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ANALYSIS OF MACHINE LEARNING 
METHODS IN THE TASK OF SEARCHING 
DUPLICATES IN THE SOFTWARE CODE

The object of the study is code in the Python programming language, analyzed by machine learning methods 
to identify clones.

This work is devoted to the study of machine learning methods and implementation of the decision tree machine 
learning model in the problem of finding clones in the program code. The paper also analyzes existing machine 
learning approaches for detecting duplicates in program code. During the comparison, the advantages and disad-
vantages of each algorithm were determined, and the results were summarized in the corresponding comparison 
tables. As a result of the analysis, it was determined that the method based on the decision tree, which gives the 
best result in the task of finding clones in the program code, is the most optimal both from the point of view  
of accuracy and from the point of view of implementation.

The result of the work is a created model that, with an accuracy of more than 99 %, classifies cloned and non-
cloned codes on an automatically generated dataset in a minimal amount of time. This system has several open 
questions for future research, the list of which is presented in this work. The proposed model has the following 
ways of further development:

– recognition of clones rewritten from one programming language to another;
– detection of vulnerabilities in the code;
– improvement of model performance by creating more universal datasets.
The perspective of the work lies in training a decision tree model for accurate and fast detection of code clones, 

which can potentially be widely used for plagiarism detection in both educational institutions and IT companies.
Keywords: clone detection, machine learning methods, decision tree, Support Vector Machine, TECCD, dataset.
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1.  Introduction

The detection of duplicates in the program code, or 
the detection of clones, is a very active field of research 
in recent years. Code duplication has been recognized as 
a potentially serious problem that negatively affects the 
maintainability, understandability, and development of soft-
ware systems.

Source code that is used in an identical form multiple times 
in software is called a duplicate code or source code clone. 
An automated process that helps find clones in source code is 
called clone detection. Similar sections or pieces of code are 
also considered duplicates, and even code sequences that are 
only functionally identical can be considered duplicate code. 
Duplicate code occurs most often when existing functions 
are copied from one place in the program code to another.

Cloning is considered defect-prone because inconsistent 
changes to code clones can lead to unexpected program 
behavior. It is important to understand that clones do not 
directly cause errors, but inconsistent changes to clones 
can lead to unexpected program behavior. Inconsistent 

bug fixing is a particularly dangerous type of change to 
cloned code.

Many software engineering tasks, such as plagiarism 
detection, code quality analysis, bug detection, vulnerabi-
lity detection, etc., may require the detection of semanti-
cally or syntactically similar blocks of code. This makes 
clone detection an effective and useful part of software 
analysis [1].

Code cloning can occur in any software project. One 
problem is that code clones come in many different types, 
making them difficult to detect using standard patterns. 
Due to the diversity in the structure and form of se-
mantically similar clones, machine learning methods are 
required to detect them.

2.   The object of research and its 
technological audit

The object of research is code in the Python program-
ming language, analyzed by machine learning methods to 
identify clones.
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Duplicate code makes the overall code extremely diffi-
cult to maintain and the codebase becomes unnecessarily 
large, leading to technical debt. In work [2] it was de-
termined that the main reasons for eliminating duplicates 
in the program code are:

1. Reduction of maintenance costs.
A clone of the source code must be found and pro-

cessed at each point of use.
2. To facilitate error correction.
Source clones may go unnoticed, and with them, copied 

errors. This leads to uncoordinated changes in the future.
3. Minimization of memory requirements.
Cloning increases the amount of code and therefore 

the amount of memory required. Well-written code with-
out duplication ensures that the program will take up  
less space.

4. Ease of code readability.
5. Code execution speed.
Code clones increase the time it takes to compile the 

code. Every millisecond of delay will contribute to greater 
latency and greater memory requirements on the user’s 
local machine as well as on the production servers.

It is important to note that clones, depending on the 
degree of changes in the code, are divided into 4 types [3]:

– Type-1 clone: the code snippets are identical except 
for small changes in spaces and comments.
– Type-2 clone: code fragments are structurally and 
syntactically identical, only user-defined identifiers  
such as variable, type, or function names and com-
ments change.
– Type-3 clone: based on Type-1 and Type-2, there are 
other changes to the copied segment, such as modifi-
cation, insertion or deletion of operators.
– Type-4 clone: code fragments are semantically similar, 
i. e. perform similar functions, but syntactically differ.
Among the four types of clones, Type-1, Type-2, and 

Type-3 are syntax-based code clones. Type-4 is a seman-
tic clone of the code, which indicates that the code 
performs similar functions, but the syntactic structures  
are different.

Early detection and removal of duplicate lines of code 
simplifies code structure and reduces file size, also increases 
code maintainability and reduces technical debt over time. 
Removing duplicates keeps the code clean, which in turn 
helps deliver feature support and updates faster. Unpatched 
code clones represent hidden bugs, and for critical security 
issues, hidden vulnerabilities, so it’s important to detect 
them quickly. Also, to prevent violation of the rules of 
academic integrity and violation of copyright, the topic 
of finding duplicates is very important.

3.  The aim and objectives of research

The work aims is to find duplicates in the program code.
The objectives of this research are:
1. Review of existing methods and algorithms of machine 

learning, which are used in the task of finding duplicates 
in the program code, and conducting their comparative 
analysis.

2. Development of a machine learning model, which 
will be used for further implementation in the task of 
detecting clones in the code.

3. Verification of the developed software product in 
practice.

4.   Research of existing solutions   
of the problem

In this work, three methods of machine learning for 
detecting clones were considered:

1) decision tree model of machine learning [4];
2) method using Support Vector Machine (SVM) [5];
3) method using A Tree Embedding Approach for Code 

Clone Detection (TECCD) [6].
The working principles of the studied methods:
1. Method using a decision tree machine learning mo-

del (Decision Tree).
A decision tree is a supervised learning algorithm that 

generates decision nodes using the information obtained 
from the value of each function [7]. It can be represented 
as a tree-like graph model consisting of several levels 
of nodes representing a decision rule. Classification is 
performed by passing data through the tree from the top  
to the end node. At each decision node, a branch is se-
lected based on the value of the corresponding attribute. 
A significant advantage of the decision tree model over 
other models is that it provides an interpretable result [8].

While investigating the decision tree machine learning 
model, the authors considered an approach to improve 
existing code clone detection tools using machine learning 
techniques. The paper investigates 19 clone class metrics 
to capture various characteristics of code clones and use 
them to train a decision tree model. The trained decision 
tree model is then used as a filter to remove false clone 
classes from the cloning result.

The authors of the paper noted that applying a deci-
sion tree cloning filter trained on Java clones to Python 
clones showed that the filter was not effective in another 
language, and further work is needed on this issue.

2. Method using Support Vector Machine.
SVM in this approach provides clone class identifi-

cation by classifying code clones into one of the appro-
priate classes.

In the study using SVM, the main focus was on the 
technique of finding similar blocks of code and quantifying 
their similarity (Type-3 clones). Code clones are detected 
in two stages. At the first stage, a parser is used to create  
sets of functions. In this work, SVM is the machine learning 
tool and *.c files are the input. Feature sets are converted 
to Libsvm format by assigning 0 and –1 to the class labels  
of sorting and unsorting algorithms, respectively. In the 
second step, the feature sets used as input are passed through 
the LibSVM tool to classify the code fragment. Scaling 
is performed on both the training and test datasets. The 
output of the second stage is the label of the test data 
set and the accuracy obtained by the tool.

The authors noted that the accuracy increases with 
the number of instances. The accuracy for 45 instances 
is 93.182 %.

3. A Tree Embeddings Approach for Code Clone Detection.
The approach is to convert the source code into an 

abstract syntax tree (AST) [9], which contains informa-
tion about the structure of the code. The AST is then 
mapped to a vector based on machine learning techniques 
and the Euclidean distance of the vectors is compared to 
detect code clones.

The TECCD technique is based on tree embedding for 
code clone detection. This approach first performs an em-
bedding tree to obtain a node vector for each intermediate  
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node in the AST. Embedding nodes capture information 
about the context/structure of the AST. Then a tree vector  
is created from its node vectors using a simplified me-
thod [10]. Finally, Euclidean distances between tree vectors 
are measured to identify code clones.

This approach is implemented in a tool called TECCD, 
and the evaluation was carried out with 7 large Java pro-
jects, as well as BigCloneBench [11]. The results showed 
that this tool is quite effective in terms of accuracy and 
completeness [12].

4. Comparison of methods.
The following is a comparative analysis of the con-

sidered algorithms (Tables 1, 2).

Table 1

Comparative characteristics of methods

Method Precision Data pre-processing

Decision Tree 98 % Small (remove spaces)

Support Vector 
Machine

93.182 %
Average (transformation of feature 
sets into LibSVM format)

A Tree Embedding Ap-
proach for Code Clone 
Detection

88 % Large (Generation AST)

Table 2

The main advantages and disadvantages of the methods

Method Advantages Disadvantages

Decision 
Tree

– short learning time;
– take into account every pos-
sible outcome of the decision 
and trace each node to the 
conclusion accordingly;
– can process large-dimensio-
nal data with good accuracy;
– small data preparation;
– simple and reliable

– sensitive to noise in 
input data;
– spaces in the data are 
difficult to maintain;
– small data changes can 
significantly change the 
constructed decision tree

Support 
Vector 
Machine

– sensitive to noise in input 
data;
– spaces in the data are diffi-
cult to maintain;
–small data changes can signi-
ficantly change the constructed 
decision tree

– unstable to noise in the 
source data;
– when trying to use it in 
multi-class classification, 
the quality and speed of 
work decrease;
– not suitable for large 
datasets

A Tree 
Embedding 
Approach 
for Code 
Clone 
Detection

– fairly high accuracy of results 
on large volumes of data;
– demonstrates good indicators 
of accuracy and completeness;
– consistently high ability 
to detect Type-1 and Type-2 
clones

– requires complex pre-
liminary data preparation;
– requires a large set of 
training data;
– the algorithm is quite 
difficult to implement;
– a lot of time is spent on 
AST generation

After a detailed comparison with Tables 1, 2, it can 
be seen that the method based on the decision tree is 
optimal, both from the point of view of accuracy and 
from the point of view of implementation.

5.  Methods of research

In view of the above comparison of methods, the task 
of this research is the implementation of the machine 
learning method using the decision tree model, which is 
the most optimal from the point of view of the consi-

dered characteristics of the methods. So, let’s develop an 
authentic implementation of this method to improve its 
effectiveness in the task of finding duplicates in the pro-
gram code. The data supplied to the input of the model 
are presented in the form of a numerical vector, with the 
metrics described in Table 3.

Table 3

Information about metrics

The name of 
the metric

Sense of metrics Formula

volume_ratio ratio of code volumes
n tokens

n tokens

_

_
1

2

max_frag-
ment_ratio

the ratio of the volumes 
of the maximum code 
blocks

max

max

_ _

_ _

fragment lines

fragment lines
1

2

min_frag-
ment_ratio

the ratio of volumes of 
minimal blocks of codes

min

min

_ _

_ _

fragment lines

fragment lines
1

2

clone_to-
kens_to_min_
tokens_ratio

the ratio of the number 
of common tokens to the 
number of tokens of a 
smaller code

P tokens tokens

P tokens P tokens

( )

,

1 2

1 2

∩

( ) ( )( )min

lines_ratio

the ratio of the number 
of common tokens to the 
number of smaller code 
tokens

n lines

n lines

_

_
1

2

operators_
overlap_ratio

relation of intersections 
of operators 1 1 1 2

1 2

−
−

( )
=∑

 
_ _

_ , _
i

n
i in op n op

n op n opmax

A decision tree or classification tree (DT) is a supervised 
learning technique that can be used for both classification 
and regression problems, but is mostly better for solving 
classification problems. It is a tree-like classifier where 
internal nodes represent features of the data set, branches 
represent decision rules, and each leaf node represents an 
outcome. The goal is to create a model that can predict 
the value of the target variable while learning simple de-
cision rules derived from the characteristics of the data.

In Fig. 1 [13] shows the diagram of the general struc-
ture of the decision tree.

 
Fig. 1. General structure of the decision tree

DT creates a classification model by constructing a deci-
sion tree. Each tree node defines an attribute check, each 
branch descending from this node corresponds to one of 
the possible values for this attribute [14].
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In Fig. 2 shows the High-Level Diagram (HLD) of our 
software product. HLD demonstrates the structure of the 
developed software product:

1) Code Samples – Python scripts from which a dataset 
is generated;

2) Data Generating Script – data generating script;
3) Dataset – actual dataset;
4) Training Script – a script that trains the model;
5) Model – decision tree model – binary file;
6) Classification Script – a script that loads the model 

and classifies the received codes using it (takes two codes, 
extracts metrics, submits to the model, receives 1 or 0 (clones 
or not clones));

7) Flask App – a web application that receives files, 
transfers them to Class Script and shows the result to the 
user (6 and 7 are one docker container);

8) Code – are code files that we want to classify as 
clo nes or non-clones;

9) Classification Results – received results.

 
Fig. 2. High-Level Diagram of the software product

The implementation of the decision tree is developed 
in the Python programming language. This programming 

language is widely used in many areas, as there are many 
modules and libraries for it that can be used to create 
any software product. The implementation process follows 
the following algorithm:

– pre-processing of data;
– model training on the training sample;
– checking the accuracy of the result (creating a ma-
trix of confusion matrix);
– visualization of the result of the test set.

5.1.  Dataset creating. Since there were no marked datasets 
in public access, and their manual marking would take a long 
time, a decision was made to automatically generate the dataset.

Another 80 clones were generated from 20 Python scripts.
The generation took place as follows: changes are made 

to the code 35 times. The change is renaming a random 
variable with a probability 0.2, also changing the sequence 
of a random block of code with a probability 0.2, and 
removing or adding a random line with a probability 0.6.

A total of 100 scripts were received, 5 variants of each 
of 20 scripts. In Fig. 3, 4 show variants of clone codes.

As a result, it could be and was generated C5
2 5 20 300+( )⋅ = 

= 300 pairs of clone codes (in the formula add 5 more 
options since a pair of codes with itself is also suitable 
for the dataset).

For the balance of the dataset (equal numbers of repre-
sentatives of the False and True classes), 300 pairs of codes 
that are not clones were also selected.

The following metrics (Table 3) were selected from 
pairs of codes for logical and intuitive reasons. In formulas:

n tokensi_  – the number of tokens (words) in code i,  
i = {1,2};
max _ _fragment linesi  – the number of lines  
in the largest block of code i, i = {1,2};
min _ _fragment linesi  – the number of lines  
in the smallest block of code i, i = {1,2};
tokens1  – set of code tokens (words) i, i = {1,2};
n linesi_  – the number of lines in code i, i = {1,2};
n opj

i_  – the number of type operators i (+, – ,…),  
i = {1, number of operator types} in the code j, j = {1,2};
n opi_  – the total number of statements in code i, 
i = {1,2}.

The above metrics + the Clone field (True, if yes; False, 
if not) make up the dataset (Table 4).

 
Fig. 3. Source code
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5.2.  Learning  and  tree  building  parameters. Decision 
tree learning options:

– Quality criterion: Ginny.
The separation quality measurement function works 

according to the Gini criterion:

H X p p pk
k

K

k k
k

K

( ) ( ) ,= − = −
= =

∑ ∑
1

2

1

1 1  (1)

p
X

y kk
i X

i= =[ ]
∈
∑

1
,  (2)

where pk  – the probability of ap-
pearance of class k in the sample.

– Maximum depth: there was 
no limit to the maximum depth 
when building the tree.
– The minimum number of ob-
jects in a tree leaf: is 2 objects.
– Separation strategy: as al-
ready mentioned, the Gini test 
was used. The partitioning was 
chosen in such a way as to 
maximize the amount of infor-
mation in the samples going 
into both subtrees.

6.  Research results

As the result, a classifier model 
was trained (Fig. 5). 

It was able to classify data from 
the test and training datasets with 
high precision.

A tree of depth 6 was obtained. The results of run-
ning the tree on the training dataset are checked using 
the confusion matrix.

The confusion matrix summarizes the classification ef-
ficiency of the classifier concerning some test data [15].  
It is a two-dimensional matrix indexed in one dimension by 
the true class of the object and in the other by the class 
assigned by the classifier. Table 5 shows an example of  
a discrepancy matrix for a three-class classification problem 
with classes A, B, and C.

 
Fig. 4. Source code clone (automatically generated)

Table 4
Dataset metrics

volume_ratio max_fragment_ratio min_fragment_ratio
clone_tokens_to_min_

tokens_ratio
lines_ratio

operators_over-
lap_ratio

Clone

1 1.024 1 0.5950920245 1.024 1 True

1 0.9926470588 1 0.6666666667 0.9926470588 1 True

 Fig. 5. Learned decision tree
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Table 5
An example of a three-class confusion matrix

Classes
Assigned class

A B C

Actual class

A 10 2 1

B 0 6 1

C 0 3 8

The first row of the matrix indicates that 13 objects 
belong to class A and that 10 are correctly classified as 
belonging to A, two incorrectly classified as belonging to 
B and one as belonging to C.

A special case of the discrepancy matrix is often used 
with two classes, one representing the positive class and 
the other the negative class. In this context, the four 
cells of the matrix are designated as true positive (TP), 
false positive (FP), true negative (TN) and 7 false nega-
tive (FN), as indicated in Table 6.

Table 6
Structure of confusion matrix

Classes
Assigned class

Positive Negative

Actual class
Positive TP FN

Negative FP TN

The result of the classification of the decision tree in 
the task of finding clones in the program code is shown 
in the confusion matrix (Fig. 6).

A number of classification performance indicators are 
defined in terms of these four classification results:

Specificity = True negative rate = TN/(TN+FP) =   
= 54/(54+0) = 1.
Sensitivity = True positive rate = Recall = TP/(TP+FN) = 
= 65/(65+1) = 0.985.
Positive predictive value = Precision = TP/(TP+FP) = 
= 65/(65+0) = 1.

Negative predictive value = TN/(TN+FN) =   
= 54/(54+1) = 0.982.

That is, let’s conclude that only 1 out of 120 examples 
were classified incorrectly under the condition of balanced 
classes (60 by 60). That is, the accuracy of forecasting 
on such a dataset is more than 0.99.

 
Fig. 6. Matrix of inconsistencies

Experiments
1. Detection of plagiarism 
With the help of the trained model of the decision 

tree, let’s conduct an experiment to detect plagiarism in 
real works of students (to preserve confidentiality, the sur-
names have been changed, any coincidences are accidental).

Let’s upload to the program 20 laboratory works No. 1 
of students from one discipline (Fig. 7).

After testing, the program showed that konoplianka.txt  
is a clone of the popov.txt code, while popov.txt is a clone  
of the zinchenko.txt code, but the konoplianka.txt code 
is not a clone of the zinchenko.txt code. This can be ex-
plained by the fact that the trained model did not learn 
transitive property.

 
Fig. 7. Downloading files with student codes
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No more coincidences between laboratory works were 
found, which indicates a high level of compliance with 
academic integrity by students, because at least 17 out 
of 20 works are unique.

So, let’s test our model for the ability to detect a typical 
vulnerability in the code. Let’s write the code where the value 
of the environment variable is manually set (Fig. 8), which 
is a typical example of the disclosure of sensitive data. Let’s 
also create an example code containing only this vulnerability.

Another common vulnerability is a buffer overflow. 
An example of this vulnerability can be seen in Fig. 9.

Comparing codes with two types of vulnerabilities, it 
is possible to see that the model does not identify them 
as clones (Fig. 10, 11).

 
Fig. 10. The result of the program

Fig. 11. The result of the program

 

This is because the model determined that it is more 
effective to rely on volume characteristics to search for 
duplicate codes, as suggested by the authors of the pa-
per [16]. It is implied that the code, which is very diffe-
rent in structure and volume, has more «weight» for the 
model than the coincidence of a certain number of tokens.

7.  SWOT analysis of research results

Strengths. The product presented in the paper is easy 
to use, shows the high accuracy of clone detection, takes 
up little memory, and can be used on any operating sys-
tem because it is written in the Python language, which 
is cross-platform.

Weaknesses. This model is poorly suited for detecting 
vulnerabilities in the code.

Opportunities. In further research, it is possible to try to 
increase the emphasis of the model on comparing individual 
parts of the code and finding metrics that will be more 
based on individual types of clones. It is also possible to 
extend the language capabilities of the model (recognition 
of clones not only in Python) and train the model to 
recognize clones of code rewritten from one language to 
another if desired to improve the user interface.

Threats. Since this software 
product is not planned to be com-
mercially implemented, there are 
no threats on the market.

8.  Conclusions

1. The existing methods and 
algorithms of machine learning, 
which are used in the task of 
finding duplicates in the program 
code, are considered:

– decision tree;
– Support Vector Machine 
(SVM);
– TECCD.
A comparative analysis of the 

studied algorithms was carried out, 
according to the results of which 
the method using the decision tree 
machine learning model was the 
most optimal for implementation.

In order to improve the results 
of the already existing method,  
a proprietary software product 
was developed.

2. The decision tree classifier 
model was developed using the Py-
thon module «scikit-learn» [17]. 

6 metrics were selected for model training, including:
1) ratio of code volumes;
2) the ratio of the volumes of the maximum code blocks;
3) the ratio of volumes of minimal blocks of codes;
4) the ratio of the number of common tokens to the 

number of smaller code tokens;
5) ratio of the number of rows;
6) relation of intersections of operators.
A total of 600 code instances were randomly assigned 

to the training set (480 instances; 80 %) and the test 
set (120 instances; 20 %).

The performance of the model in the clone detection task 
was checked using the discrepancy matrix, from the indicators 
of which it can be seen that only 1 out of 120 examples 
was classified incorrectly under the condition of balanced 
classes (60 by 60). That is, the accuracy of forecasting on  
such a dataset is more than 0.99.

3. An experiment was conducted with real works of 
students, the result of which showed a high level of com-
pliance with academic integrity by students, because at 
least 17 out of 20 works are unique.

From the result obtained in the experiments with the 
search for vulnerabilities, it can be concluded that this 
model is poorly suited for detecting vulnerabilities in the 
code since, usually, they make up a small part of the entire 

 
Fig. 8. Vulnerable code

 
Fig. 9. Vulnerable code (buffer overflow)
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code. This prevents them from being classified as a clone 
of other code with the same vulnerability. This problem 
can be considered a foundation for further research.
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