in the sample, that is, representatives 
of different classes can meet with different probabilities [5]. 
And to determine the reliability, Keras implements such 
accuracy metrics as accuracy, binary_accuracy, categori-
cal_accuracy, sparse_categorical_accuracy, top_k_categori-
cal_accuracy, cosine_proximity, sparse_top_k_categori-
cal_accuracy, clone_metric. Accuracy defines the ratio of 
correctly predicted objects to all other objects. Usually 
accuracy is calculated by the formula:

Accuracy =
+

+ + +
TP TN

TP FP FN TN
,  (1)

where TP – True positive (true-positive decision); TN – 
True negative (true negative decision); FP – False posi-
tive (false positive decision); FN – False negative (false-
negative decision).

In this study, binary_accuracy was applied, which cal-
culates the coincidence rate of predictions with binary 
labels, in which y_train should match or have parallel 
data with y_true. For objective testing of the classifier 
in problems with images, it is acceptable to use the MSE 
error metrics [6], but the confusion matrix is more suit-
able for the text classifier.

To visualize the accuracy metric, the confusion matrix 
is used, which is usually represented as in Fig. 1.

Each position is calculated with respect to formulas 
(2)–(5), where n is the number of classes, the class label 
takes the value +1 (positive class) or –1 (negative class). 
4 values are entered, respectively:
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where a(xi) – class with elements; yi – result of the learn-
ing algorithm.
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Fig. 1. Matrix of errors

Thus, the TP section shows the sum of the number of 
classes a(xi) in which the pair «topic and keywords» have 
high accuracy and are true both in terms of prediction and 
the results of the уі learning algorithm (2). Section TN shows 
the sum of the number of classes a(xi) in which the pair 
«topic and keywords» has false accuracy, both in terms of 
prediction and according to the results of the уі learning 
algorithm (3). Section FP shows the sum of the number of 
classes a(xi) in which the pair «topic and keywords» has 
true prediction accuracy, and false according to the results 
of the yi learning algorithm (4). Section FN shows the sum 
of the number of classes a(xi) in which the pair «topic and 
keywords» has false accuracy in prediction, and true accuracy 
according to the results of the yi learning algorithm (5). In 
the FN and FP section, the system shows the errors that 
were received during learning. Experiments must take into 
account a certain amount of data. If there is an increase 
in the data threshold, then fewer false positives and more 
false negatives are generated. Therefore, one of the curves 
can rise, and the other – fall. Using this schedule, yi is 
possible to choose the optimal threshold value. If there is 
no such threshold, it is necessary to learn another algorithm.

3.  Research results and their discussion

At the time of this study, there is a neural network 
consisting of a sequence of layers: Embedding (), Spa-
tialDropout1D (), LSTM (dropout, recurrent_dropout), 
Dense ()), which is a traditional multi-layer feedforward 
network using back propagation of errors [7]. Previous 
studies have identified regularization parameters in neu-
ral network layers that make up 70 % of the data for 
the SpatialDropout1D layer, for the hidden dropout and 
recurrent_dropout layers. As a result of the experiments, 
a combination of optimal parameters in the compilation 
of the neural network model was obtained. Here are some 
examples from the experiments carried out [8]:

1st combination. model.compile (loss = ‘sparse_categori-
cal_crossentropy’, optimizer = ‘adam’), the result of which is 
shown in Fig. 2. This combination shows that the number 
of classes in shape changes by 1, then the process stops 
and shows an error.
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2nd combination. model.compile (loss = ‘poisson’, opti-
mizer = ‘Adadelta’, metrics = [‘accuracy’]) – this combination 
shows the tendency to 0.5 results of calculating errors 
in the learning and the tendency to 0 of the learning 
model [9]. And in the learning accuracy, neither the learn-
ing nor the learning model changes during learning.

This is inconsistent with the calculation results pro-
duced by accuracy (Fig. 3).

3rd combination. model.compile (loss = ‘poisson’, opti-
mizer = ‘adam’, metrics = [‘accuracy’]) – this combination of 
parameters shows that the error function diverges after 
the n-th iteration.

This indicates the need for relearning from the place 
of discrepancy between the learners and the tested da-
ta; the accuracy, in turn, does not change during the  

learning. This means that the result is unreliable in this 
case (Fig. 4).

4th combination. model.compile (loss = ‘binary_cros-
sentropy’, optimizer = ‘SGD’, metrics = [‘cosine_proximity’]) 
– this combination of parameters shows that the error in 
the learning data is approaching 0 in parallel.

This means that learning proceeds normally without 
relearning. The accuracy in calculating the loss of error, 
respectively, increases and tends to unity.

The result is loss (learning errors) = 0.1984, cosine_
proximity (error accuracy) = 0.2239, val_loss (testing er-
ror) = 0.1985, val_cosine_proximity (testing error accu-
racy) = 0.2235 (Fig. 5).

This is what was required to be obtained as a result 
of the experiment.

 
Fig. 2. The result of applying the 1st combination of parameters
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Fig. 3. Result of the 2nd combination: a – error (loss, val_los); b – accuracy (acc, val_acc)

Fig. 4. Result of the 3rd combination: a – error (loss, val_los); b – accuracy (acc, val_acc)
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4.  Conclusions

Thus, there is a sequential composition of the neural net-
work: Embedding (), SpatialDropout1D (0.7)), LSTM (64, 
dropout = 0.7, recurrent_ dropout = 0.7)), Dense ()) with 
the preliminary parameters emb_dim = 128, n_most_com-
mon_words = 8000, batch_size = 256, epochs = 500. As a result 
of the experiments carried out using various combinations 
of arguments in the compilation method of the model, the 
optimal variant was identified. The optimal combination 
of compiler arguments when determining the precision 
of the error loss are the parameters: binary_crossentropy, 
optimizer = SGD, metrics = cosine_proximity. The research 
results are applied when conducting deep learning of a neu-
ral network, where the sample is text data. The arguments 
are used in the compile () method of the Keras library 
for the Python programming language [10].
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Fig. 5. Result of the 4th combination, specify the values: a – error (loss, val_los); b – accuracy (acc, val_acc)
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