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The object of research is multi-agent systems based on Deep Reinforcement Learning algorithms and analysis 
of ways to establish interaction within the system, based on intelligent agents. Also, part of the material in this 
paper covers ways to organize the management and administration of agents at the meta-level: external control-
lers and tools to optimize their work, describing architectural solutions that should accelerate agents’ training. The 
studied full-fledged multi-agent system would be flexible to expansion and would give effective acceleration in 
agent training and problem-solving quality.

In this paper, the following neural network models were considered: DQN, DDQN, PPO, TD (methods based 
on Q-Learning), an approach using a neural network with Monte-Carlo tree search. The presented models were 
tested on a Sudoku problem with a dataset of 5039 combinations, dimensions 2 × 2, 4 × 4, and 9 × 9. Several sets of 
agent rewards were used. The presentation of data during the learning and problem-solving process was described. 
Also was built a multi-agent system based on the model using a Monte-Carlo tree search.

According to the study results, it was revealed that for tasks in a complex environment, the models based on 
Q-Learning are practically ineffective (plots support the statement). The training process for these models is quite 
demanding on the characteristics of the workstation hardware. It was also determined that the Monte-Carlo tree 
search method does a good job. Even with a small number of iterations, it shows results better than other Deep 
Learning methods (45–50 % accuracy for 9 × 9). However, a significant drawback is a complexity of training the 
model, and the hardware requirements are too large for this kind of research.

keywords: DQN, DDQN, TD, PPO, neural network, deep learning, reinforcement learning, multi-agent system, 
MCTS, Q-Learning.
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1. Introduction

Reinforcement Learning is a promising machine learning 
sub-field used to solve complex problems with uncertain 
conditions or environments where the rules of existence 
are simpler to set by a system of fines and rewards than 
an explicit description of all the rules [1, 2]. The Rein-
forcement Learning approach is increasingly combined with 
Deep Learning and used to create a better combination 
of intelligent agents [1, 3].

The relevance of the work depends on the development 
of hardware, which allowed the scientific community to 
develop and train agents based on Deep Reinforcement 
Learning quickly, and therefore – to conduct a large number 
of studies with them, which led to many new studies in 
this field. Particular attention should be paid to research 
related to the use of intelligent agents in multi-agent systems.

This object of research is multi-agent systems based 
on Deep Reinforcement Learning algorithms, analysis of 
ways to establish interaction within the system, based on 
intelligent agents. Also, part of the material in this paper 
covers ways to organize the management and administra-
tion of agents at the meta-level: external controllers and 
tools to optimize their work, describing architectural solu-
tions that should accelerate agents’ training. The aim of 

this research is to explore and build a multi-agent system 
based on Deep Reinforcement Learning to solve problems 
in a complex environment.

2. methods of research

Theoretical research consists of prototyping and analysis 
of the work of different architectures of Deep Neural Networks 
and different ways of training them to create intelligent 
agents and the subsequent creation of a multi-agent system 
based on the most successful approach. The considered ar-
chitectures and methods include DQN, DDQN, TD, PPO, 
Neural MCTS [1, 4, 5]. The Sudoku problem’s solution was 
considered with the help of a system of intelligent agents 
who communicate using a simple non-standardized protocol 
of communication such as «mailbox».

The study used three different types of environment (Su-
doku boards), which were classified by size. Characteristics 
of environments and the number of representatives of each 
of them are given in Table 1.

The practical part of the research includes constructing 
an environment using the Python programming language 
and OpenAI Gym library and the implementation of various  
architectures and methods for Deep Learning using the 
PyTorch framework. The practical part was performed 
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iteratively, starting with agents’ study in the most straight-
forward environments, increasing complexity if agents pro-
vided satisfying results.

Table 1
Environment characteristics

Type Characteristic Value

А

Width 2 cells

Height 2 cells

Number of instances 3 instances

B

Width 4 cells

Height 4 cells

Number of instances 36 instances

C

Width 9 cells

Height 9 cells

Number of instances 5000 instances

The study’s driving force is the desire to train agents 
with the minimum number of steps and maximum accu-
racy to solve a Sudoku, like a human. With the help of 
deep training with reinforcement to achieve that, agents 
based on the evaluation system guessed how to solve the 
problem correctly and learned to think instead of thought-
lessly filling the cells.

The first step was to determine what agents know 
about the environment and what do not (Table 2).

Based on this, it is possible to determine the range 
of actions that agents are provided by the environment 
(Table 3) [6, 7].

Table 2
Restriction for agents in the environment

Agents do not know Agents know

The line must be filled with numbers from 1 
to n without repeat

About the existence of rows, 
columns, squares

The column should be filled with numbers 
from 1 to n without repeat

That cell belongs to the 
1 row./1 col./1 sq.

The square should be filled with numbers 
from 1 to n without repeat

That they can put a number 
in an empty cell

–
That they can move the Su-
doku board one step away 
from the current one

Table 3
Actions available to the agents

Action Description

Number placement (1–9) The agent tries to place the number on the field

Move in one of the direc-
tions (10–13)

The agent moves in one of the allowed directions 
(up, down, left, right)

Idle The agent does not move

The agent in the environment functions as follows: at 
the initial moment, the agent is created with a starting 
position, which is chosen randomly. In the future, the 
agent, having «visual» access to the entire environment, 
can move through the cells of the environment and, ana-
lyzing the state of the environment, can fill the cells in 
which it is currently standing. The purpose of the agent 
is to fill the entire board with numbers (Sudoku solution).

The models in this section are subject to extensive 
modification by definition of the reward system, so below 
is a complete list of all the reward options considered 
during the experiments with which the Neural Networks 
were trained (Table 4).

Table 4
Rewards sets

Reward
Values from a set

1 2 3 4

Correct filling of an empty cell 5 5 5 5

Incorrect filling of an empty cell –3 –3 0 –3

Attempt to fill an filled cell –2 –2 –2 –2

Movement (up, down, left, right) 0 0 0 0

Idle (stop) 0 –2 –3 –3

Finding an empty cell 1 0 0 0

Sudoku solving 0 100 % %

Exit the board –1 –2 –3 –3

Reward for correct answers at the end of the work 0 0 1 1

This list represents the set of sets of awards with which 
training took place. Certain items in this list need to be 
explained separately. The sign «%» describes a situation 
where the award was given based on the percentage of 
correctly placed cells in Sudoku for the total number of 
initially empty cells.

The environment was presented in the form of 3 layers. 
Each layer is a set of columns, rows, or sections of Sudoku. 
This partitioning is the primary way to separate the system 
for several agents. The schematic image is presented in Fig. 1.

 

Fig. 1. Schematic partitioning of the Sudoku board

To obtain stable results and provide better understand-
ing of the work, the following are the PC characteristics 
on which the study data were conducted (Table 5).

Table 5
Workstation characteristics

Characteristics Description

CPU Intel Kaby Lake, 4 core, 4.5 GHz

GPU
RTX 2080 TI, 11 GB VRAM, memory frequency 14 GHz, 
bus width 352 bits, transfer rate 616 GB per second

At the time of this study, it is possible to say that 
the station is equipped with a powerful GPU to solve 
machine learning problems, which can be obtained for 
personal use. CPU is much worse, but it should not sig-
nificantly affect the learning process, as all computations 
are on the GPU side.
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3.  Research results and discussion

Fig. 2–7 illustrates the general situation regarding the 
agent’s behavior and its effectiveness when working in  
a type B environment. During the experiments, as a result 
of attempts to change the system of evaluation of the 
agent’s actions, it was found that this trend is general 
and did not depend on the reward method’s choice.
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Fig. 2. Absolute rewards for DQN agent (1000 iterations, environment C)
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Fig. 3. Average rewards for DQN agent (1000 iterations, environment C)
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Fig. 4. Average rewards for DDQN agent (1000 iterations, environment C)
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Fig. 5. Average rewards for TD agent (1000 iterations, environment C)
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Fig. 6. Average rewards for PPO agent (1000 iterations, environment C)
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Fig. 7. Solved Sudoku rate by MCTS agent (10 iterations, environment B)

The plot of the absolute reward quite chaotically de-
scribes DQN agents’ work (as can be seen from Fig. 2), 
which shows only a tendency to a sharp change in the 
absolute values of the reward, and this trend is present 
in all of the plots. On the other hand, the analysis of the 
average rewards shown in the plot (Fig. 3) shows that the 
agent studied and reduced the amount of punishment for 
one iteration. At some point in time, the average reward 
begins to fall as the absolute reward range increases. Studies 
were conducted with DQN, DDQN, TD, PPO.

As can be seen from Fig. 6, the plot converged to a pla-
teau in the form of 0. The system has acquired an equilib-
rium at which the agent does not gain or lose points for 
its actions. This plot only shows that at best all previous 
experiments would have converged to such a situation, just in 
the case of PPO training was quite effective. The agent did 
not begin to forget the experience and learn to balance. It 
can be argued that solving this problem even with a single  
agent based on Q-Learning using Deep Neural Networks, 
is not possible.

However, the problem must be solved, so it was decided 
to solve this problem using Neural MCTS (Monte-Carlo 
Tree Search) and build a multi-agent system based on it 
with our own communication protocol [8–10]. Due to the 
lack of computing power and time, a limited number of 
experiments with type B were performed, as MCTS training 
for type B environment is already a time-consuming task.

The next experiment was to solve a 9 by 9 Sudoku. 
The same datasets were used as in the previous paragraphs. 
However, only 2 full iterations were performed, as the total 
processing time of one iteration was approximately 25 hours. 
This experiment can also be considered successful because the 
accuracy after 1000 episodes was 35 and 46 percent on the 
respective iterations. But the computing power of the avail-
able hardware prevented continuing experiments in this area. 
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The latest experiment is implementing a 9 by 9 Sudoku 
system using 27 agents, each responsible for a column, line, 
or square, and must share information with other agents to 
succeed in filling cells. The average training time of one of 
the agents is about 20 hours. The achieving of positive growth 
occurs from about 3 to 4 iterations and continues. But this 
experiment can’t be completed due to the lack of computing 
power and time. The average accuracy after the execution  
of 3 iterations fluctuates at the level of 45–50 percent.

4. Conclusions

Based on the experiment results, it can be concluded that 
the construction of a multi-agent system based on the Deep 
Network with reinforcement is possible to solve problems 
in a complex environment with a large number of states. 
However, this task is quite tricky for classical methods on 
the basic Q-Learning: DQN, DDQN, TD, PPO, because:

1. Very complex environment, for example, Sudoku, 
is based on rather complex implicit rules. Finding these 
dependencies is too challenging for Q-Learning methods 
using Deep Networks [11].

2. The limitations of Q-Learning depend on the limita-
tions of modern computers, rather than the method. This 
study does not refute Bellman’s equation and postulates 
underlying it, just the number of states that the system 
must consider much larger than the number of records 
in the learning table that one agent can write.

3. The use of MCTS-based method shows good results 
but learning such a network is quite a time-consuming 
task, which increases with the size of the environment 
and the complexity of the task [4].

It can be argued that the results obtained during the 
work are quite encouraging. This study can be continued 
to obtain practical proof of the success of this kind of 
multi-agent system if the required capacity is available.
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