
INFORMATION TECHNOLOGIES

6 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(66), 2022

UDC 004.85:004.032.2
DOI: 10.15587/2706-5448.2022.263235

Article type «Original research»

ANALYSIS OF MACHINE LEARNING
METHODS IN THE TASK OF SEARCHING
DUPLICATES IN THE SOFTWARE CODE

The object of the study is code in the Python programming language, analyzed by machine learning methods
to identify clones.

This work is devoted to the study of machine learning methods and implementation of the decision tree machine
learning model in the problem of finding clones in the program code. The paper also analyzes existing machine
learning approaches for detecting duplicates in program code. During the comparison, the advantages and disad-
vantages of each algorithm were determined, and the results were summarized in the corresponding comparison
tables. As a result of the analysis, it was determined that the method based on the decision tree, which gives the
best result in the task of finding clones in the program code, is the most optimal both from the point of view
of accuracy and from the point of view of implementation.

The result of the work is a created model that, with an accuracy of more than 99 %, classifies cloned and non-
cloned codes on an automatically generated dataset in a minimal amount of time. This system has several open
questions for future research, the list of which is presented in this work. The proposed model has the following
ways of further development:

– recognition of clones rewritten from one programming language to another;
– detection of vulnerabilities in the code;
– improvement of model performance by creating more universal datasets.
The perspective of the work lies in training a decision tree model for accurate and fast detection of code clones,

which can potentially be widely used for plagiarism detection in both educational institutions and IT companies.
Keywords: clone detection, machine learning methods, decision tree, Support Vector Machine, TECCD, dataset.

Tetiana Kaliuzhna,
Yevhenii Kubiuk

© The Author(s) 2022

This is an open access article

under the Creative Commons CC BY license

How to cite

Kaliuzhna, T., Kubiuk, Y. (2022). Analysis of machine learning methods in the task of searching duplicates in the software code. Technology Audit and

Production Reserves, 4 (2 (66)), 6–13. doi: http://doi.org/10.15587/2706-5448.2022.263235

Received date: 29.06.2022

Accepted date: 12.08.2022

Published date: 26.08.2022

1. Introduction

The detection of duplicates in the program code, or
the detection of clones, is a very active field of research
in recent years. Code duplication has been recognized as
a potentially serious problem that negatively affects the
maintainability, understandability, and development of soft-
ware systems.

Source code that is used in an identical form multiple times
in software is called a duplicate code or source code clone.
An automated process that helps find clones in source code is
called clone detection. Similar sections or pieces of code are
also considered duplicates, and even code sequences that are
only functionally identical can be considered duplicate code.
Duplicate code occurs most often when existing functions
are copied from one place in the program code to another.

Cloning is considered defect-prone because inconsistent
changes to code clones can lead to unexpected program
behavior. It is important to understand that clones do not
directly cause errors, but inconsistent changes to clones
can lead to unexpected program behavior. Inconsistent

bug fixing is a particularly dangerous type of change to
cloned code.

Many software engineering tasks, such as plagiarism
detection, code quality analysis, bug detection, vulnerabi-
lity detection, etc., may require the detection of semanti-
cally or syntactically similar blocks of code. This makes
clone detection an effective and useful part of software
analysis [1].

Code cloning can occur in any software project. One
problem is that code clones come in many different types,
making them difficult to detect using standard patterns.
Due to the diversity in the structure and form of se-
mantically similar clones, machine learning methods are
required to detect them.

2. The object of research and its
technological audit

The object of research is code in the Python program-
ming language, analyzed by machine learning methods to
identify clones.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

7TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(66), 2022

ISSN 2664-9969

Duplicate code makes the overall code extremely diffi-
cult to maintain and the codebase becomes unnecessarily
large, leading to technical debt. In work [2] it was de-
termined that the main reasons for eliminating duplicates
in the program code are:

1. Reduction of maintenance costs.
A clone of the source code must be found and pro-

cessed at each point of use.
2. To facilitate error correction.
Source clones may go unnoticed, and with them, copied

errors. This leads to uncoordinated changes in the future.
3. Minimization of memory requirements.
Cloning increases the amount of code and therefore

the amount of memory required. Well-written code with-
out duplication ensures that the program will take up
less space.

4. Ease of code readability.
5. Code execution speed.
Code clones increase the time it takes to compile the

code. Every millisecond of delay will contribute to greater
latency and greater memory requirements on the user’s
local machine as well as on the production servers.

It is important to note that clones, depending on the
degree of changes in the code, are divided into 4 types [3]:

– Type-1 clone: the code snippets are identical except
for small changes in spaces and comments.
– Type-2 clone: code fragments are structurally and
syntactically identical, only user-defined identifiers
such as variable, type, or function names and com-
ments change.
– Type-3 clone: based on Type-1 and Type-2, there are
other changes to the copied segment, such as modifi-
cation, insertion or deletion of operators.
– Type-4 clone: code fragments are semantically similar,
i. e. perform similar functions, but syntactically differ.
Among the four types of clones, Type-1, Type-2, and

Type-3 are syntax-based code clones. Type-4 is a seman-
tic clone of the code, which indicates that the code
performs similar functions, but the syntactic structures
are different.

Early detection and removal of duplicate lines of code
simplifies code structure and reduces file size, also increases
code maintainability and reduces technical debt over time.
Removing duplicates keeps the code clean, which in turn
helps deliver feature support and updates faster. Unpatched
code clones represent hidden bugs, and for critical security
issues, hidden vulnerabilities, so it’s important to detect
them quickly. Also, to prevent violation of the rules of
academic integrity and violation of copyright, the topic
of finding duplicates is very important.

3. The aim and objectives of research

The work aims is to find duplicates in the program code.
The objectives of this research are:
1. Review of existing methods and algorithms of machine

learning, which are used in the task of finding duplicates
in the program code, and conducting their comparative
analysis.

2. Development of a machine learning model, which
will be used for further implementation in the task of
detecting clones in the code.

3. Verification of the developed software product in
practice.

4. Research of existing solutions
of the problem

In this work, three methods of machine learning for
detecting clones were considered:

1) decision tree model of machine learning [4];
2) method using Support Vector Machine (SVM) [5];
3) method using A Tree Embedding Approach for Code

Clone Detection (TECCD) [6].
The working principles of the studied methods:
1. Method using a decision tree machine learning mo-

del (Decision Tree).
A decision tree is a supervised learning algorithm that

generates decision nodes using the information obtained
from the value of each function [7]. It can be represented
as a tree-like graph model consisting of several levels
of nodes representing a decision rule. Classification is
performed by passing data through the tree from the top
to the end node. At each decision node, a branch is se-
lected based on the value of the corresponding attribute.
A significant advantage of the decision tree model over
other models is that it provides an interpretable result [8].

While investigating the decision tree machine learning
model, the authors considered an approach to improve
existing code clone detection tools using machine learning
techniques. The paper investigates 19 clone class metrics
to capture various characteristics of code clones and use
them to train a decision tree model. The trained decision
tree model is then used as a filter to remove false clone
classes from the cloning result.

The authors of the paper noted that applying a deci-
sion tree cloning filter trained on Java clones to Python
clones showed that the filter was not effective in another
language, and further work is needed on this issue.

2. Method using Support Vector Machine.
SVM in this approach provides clone class identifi-

cation by classifying code clones into one of the appro-
priate classes.

In the study using SVM, the main focus was on the
technique of finding similar blocks of code and quantifying
their similarity (Type-3 clones). Code clones are detected
in two stages. At the first stage, a parser is used to create
sets of functions. In this work, SVM is the machine learning
tool and *.c files are the input. Feature sets are converted
to Libsvm format by assigning 0 and –1 to the class labels
of sorting and unsorting algorithms, respectively. In the
second step, the feature sets used as input are passed through
the LibSVM tool to classify the code fragment. Scaling
is performed on both the training and test datasets. The
output of the second stage is the label of the test data
set and the accuracy obtained by the tool.

The authors noted that the accuracy increases with
the number of instances. The accuracy for 45 instances
is 93.182 %.

3. A Tree Embeddings Approach for Code Clone Detection.
The approach is to convert the source code into an

abstract syntax tree (AST) [9], which contains informa-
tion about the structure of the code. The AST is then
mapped to a vector based on machine learning techniques
and the Euclidean distance of the vectors is compared to
detect code clones.

The TECCD technique is based on tree embedding for
code clone detection. This approach first performs an em-
bedding tree to obtain a node vector for each intermediate

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

8 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(66), 2022

ISSN 2664-9969

node in the AST. Embedding nodes capture information
about the context/structure of the AST. Then a tree vector
is created from its node vectors using a simplified me-
thod [10]. Finally, Euclidean distances between tree vectors
are measured to identify code clones.

This approach is implemented in a tool called TECCD,
and the evaluation was carried out with 7 large Java pro-
jects, as well as BigCloneBench [11]. The results showed
that this tool is quite effective in terms of accuracy and
completeness [12].

4. Comparison of methods.
The following is a comparative analysis of the con-

sidered algorithms (Tables 1, 2).

Table 1

Comparative characteristics of methods

Method Precision Data pre-processing

Decision Tree 98 % Small (remove spaces)

Support Vector
Machine

93.182 %
Average (transformation of feature
sets into LibSVM format)

A Tree Embedding Ap-
proach for Code Clone
Detection

88 % Large (Generation AST)

Table 2

The main advantages and disadvantages of the methods

Method Advantages Disadvantages

Decision
Tree

– short learning time;
– take into account every pos-
sible outcome of the decision
and trace each node to the
conclusion accordingly;
– can process large-dimensio-
nal data with good accuracy;
– small data preparation;
– simple and reliable

– sensitive to noise in
input data;
– spaces in the data are
difficult to maintain;
– small data changes can
significantly change the
constructed decision tree

Support
Vector
Machine

– sensitive to noise in input
data;
– spaces in the data are diffi-
cult to maintain;
–small data changes can signi-
ficantly change the constructed
decision tree

– unstable to noise in the
source data;
– when trying to use it in
multi-class classification,
the quality and speed of
work decrease;
– not suitable for large
datasets

A Tree
Embedding
Approach
for Code
Clone
Detection

– fairly high accuracy of results
on large volumes of data;
– demonstrates good indicators
of accuracy and completeness;
– consistently high ability
to detect Type-1 and Type-2
clones

– requires complex pre-
liminary data preparation;
– requires a large set of
training data;
– the algorithm is quite
difficult to implement;
– a lot of time is spent on
AST generation

After a detailed comparison with Tables 1, 2, it can
be seen that the method based on the decision tree is
optimal, both from the point of view of accuracy and
from the point of view of implementation.

5. Methods of research

In view of the above comparison of methods, the task
of this research is the implementation of the machine
learning method using the decision tree model, which is
the most optimal from the point of view of the consi-

dered characteristics of the methods. So, let’s develop an
authentic implementation of this method to improve its
effectiveness in the task of finding duplicates in the pro-
gram code. The data supplied to the input of the model
are presented in the form of a numerical vector, with the
metrics described in Table 3.

Table 3

Information about metrics

The name of
the metric

Sense of metrics Formula

volume_ratio ratio of code volumes
n tokens

n tokens

_

_
1

2

max_frag-
ment_ratio

the ratio of the volumes
of the maximum code
blocks

max

max

_ _

_ _

fragment lines

fragment lines
1

2

min_frag-
ment_ratio

the ratio of volumes of
minimal blocks of codes

min

min

_ _

_ _

fragment lines

fragment lines
1

2

clone_to-
kens_to_min_
tokens_ratio

the ratio of the number
of common tokens to the
number of tokens of a
smaller code

P tokens tokens

P tokens P tokens

()

,

1 2

1 2

∩

() ()()min

lines_ratio

the ratio of the number
of common tokens to the
number of smaller code
tokens

n lines

n lines

_

_
1

2

operators_
overlap_ratio

relation of intersections
of operators 1 1 1 2

1 2

−
−

()
=∑

_ _

_ , _
i

n
i in op n op

n op n opmax

A decision tree or classification tree (DT) is a supervised
learning technique that can be used for both classification
and regression problems, but is mostly better for solving
classification problems. It is a tree-like classifier where
internal nodes represent features of the data set, branches
represent decision rules, and each leaf node represents an
outcome. The goal is to create a model that can predict
the value of the target variable while learning simple de-
cision rules derived from the characteristics of the data.

In Fig. 1 [13] shows the diagram of the general struc-
ture of the decision tree.

Fig. 1. General structure of the decision tree

DT creates a classification model by constructing a deci-
sion tree. Each tree node defines an attribute check, each
branch descending from this node corresponds to one of
the possible values for this attribute [14].

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

9TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(66), 2022

ISSN 2664-9969

In Fig. 2 shows the High-Level Diagram (HLD) of our
software product. HLD demonstrates the structure of the
developed software product:

1) Code Samples – Python scripts from which a dataset
is generated;

2) Data Generating Script – data generating script;
3) Dataset – actual dataset;
4) Training Script – a script that trains the model;
5) Model – decision tree model – binary file;
6) Classification Script – a script that loads the model

and classifies the received codes using it (takes two codes,
extracts metrics, submits to the model, receives 1 or 0 (clones
or not clones));

7) Flask App – a web application that receives files,
transfers them to Class Script and shows the result to the
user (6 and 7 are one docker container);

8) Code – are code files that we want to classify as
clo nes or non-clones;

9) Classification Results – received results.

Fig. 2. High-Level Diagram of the software product

The implementation of the decision tree is developed
in the Python programming language. This programming

language is widely used in many areas, as there are many
modules and libraries for it that can be used to create
any software product. The implementation process follows
the following algorithm:

– pre-processing of data;
– model training on the training sample;
– checking the accuracy of the result (creating a ma-
trix of confusion matrix);
– visualization of the result of the test set.

5.1. Dataset creating. Since there were no marked datasets
in public access, and their manual marking would take a long
time, a decision was made to automatically generate the dataset.

Another 80 clones were generated from 20 Python scripts.
The generation took place as follows: changes are made

to the code 35 times. The change is renaming a random
variable with a probability 0.2, also changing the sequence
of a random block of code with a probability 0.2, and
removing or adding a random line with a probability 0.6.

A total of 100 scripts were received, 5 variants of each
of 20 scripts. In Fig. 3, 4 show variants of clone codes.

As a result, it could be and was generated C5
2 5 20 300+()⋅ =

= 300 pairs of clone codes (in the formula add 5 more
options since a pair of codes with itself is also suitable
for the dataset).

For the balance of the dataset (equal numbers of repre-
sentatives of the False and True classes), 300 pairs of codes
that are not clones were also selected.

The following metrics (Table 3) were selected from
pairs of codes for logical and intuitive reasons. In formulas:

n tokensi_ – the number of tokens (words) in code i,
i = {1,2};
max _ _fragment linesi – the number of lines
in the largest block of code i, i = {1,2};
min _ _fragment linesi – the number of lines
in the smallest block of code i, i = {1,2};
tokens1 – set of code tokens (words) i, i = {1,2};
n linesi_ – the number of lines in code i, i = {1,2};
n opj

i_ – the number of type operators i (+, – ,…),
i = {1, number of operator types} in the code j, j = {1,2};
n opi_ – the total number of statements in code i,
i = {1,2}.

The above metrics + the Clone field (True, if yes; False,
if not) make up the dataset (Table 4).

Fig. 3. Source code

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

10 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(66), 2022

ISSN 2664-9969

5.2. Learning and tree building parameters. Decision
tree learning options:

– Quality criterion: Ginny.
The separation quality measurement function works

according to the Gini criterion:

H X p p pk
k

K

k k
k

K

() () ,= − = −
= =

∑ ∑
1

2

1

1 1 (1)

p
X

y kk
i X

i= =[]
∈
∑

1
, (2)

where pk – the probability of ap-
pearance of class k in the sample.

– Maximum depth: there was
no limit to the maximum depth
when building the tree.
– The minimum number of ob-
jects in a tree leaf: is 2 objects.
– Separation strategy: as al-
ready mentioned, the Gini test
was used. The partitioning was
chosen in such a way as to
maximize the amount of infor-
mation in the samples going
into both subtrees.

6. Research results

As the result, a classifier model
was trained (Fig. 5).

It was able to classify data from
the test and training datasets with
high precision.

A tree of depth 6 was obtained. The results of run-
ning the tree on the training dataset are checked using
the confusion matrix.

The confusion matrix summarizes the classification ef-
ficiency of the classifier concerning some test data [15].
It is a two-dimensional matrix indexed in one dimension by
the true class of the object and in the other by the class
assigned by the classifier. Table 5 shows an example of
a discrepancy matrix for a three-class classification problem
with classes A, B, and C.

Fig. 4. Source code clone (automatically generated)

Table 4
Dataset metrics

volume_ratio max_fragment_ratio min_fragment_ratio
clone_tokens_to_min_

tokens_ratio
lines_ratio

operators_over-
lap_ratio

Clone

1 1.024 1 0.5950920245 1.024 1 True

1 0.9926470588 1 0.6666666667 0.9926470588 1 True

 Fig. 5. Learned decision tree

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

11TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(66), 2022

ISSN 2664-9969

Table 5
An example of a three-class confusion matrix

Classes
Assigned class

A B C

Actual class

A 10 2 1

B 0 6 1

C 0 3 8

The first row of the matrix indicates that 13 objects
belong to class A and that 10 are correctly classified as
belonging to A, two incorrectly classified as belonging to
B and one as belonging to C.

A special case of the discrepancy matrix is often used
with two classes, one representing the positive class and
the other the negative class. In this context, the four
cells of the matrix are designated as true positive (TP),
false positive (FP), true negative (TN) and 7 false nega-
tive (FN), as indicated in Table 6.

Table 6
Structure of confusion matrix

Classes
Assigned class

Positive Negative

Actual class
Positive TP FN

Negative FP TN

The result of the classification of the decision tree in
the task of finding clones in the program code is shown
in the confusion matrix (Fig. 6).

A number of classification performance indicators are
defined in terms of these four classification results:

Specificity = True negative rate = TN/(TN+FP) =   
= 54/(54+0) = 1.
Sensitivity = True positive rate = Recall = TP/(TP+FN) = 
= 65/(65+1) = 0.985.
Positive predictive value = Precision = TP/(TP+FP) = 
= 65/(65+0) = 1.

Negative predictive value = TN/(TN+FN) =   
= 54/(54+1) = 0.982.

That is, let’s conclude that only 1 out of 120 examples
were classified incorrectly under the condition of balanced
classes (60 by 60). That is, the accuracy of forecasting
on such a dataset is more than 0.99.

Fig. 6. Matrix of inconsistencies

Experiments
1. Detection of plagiarism
With the help of the trained model of the decision

tree, let’s conduct an experiment to detect plagiarism in
real works of students (to preserve confidentiality, the sur-
names have been changed, any coincidences are accidental).

Let’s upload to the program 20 laboratory works No. 1
of students from one discipline (Fig. 7).

After testing, the program showed that konoplianka.txt
is a clone of the popov.txt code, while popov.txt is a clone
of the zinchenko.txt code, but the konoplianka.txt code
is not a clone of the zinchenko.txt code. This can be ex-
plained by the fact that the trained model did not learn
transitive property.

Fig. 7. Downloading files with student codes

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

12 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(66), 2022

ISSN 2664-9969

No more coincidences between laboratory works were
found, which indicates a high level of compliance with
academic integrity by students, because at least 17 out
of 20 works are unique.

So, let’s test our model for the ability to detect a typical
vulnerability in the code. Let’s write the code where the value
of the environment variable is manually set (Fig. 8), which
is a typical example of the disclosure of sensitive data. Let’s
also create an example code containing only this vulnerability.

Another common vulnerability is a buffer overflow.
An example of this vulnerability can be seen in Fig. 9.

Comparing codes with two types of vulnerabilities, it
is possible to see that the model does not identify them
as clones (Fig. 10, 11).

Fig. 10. The result of the program

Fig. 11. The result of the program

This is because the model determined that it is more
effective to rely on volume characteristics to search for
duplicate codes, as suggested by the authors of the pa-
per [16]. It is implied that the code, which is very diffe-
rent in structure and volume, has more «weight» for the
model than the coincidence of a certain number of tokens.

7. SWOT analysis of research results

Strengths. The product presented in the paper is easy
to use, shows the high accuracy of clone detection, takes
up little memory, and can be used on any operating sys-
tem because it is written in the Python language, which
is cross-platform.

Weaknesses. This model is poorly suited for detecting
vulnerabilities in the code.

Opportunities. In further research, it is possible to try to
increase the emphasis of the model on comparing individual
parts of the code and finding metrics that will be more
based on individual types of clones. It is also possible to
extend the language capabilities of the model (recognition
of clones not only in Python) and train the model to
recognize clones of code rewritten from one language to
another if desired to improve the user interface.

Threats. Since this software
product is not planned to be com-
mercially implemented, there are
no threats on the market.

8. Conclusions

1. The existing methods and
algorithms of machine learning,
which are used in the task of
finding duplicates in the program
code, are considered:

– decision tree;
– Support Vector Machine
(SVM);
– TECCD.
A comparative analysis of the

studied algorithms was carried out,
according to the results of which
the method using the decision tree
machine learning model was the
most optimal for implementation.

In order to improve the results
of the already existing method,
a proprietary software product
was developed.

2. The decision tree classifier
model was developed using the Py-
thon module «scikit-learn» [17].

6 metrics were selected for model training, including:
1) ratio of code volumes;
2) the ratio of the volumes of the maximum code blocks;
3) the ratio of volumes of minimal blocks of codes;
4) the ratio of the number of common tokens to the

number of smaller code tokens;
5) ratio of the number of rows;
6) relation of intersections of operators.
A total of 600 code instances were randomly assigned

to the training set (480 instances; 80 %) and the test
set (120 instances; 20 %).

The performance of the model in the clone detection task
was checked using the discrepancy matrix, from the indicators
of which it can be seen that only 1 out of 120 examples
was classified incorrectly under the condition of balanced
classes (60 by 60). That is, the accuracy of forecasting on
such a dataset is more than 0.99.

3. An experiment was conducted with real works of
students, the result of which showed a high level of com-
pliance with academic integrity by students, because at
least 17 out of 20 works are unique.

From the result obtained in the experiments with the
search for vulnerabilities, it can be concluded that this
model is poorly suited for detecting vulnerabilities in the
code since, usually, they make up a small part of the entire

Fig. 8. Vulnerable code

Fig. 9. Vulnerable code (buffer overflow)

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

13TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(66), 2022

ISSN 2664-9969

code. This prevents them from being classified as a clone
of other code with the same vulnerability. This problem
can be considered a foundation for further research.

Conflict of interest

The authors declare that they have no conflict of interest
about this research, including financial, personal, author-
ship, or any other nature that could affect the research
and its results presented in this article.

References

1. Roy, C. K., Cordy, J. R., Koschke, R. (2009). Comparison
and evaluation of code clone detection techniques and tools:
A qualitative approach. Science of Computer Programming,
74 (7), 470–495. doi: http://doi.org/10.1016/j.scico.2009.02.007

2. Code Duplicate. Available at: https://t2informatik.de/en/smart-
pedia/code-duplicate/

3. Roy, C. K., Cordy, J. R. (2007). A Survey on Software Clone Detec-
tion Research. Computer and Information Science, 115 (541), 115.

4. Arammongkolvichai, V., Koschke, R., Ragkhitwetsagul, C.,
Choetkiertikul, M., Sunetnanta, T. (2019). Improving Clone
Detection Precision Using Machine Learning Techniques.
2019 10th International Workshop on Empirical Software Engineer-
ing in Practice (IWESEP), 31–36. doi: http://doi.org/10.1109/
iwesep49350.2019.00014

5. Jadon, S. (2016). Code Clones Detection Using Machine Learn-
ing Technique: Support Vector Machine. International Conference
on Computing, Communication and Automation (ICCCA2016),
299–303. doi: http://doi.org/10.1109/ccaa.2016.7813733

6. Gao, Y., Wang, Z., Liu, S., Yang, L., Sang, W., Cai, Y. (2019).
TECCD: A Tree Embedding Approach for Code Clone Detection.
2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 145–156. doi: http://doi.org/10.1109/
icsme.2019.00025

7. Salzberg, S. (1994). C4.5: Programs for Machine Learning by
J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993.
Machine Learning, 16 (3), 235–240. doi: http://doi.org/10.1007/
bf00993309

8. Conforti, R., Leoni, M. D., Rosa, M. L., Aalst, W. V. D. (2013).
Supporting risk-informed decisions during business process ex-
ecution. 25th International Conference on Advanced Information
Systems Engineering (CAiSE’13), 116–132. doi: http://doi.org/
10.1007/978-3-642-38709-8_8

9. Kundel, D. (2020). ASTs – What are they and how to use them.
Available at: https://www.twilio.com/blog/abstract-syntax-trees

10. Agerholm, S., Larsen, P. G. (1999). A Lightweight Approach to
Formal Methods. Lecture Notes in Computer Science, 168–183.
doi: http://doi.org/10.1007/3-540-48257-1_10

11. BigCloneBench. Available at: https://github.com/clonebench/
BigCloneBench

12. Buckland, M., Gey, F. (1994). The relationship between Recall
and Precision. Journal of the American Society for Information
Science, 45 (1), 12–19. doi: https://doi.org/10.1002/(SICI)1097-
4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L

13. Decision Tree Classification Algorithm. Available at: https://
www.javatpoint.com/machine-learning-decision-tree-classifica-
tion-algorithm

14. Decision Tree Classifier. Available at: https://www.sciencedirect.
com/topics/computer-science/decision-tree-classifier

15. Bondarenko, O. (2021). Matrytsia nevidpovidnostei. Available
at: https://oleghbond.medium.com/матриця-невідповідностей-
329e7e4bf05e

16. Kubiuk, Y., Kyselov, G. (2021). Comparative analysis of approaches
to source code vulnerability detection based on deep learning
methods. Technology Audit and Production Reserves, 3 (2 (59)),
19–23. doi: http://doi.org/10.15587/2706-5448.2021.233534

17. Scikit-Learn. Available at: https://scikit-learn.org/stable/

*Tetiana Kaliuzhna, Department of System Design, National
Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic
Institute», Kyiv, Ukraine, ORCID: https://orcid.org/0000-0002-
0937-8988, e-mail: kalizhna.tania@gmail.com

Yevhenii Kubiuk, Department of System Design, National Technical
University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»,
Kyiv, Ukraine, ORCID: https://orcid.org/0000-0002-7086-0976

*Corresponding author

