
InformatIon and Control SyStemS:
reportS on reSearCh projeCtS

38 teChnology audIt and produCtIon reServeS — № 6/2(56), 2020

ISSN 2664-9969

UDC 004.67
DOI: 10.15587/2706-5448.2020.218427

neural networkS and monte-Carlo
method uSage In multI-agent
SyStemS for Sudoku problem
SolvIng

The object of research is multi-agent systems based on Deep Reinforcement Learning algorithms and analysis
of ways to establish interaction within the system, based on intelligent agents. Also, part of the material in this
paper covers ways to organize the management and administration of agents at the meta-level: external control-
lers and tools to optimize their work, describing architectural solutions that should accelerate agents’ training. The
studied full-fledged multi-agent system would be flexible to expansion and would give effective acceleration in
agent training and problem-solving quality.

In this paper, the following neural network models were considered: DQN, DDQN, PPO, TD (methods based
on Q-Learning), an approach using a neural network with Monte-Carlo tree search. The presented models were
tested on a Sudoku problem with a dataset of 5039 combinations, dimensions 2 × 2, 4 × 4, and 9 × 9. Several sets of
agent rewards were used. The presentation of data during the learning and problem-solving process was described.
Also was built a multi-agent system based on the model using a Monte-Carlo tree search.

According to the study results, it was revealed that for tasks in a complex environment, the models based on
Q-Learning are practically ineffective (plots support the statement). The training process for these models is quite
demanding on the characteristics of the workstation hardware. It was also determined that the Monte-Carlo tree
search method does a good job. Even with a small number of iterations, it shows results better than other Deep
Learning methods (45–50 % accuracy for 9 × 9). However, a significant drawback is a complexity of training the
model, and the hardware requirements are too large for this kind of research.

keywords: DQN, DDQN, TD, PPO, neural network, deep learning, reinforcement learning, multi-agent system,
MCTS, Q-Learning.

poloziuk k.,
yaremenko v.

Copyright © 2020, Poloziuk K., Yaremenko V.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0)

Received date: 27.07.2020

Accepted date: 17.09.2020

Published date: 31.12.2020

1. Introduction

Reinforcement Learning is a promising machine learning
sub-field used to solve complex problems with uncertain
conditions or environments where the rules of existence
are simpler to set by a system of fines and rewards than
an explicit description of all the rules [1, 2]. The Rein-
forcement Learning approach is increasingly combined with
Deep Learning and used to create a better combination
of intelligent agents [1, 3].

The relevance of the work depends on the development
of hardware, which allowed the scientific community to
develop and train agents based on Deep Reinforcement
Learning quickly, and therefore – to conduct a large number
of studies with them, which led to many new studies in
this field. Particular attention should be paid to research
related to the use of intelligent agents in multi-agent systems.

This object of research is multi-agent systems based
on Deep Reinforcement Learning algorithms, analysis of
ways to establish interaction within the system, based on
intelligent agents. Also, part of the material in this paper
covers ways to organize the management and administra-
tion of agents at the meta-level: external controllers and
tools to optimize their work, describing architectural solu-
tions that should accelerate agents’ training. The aim of

this research is to explore and build a multi-agent system
based on Deep Reinforcement Learning to solve problems
in a complex environment.

2. methods of research

Theoretical research consists of prototyping and analysis
of the work of different architectures of Deep Neural Networks
and different ways of training them to create intelligent
agents and the subsequent creation of a multi-agent system
based on the most successful approach. The considered ar-
chitectures and methods include DQN, DDQN, TD, PPO,
Neural MCTS [1, 4, 5]. The Sudoku problem’s solution was
considered with the help of a system of intelligent agents
who communicate using a simple non-standardized protocol
of communication such as «mailbox».

The study used three different types of environment (Su-
doku boards), which were classified by size. Characteristics
of environments and the number of representatives of each
of them are given in Table 1.

The practical part of the research includes constructing
an environment using the Python programming language
and OpenAI Gym library and the implementation of various
architectures and methods for Deep Learning using the
PyTorch framework. The practical part was performed

INFORMATION AND CONTROL SYSTEMS:
REPORTS ON RESEARCH PROJECTS

39TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(56), 2020

ISSN 2664-9969

iteratively, starting with agents’ study in the most straight-
forward environments, increasing complexity if agents pro-
vided satisfying results.

Table 1
Environment characteristics

Type Characteristic Value

А

Width 2 cells

Height 2 cells

Number of instances 3 instances

B

Width 4 cells

Height 4 cells

Number of instances 36 instances

C

Width 9 cells

Height 9 cells

Number of instances 5000 instances

The study’s driving force is the desire to train agents
with the minimum number of steps and maximum accu-
racy to solve a Sudoku, like a human. With the help of
deep training with reinforcement to achieve that, agents
based on the evaluation system guessed how to solve the
problem correctly and learned to think instead of thought-
lessly filling the cells.

The first step was to determine what agents know
about the environment and what do not (Table 2).

Based on this, it is possible to determine the range
of actions that agents are provided by the environment
(Table 3) [6, 7].

Table 2
Restriction for agents in the environment

Agents do not know Agents know

The line must be filled with numbers from 1
to n without repeat

About the existence of rows,
columns, squares

The column should be filled with numbers
from 1 to n without repeat

That cell belongs to the
1 row./1 col./1 sq.

The square should be filled with numbers
from 1 to n without repeat

That they can put a number
in an empty cell

–
That they can move the Su-
doku board one step away
from the current one

Table 3
Actions available to the agents

Action Description

Number placement (1–9) The agent tries to place the number on the field

Move in one of the direc-
tions (10–13)

The agent moves in one of the allowed directions
(up, down, left, right)

Idle The agent does not move

The agent in the environment functions as follows: at
the initial moment, the agent is created with a starting
position, which is chosen randomly. In the future, the
agent, having «visual» access to the entire environment,
can move through the cells of the environment and, ana-
lyzing the state of the environment, can fill the cells in
which it is currently standing. The purpose of the agent
is to fill the entire board with numbers (Sudoku solution).

The models in this section are subject to extensive
modification by definition of the reward system, so below
is a complete list of all the reward options considered
during the experiments with which the Neural Networks
were trained (Table 4).

Table 4
Rewards sets

Reward
Values from a set

1 2 3 4

Correct filling of an empty cell 5 5 5 5

Incorrect filling of an empty cell –3 –3 0 –3

Attempt to fill an filled cell –2 –2 –2 –2

Movement (up, down, left, right) 0 0 0 0

Idle (stop) 0 –2 –3 –3

Finding an empty cell 1 0 0 0

Sudoku solving 0 100 % %

Exit the board –1 –2 –3 –3

Reward for correct answers at the end of the work 0 0 1 1

This list represents the set of sets of awards with which
training took place. Certain items in this list need to be
explained separately. The sign «%» describes a situation
where the award was given based on the percentage of
correctly placed cells in Sudoku for the total number of
initially empty cells.

The environment was presented in the form of 3 layers.
Each layer is a set of columns, rows, or sections of Sudoku.
This partitioning is the primary way to separate the system
for several agents. The schematic image is presented in Fig. 1.

Fig. 1. Schematic partitioning of the Sudoku board

To obtain stable results and provide better understand-
ing of the work, the following are the PC characteristics
on which the study data were conducted (Table 5).

Table 5
Workstation characteristics

Characteristics Description

CPU Intel Kaby Lake, 4 core, 4.5 GHz

GPU
RTX 2080 TI, 11 GB VRAM, memory frequency 14 GHz,
bus width 352 bits, transfer rate 616 GB per second

At the time of this study, it is possible to say that
the station is equipped with a powerful GPU to solve
machine learning problems, which can be obtained for
personal use. CPU is much worse, but it should not sig-
nificantly affect the learning process, as all computations
are on the GPU side.

INFORMATION AND CONTROL SYSTEMS:
REPORTS ON RESEARCH PROJECTS

40 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(56), 2020

ISSN 2664-9969

3. Research results and discussion

Fig. 2–7 illustrates the general situation regarding the
agent’s behavior and its effectiveness when working in
a type B environment. During the experiments, as a result
of attempts to change the system of evaluation of the
agent’s actions, it was found that this trend is general
and did not depend on the reward method’s choice.

–1000
–900
–800
–700
–600
–500
–400
–300
–200
–100

0

1 101 201 301 401 501 601 701 801 901

Absolute Reward

Absolute Reward

Fig. 2. Absolute rewards for DQN agent (1000 iterations, environment C)

–700

–600

–500

–400

–300

–200

–100

0

1 101 201 301 401 501 601 701 801 901

Average Reward

Average Reward

Fig. 3. Average rewards for DQN agent (1000 iterations, environment C)

–600

–500

–400

–300

–200

–100

0

100

1 101 201 301 401 501 601 701 801 901

Average Reward

Average Reward

Fig. 4. Average rewards for DDQN agent (1000 iterations, environment C)

–800

–700

–600

–500

–400

–300

–200

–100

0

1 101 201 301 401 501 601 701 801 901

Average Reward

Average Reward

Fig. 5. Average rewards for TD agent (1000 iterations, environment C)

–2500

–2000

–1500

–1000

–500

0

1 101 201

Absolute Reward

Absolute Reward

Fig. 6. Average rewards for PPO agent (1000 iterations, environment C)

0.75

0.8

0.85

0.9

0.95

1

1.05

1 2 3 4 7 8 9 10

Solution Rate

Solution Rate

5 6

Fig. 7. Solved Sudoku rate by MCTS agent (10 iterations, environment B)

The plot of the absolute reward quite chaotically de-
scribes DQN agents’ work (as can be seen from Fig. 2),
which shows only a tendency to a sharp change in the
absolute values of the reward, and this trend is present
in all of the plots. On the other hand, the analysis of the
average rewards shown in the plot (Fig. 3) shows that the
agent studied and reduced the amount of punishment for
one iteration. At some point in time, the average reward
begins to fall as the absolute reward range increases. Studies
were conducted with DQN, DDQN, TD, PPO.

As can be seen from Fig. 6, the plot converged to a pla-
teau in the form of 0. The system has acquired an equilib-
rium at which the agent does not gain or lose points for
its actions. This plot only shows that at best all previous
experiments would have converged to such a situation, just in
the case of PPO training was quite effective. The agent did
not begin to forget the experience and learn to balance. It
can be argued that solving this problem even with a single
agent based on Q-Learning using Deep Neural Networks,
is not possible.

However, the problem must be solved, so it was decided
to solve this problem using Neural MCTS (Monte-Carlo
Tree Search) and build a multi-agent system based on it
with our own communication protocol [8–10]. Due to the
lack of computing power and time, a limited number of
experiments with type B were performed, as MCTS training
for type B environment is already a time-consuming task.

The next experiment was to solve a 9 by 9 Sudoku.
The same datasets were used as in the previous paragraphs.
However, only 2 full iterations were performed, as the total
processing time of one iteration was approximately 25 hours.
This experiment can also be considered successful because the
accuracy after 1000 episodes was 35 and 46 percent on the
respective iterations. But the computing power of the avail-
able hardware prevented continuing experiments in this area.

InformatIon and Control SyStemS:
reportS on reSearCh projeCtS

41teChnology audIt and produCtIon reServeS — № 6/2(56), 2020

ISSN 2664-9969

The latest experiment is implementing a 9 by 9 Sudoku
system using 27 agents, each responsible for a column, line,
or square, and must share information with other agents to
succeed in filling cells. The average training time of one of
the agents is about 20 hours. The achieving of positive growth
occurs from about 3 to 4 iterations and continues. But this
experiment can’t be completed due to the lack of computing
power and time. The average accuracy after the execution
of 3 iterations fluctuates at the level of 45–50 percent.

4. Conclusions

Based on the experiment results, it can be concluded that
the construction of a multi-agent system based on the Deep
Network with reinforcement is possible to solve problems
in a complex environment with a large number of states.
However, this task is quite tricky for classical methods on
the basic Q-Learning: DQN, DDQN, TD, PPO, because:

1. Very complex environment, for example, Sudoku,
is based on rather complex implicit rules. Finding these
dependencies is too challenging for Q-Learning methods
using Deep Networks [11].

2. The limitations of Q-Learning depend on the limita-
tions of modern computers, rather than the method. This
study does not refute Bellman’s equation and postulates
underlying it, just the number of states that the system
must consider much larger than the number of records
in the learning table that one agent can write.

3. The use of MCTS-based method shows good results
but learning such a network is quite a time-consuming
task, which increases with the size of the environment
and the complexity of the task [4].

It can be argued that the results obtained during the
work are quite encouraging. This study can be continued
to obtain practical proof of the success of this kind of
multi-agent system if the required capacity is available.

references

1.	 Wang, Y., Wu, F. (2019). Multi-Agent Deep Reinforcement Learn-
ing with Adaptive Policies. ArXiv, abs/1912.00949. Available
at: https://arxiv.org/abs/1912.00949

2.	 Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K.,
Aru, J. et. al. (2017). Multiagent cooperation and competi-
tion with deep reinforcement learning. PLOS ONE, 12 (4),
e0172395. doi: http://doi.org/10.1371/journal.pone.0172395

3.	 Simoes, D., Lau, N., Reis, L. P. (2019). Multi-Agent Deep
Reinforcement Learning with Emergent Communication. 2019
International Joint Conference on Neural Networks (IJCNN).
doi: http://doi.org/10.1109/ijcnn.2019.8852293

4.	 Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van
den Driessche, G. et. al. (2016). Mastering the game of Go
with deep neural networks and tree search. Nature, 529 (7587),
484–489. doi: http://doi.org/10.1038/nature16961

5.	 Nguyen, T. T., Nguyen, N. D., Nahavandi, S. (2020). Deep
Reinforcement Learning for Multiagent Systems: A Review of
Challenges, Solutions, and Applications. IEEE Transactions on
Cybernetics, 50 (9), 3826–3839. doi: http://doi.org/10.1109/
tcyb.2020.2977374

6.	 Kumar, S., Hakkani-T r, D., Shah, P., Heck, L. (2017). Fede-
rated control with hierarchical multi-agent deep reinforcement
learning. ArXiv. Available at: https://arxiv.org/abs/1712.08266v1

7.	 Hernandez-Leal, P., Kartal, B., Taylor, M. E. (2019). A sur-
vey and critique of multiagent deep reinforcement learning.
Autonomous Agents and Multi-Agent Systems, 33 (6), 750–797.
doi: http://doi.org/10.1007/s10458-019-09421-1

8.	 Foerster, J. N., Assael, Y. M., De Freitas, N., Whiteson, S. (2016).
Learning to communicate with deep multi-agent reinforcement
learning. Advances in Neural Information Processing Systems.
Neural information processing systems foundation, 2145–2153.

9.	 Gupta, J. K., Egorov, M., Kochenderfer, M. (2017). Coopera-
tive Multi-agent Control Using Deep Reinforcement Learning.
Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics) Vol. 10642 LNAI. Springer Verlag, 66–83. Available at:
http://doi.org/10.1007/978-3-319-71682-4_5

10.	 Nguyen, N. D., Nguyen, T., Nahavandi, S. (2019). Multi-agent be-
havioral control system using deep reinforcement learning. Neu-
rocomputing, 359, 58–68. doi: http://doi.org/10.1016/j.neucom.
2019.05.062

11.	 Da Silva, F. L., Glatt, R., Costa, A. H. R. (2017). Simulta-
neously learning and advising in multiagent reinforcement
learning. Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS. Vol. 2.
International Foundation for Autonomous Agents and Multiagent
Systems (IFAAMAS), 1100–1108

Poloziuk Kateryna, Department of the System Design, National

Technical University of Ukraine «Igor Sikorsky Kyiv Polytech-

nic Institute», Kyiv, Ukraine, e-mail: kate.polozyuk@gmail.com,

ORCID: http://orcid.org/0000-0002-9892-5196

Yaremenko Vadym, Postgraduate Student, Assistant, Depart-

ment of the System Design, National Technical University of

Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine,

e-mail: yaremenko.v.s@gmail.com, ORCID: http://orcid.org/0000-

0001-8557-6938

