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CONSTRUCTION OF HOMOGENEOUS 
SOLUTIONS IN THE TORSION PROBLEM 
FOR A TRANSVERSALLY ISOTROPIC 
SPHERE WITH VARIABLE ELASTIC MODULI

The object of research is the problem of torsion for a radially inhomogeneous transversally isotropic sphere and 
the study based on this three-dimensional stress-strain state.

To establish the scope of applicability of existing applied theories and to create more refined applied theories 
of inhomogeneous shells, it is important to study the stress-strain state of inhomogeneous bodies based on three-
dimensional equations of elasticity theory.

The problem of torsion of a radially inhomogeneous transversally isotropic non-closed sphere containing none 
of the poles 0 and π is considered. It is believed that the elastic moduli are linear functions of the radius of the 
sphere. It is assumed that the lateral surface of the sphere is free from stresses, and arbitrary stresses are given 
on the conic sections, leaving the sphere in equilibrium.

The formulated boundary value problem is reduced to a spectral problem. After fulfilling the homogeneous 
boundary conditions specified on the side surfaces of the sphere, a characteristic equation is obtained with respect 
to the spectral parameter. The corresponding solutions are constructed depending on the roots of the characteristic 
equation. It is shown that the solution corresponding to the first group of roots is penetrating, and the stress state 
determined by this solution is equivalent to the torques of the stresses acting in an arbitrary section θ = const. The 
solutions corresponding to the countable set of the second group of roots have the character of a boundary layer 
localized in conic slices. In the case of significant anisotropy, some boundary layer solutions decay weakly and can 
cover the entire region occupied by the sphere.

On the basis of the performed three-dimensional analysis, new classes of solutions (solutions having the character 
of a boundary layer) are obtained, which are absent in applied theories. In contrast to an isotropic radially inhomo-
geneous sphere, for a transversely isotropic radially inhomogeneous sphere, a weakly damped boundary layer solution 
appears, which can penetrate deep far from the conical sections and change the picture of the stress-strain state.
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1.  Introduction

One of the properties of materials that affect the stress-
strain state of elastic bodies is their inhomogeneity. Various 
materials are being developed and created, the characteris-
tics of which, in particular, the elastic moduli, can change 
continuously along certain directions  [1]. These materials 
offer unique advantages over traditional materials.

Despite the existence of a number of applied theories 
of shells based on various hypotheses, the areas of their 
applicability have been little studied. To establish the scope 
of applicability of existing applied theories and to create 
new, more refined, applied theories of inhomogeneous shells, 
it is important to analyze the stress-strain state of inho-
mogeneous bodies from the standpoint of three-dimensional 
equations of elasticity theory.

The study of the stress-strain state of inhomogeneous 
bodies on the basis of three-dimensional equations of the 
theory of elasticity is associated with significant mathemati-
cal difficulties. Along with this, from the physical point 
of view, new qualitative and quantitative effects arise.

A number of studies  [2] are devoted to the study of  
three-dimensional problems of elasticity theory for a sphere. 
The problem of elasticity theory for a sphere was studied 
by Saint-Venant  [3]. In  [4], on the basis of the equations 
of the theory of elasticity for a sphere, a general solution 
was obtained that satisfies the boundary conditions on the 
contour in the sense of Saint-Venant, and an analysis of 
the stress-strain state of the sphere was carried out. In [5], 
based on the equations of elasticity theory for a thick 
isotropic sphere, homogeneous solutions were constructed 
that depend on the roots of the transcendental equation.  
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In  [6], on the basis of solving three-dimensional problems 
of the theory of elasticity for a sphere of small thickness, 
the accuracy of existing applied theories was studied and 
a method for constructing refined applied theories was 
given. In  [7], a three-dimensional asymptotic theory of 
a spherical shell of small thickness is presented. In  [8], 
an analysis of the three-dimensional stress-strain state 
of a three-layer sphere with soft filler is given. In  [9], 
the problem of torsion was studied for a radially layered 
sphere with an arbitrary number of alternating hard and 
soft layers. The existence of weakly damped boundary 
layer solutions and the possible violation of the Saint-
Venant principle in its classical formulation are shown. The 
work  [10] is devoted to the study of thermal stresses in 
electromagnetically elastic hollow balls made of a functio
nally graded material. In [11, 12], thermal and mechanical 
stresses in a hollow thick radially inhomogeneous sphere 
are studied, when the properties of the material change 
along the radius according to power laws. In [13], using the 
finite element method and spline collocation, the problem 
of elasticity theory for a radially inhomogeneous hollow 
ball was studied. The results obtained by finite element 
methods and spline collocation are compared. In  [14], an 
axisymmetric problem of elasticity theory for a radially 
inhomogeneous transversely isotropic sphere of small thick-
ness was studied by the method of asymptotic integration 
of the equations of elasticity theory. The nature of the 
stress-strain state is established. In  [15], an axisymmetric 
problem of elasticity theory for a sphere of small thickness 
with variable moduli of elasticity was considered by the 
method of homogeneous solutions. Asymptotic formulas 
for displacements and stresses are obtained, which make 
it possible to calculate the three-dimensional stress-strain 
state of a radially inhomogeneous sphere. In  [16], an axi-
symmetric problem of elasticity theory for a radially inho-
mogeneous transversally isotropic sphere of small thickness 
was considered by the method of homogeneous solutions. 
Based on the asymptotic analysis carried out, three groups 
of solutions are obtained: a penetrating solution, a solu-
tion having the nature of an edge effect, and a solution 
having the nature of a boundary layer. The branching 
of the third group of roots of the characteristic equa-
tion generates a countable set of new solutions. A weakly 
damped boundary layer solution appears.

In order to construct an applied theory of torsion for 
a radially inhomogeneous transversally isotropic sphere, 
which adequately takes into account the occurrence of 
weakly damped boundary layer solutions, it is important 
to analyze its stress-strain state based on the equations 
of elasticity theory.

Thus, the object of research is the problem of torsion 
for a radially inhomogeneous transversely isotropic sphere 
and the study on the basis of this three-dimensional stress-
strain state.

The aim of this research is to construct a solution and 
reveal the features of the stress-strain state for the problem 
of torsion of a radially inhomogeneous sphere. This will 
allow to evaluate the areas of applicability of existing  
applied theories for a radially inhomogeneous sphere.

2.  Research methodology

The problem of torsion for a radially inhomogeneous 
sphere is studied on the basis of the equation of elasticity 

theory. Equilibrium equations are given that describe the 
torsion of a radially inhomogeneous transversally isotropic 
sphere in a spherical coordinate system, and a boundary 
value problem is formulated.

3.  Research results and discussion

Let’s consider the problem of torsion for a radially 
inhomogeneous transversely isotropic non-closed hollow 
sphere of small thickness. Let’s assume that the sphere 
does not contain any of the poles 0 and π (Fig.  1). In the 
spherical coordinate system, the area occupied by the sphere 
will be denoted by ; , ; , ; .Γ = ∈ ∈] [ ∈] [ { }r r r1 2 1 2 0 2  θ θ θ j π

 
Fig. 1. An open hollow sphere that does not contain any  

of the poles 0 and π

Let’s assume that the change in the elastic modulus 
along the radius occurs linearly:

A a r A a r A a r22 22
0

23 23
0

44 44
0= = =( ) ( ) ( ), , ,  	 (1)

where a a a22
0

23
0

44
0( ) ( ) ( ), ,   are some constant values.

The equilibrium equation in the absence of body forces 
in a spherical coordinate system r , ,  θ j  has the form [17]:
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where σ σj jθr ,   – the components of the stress tensor, which 
are expressed in terms of displacement vectors υ υ θj j= ( )r ,  
as follows [17]:
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Substituting (3), (4) into (2), taking into account (1), 
let’s obtain the equations of equilibrium in displacements:
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Let’s introduce a new dimensionless radial variable ρ 
related to r by the relation:
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where ε = ( )1 2 2 1ln r r  – small parameter characterizing the 
thickness of the sphere; r r r0 1 2= ;  ρ ∈ −[ ]1 1; .

Taking into account (6), the equilibrium equations take  
the form:
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where u r b a r Gij ijj jυ= =( ) ( )
0

0 0
0 0,   – dimensionless quantities; 

G0 – some parameter having the dimension of the modulus 
of elasticity.

Let’s assume that the lateral part of the sphere boundary  
is stress-free:
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where σ σρj j= r G0  – dimensionless quantity.
Let’s consider that stresses are given at the ends of the  

sphere (on conical sections):

σ ρjθ θ θ=
= ( )

s
fs , 	 (9)

where f ss ρ( ) =( );1 2  – sufficiently smooth functions that have 
an order O 1( )  with respect to ε and satisfy the equilibrium 
conditions.

A homogeneous solution is any solution of the equilib-
rium equation (7) that satisfies the condition of the absence  
of stresses on the side surfaces.

Let’s construct homogeneous solutions. Solution (7) 
is sought in the form:
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Here, the function m(θ) satisfies the Legendre equation [7]:
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moreover, the parameter z is determined after the fulfillment 
of the boundary conditions on the lateral surface.

Substituting (10) into (7), (8) let’s obtain:
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Solution (12) has the form:
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where D1, D2 are arbitrary constants;
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With the help of (14), satisfying the boundary condi-
tions  (13), with respect to D1, D2, let’s obtain a homo-
geneous linear system of algebraic equations:
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From the existence condition for nontrivial solutions (15), 
there is the characteristic equation:
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The function Δ z;ε( )  has two groups of zeros with the 
following properties:

1)  the first group consists of zeros z0 3 2± = ± ;
2)  the second group consists of a countable set of zeros:
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which tend to infinity as ε → 0.
Displacements and stresses corresponding to zeros 

z0 3 2± = ±  have the form:
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Displacements and stresses corresponding to the second 
group of zeros have the form:
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are the Legendre functions of the first and second kind, 
respectively;  N Nk k1 2,  are unknown constants.

Equations (12), (13) will be represented in the fol-
lowing form:
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Let’s introduce a Hilbert space H with inner product:
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Using integration by parts and taking into account 
the boundary conditions (13) from (24), let’s find that:
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The general solution of problem (7), (8) will be a super-
position of solutions corresponding to the different groups 
of roots of the characteristic equation (16) found above:
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Let’s prove that the constant D0, in the absence of 
external forces on the side surfaces, is proportional to the 
torque M of the stresses acting in the section θ = const.

For torques M stresses acting in the section θ = const 
there is  [7]:
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Equation (18) is a penetrating solution and determines 
the internal stress-strain state of the sphere. The stress 
state corresponding to solution (20) is self-balanced in 
each section θ = const and has the nature of a boundary 
layer localized at the ends.

The main term of the asymptotic solution of equa-
tion  (24) for the second group of roots of equation (16) 
has the following form  [14]:
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where
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.

Solutions (20)–(22) decrease exponentially as to move 
away from the conic sections θ θ= =( )j j 1 2, .  It can be seen 
from (34) that for fixed values of «k» and for smaller values 
of μ, some boundary layer solutions do not decay. They 
can penetrate deeply and significantly change the picture 
of the stress-strain state far from the ends. In this case, 
the stress-strain state of a transversely isotropic inhomoge-
neous and isotropic inhomogeneous sphere is qualitatively 
different  [14].

Let’s substitute equation (29) into (9) and take into 
account (33):
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Multiplying (35) by c en ρ ερ( ) 2  and integrating within 
limits −[ ]1 1; ,  taking into account (26):
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where

After solving system (36), let’s determine the unknown 
constants in the following form:
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It is found that homogeneous solutions are composed 
of two types: penetrating solution and boundary layer 
solutions.

The penetrating solution (18), (19) determines the in-
ternal stress-strain state of a radially inhomogeneous spheri-
cal shell. Solutions (20)–(22), which have the nature of 
a boundary layer, are localized at the ends, and as they 
move away from the ends, they decrease exponentially. Such 
solutions are absent in applied shell theories. The division 
of the stress-strain state into internal and boundary layer 
solutions are valid only for a thin shell.

When, for a radially inhomogeneous spherical shell, the 
values of the elastic modulus do not change within the 
same order, but differ greatly from each other, then a weak 
boundary layer appears and the processes of determining 
the penetrating solution, the weak boundary layer, are not 
separated. Then, for solving the torsion problem, the use 
of the above method is not effective.

4.  Conclusions

The nature of the stress-strain state of a radially inho-
mogeneous transversely isotropic sphere of small thickness is 
determined. Based on the analysis carried out, a penetrating 

solution and a solution that has the character 
of a boundary layer are obtained. The stress 
state determined by the penetrating solution is 
equivalent to the torque of the stresses acting 
in an arbitrary section θ = const of the sphere.

The second group of solutions is localized in conic sec-
tions and decreases exponentially as to move away from 
conic sections. For a radially inhomogeneous transversely 
isotropic sphere, some boundary layer solutions can penetrate 
deep far from the conic sections and change the pattern of 
the stress-strain state.

Formulas for displacements and stresses are obtained, 
which make it possible to accurately calculate the three-

h
k

k
k

k
sk = −

+
−







− −












1

16
4

2
1

2
12 2 2ε π

ε
π

ρ π
π

ρsin ( ) cos ( )






×
−

−∫
1

1
1

3e f s
ε ρ ρ ρ( ) * ( ) .d



INDUSTRIAL AND TECHNOLOGY SYSTEMS:
MECHANICS

20 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/1(66), 2022

ISSN 2664-9969

dimensional stress-strain state of a radially inhomogeneous 
transversely isotropic sphere.

It is shown that, in contrast to an isotropic radially 
inhomogeneous sphere, new solutions appear that are cha
racteristic only of a transversely isotropic radially inho-
mogeneous sphere.
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