
INFORMATION TECHNOLOGIES

6 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(67), 2022

UDC 004.43
DOI: 10.15587/2706-5448.2022.266061
Article type «Reports on Research Projects»

RESEARCH OF POSSIBILITIES OF
DEFAULT REFACTORING ACTIONS
IN SWIFT LANGUAGE

The object of research in the paper is a built-in refactoring mechanism in the Swift programming language.
Swift has gained a lot of popularity recently, which is why there are many new challenges associated with the
need to support and modify the source code written in this programming language. The problem is that the more
powerful refactoring mechanism that can be applied to Swift is proprietary and cannot be used by other software.
Moreover, even closed-source refactoring software tools are not capable of performing more complex queries.

To explore the possibilities of expanding the built-in refactoring, it is suggested to investigate the software imple-
mentation of the sourcekit component of the Swift programming language, which is responsible for working with «raw»
source code, and to implement new refactoring action in practice. To implement the research plan, one refactoring
activity that was not present in the refactoring utilities (adding an implementation of the Equatable protocol) was
chosen. Its implementation was developed using the components and resources provided within the sourcekit component.
To check the correctness and compliance with the development conditions, several tests were created and conducted.

It has been discovered that both refactoring mechanisms supported by the Swift programming language have
a limited context and a limited scope and application. That is why the possibility of expanding the functionality
should not be based on the local level of code processing, but on the upper level, where it is possible to combine several
source files, which often happens in projects. The work was directed to the development of the own refactoring action
to analyze and obtain a perfect representation of the advantages and disadvantages of the existing component.
As a result, a new approach to refactoring was proposed, which will allow solving the problems described above.

Keywords: Swift programming language, refactoring, open-source code, sourcekit component.

Andrii Tkachuk,
Bogdan Bulakh

© The Author(s) 2022

This is an open access article

under the Creative Commons CC BY license

How to cite

Tkachuk, A., Bulakh, B. (2022). Research of possibilities of default refactoring actions in Swift language. Technology Audit and Production Reserves, 5 (2 (67)),

6–10. doi: https://doi.org/10.15587/2706-5448.2022.266061

Received date: 06.09.2022

Accepted date: 17.10.2022

Published date: 24.10.2022

1. Introduction

In the Swift programming language, there are two ways
to specify a piece of code for refactoring: by to the current
position of the cursor in the code and by a selected range
of code. Local refactoring takes place within a single file.
Extracting a part of an existing method to a new one and
combining duplicate expressions (duplicates consolidation)
are examples of local refactoring [1]. Global refactoring
that changes code in several files (e. g., global renaming)
currently demands particular coordination of the Xcode
IDE (whose source code is proprietary) and cannot cur-
rently be implemented relying solely on Swift source code.
Only local refactoring actions are considered in this paper.

Refactoring is determined by the position of the cur-
sor in the editor or by the selected area [2, 3]. Based to
how they are initialized, refactoring actions are classified
as cursor-based or range-based [4]. For example, the aim
of refactoring at a given cursor position in a Swift source
file can be renaming of the current token. Range-based
refactoring requires both start and end position of the cursor
to indicate its aim, such as extracting part of an existing

method and declaring it as a new method. To accelerate
the development of these two categories of refactoring
actions, the sourcekit handler provides preparsed results
called ResolvedCursorInfo and ResolvedRangeInfo which
contain information about the cursor position or range in
a Swift source file.

For example, ResolvedCursorInfo can provide infor-
mation about whether the cursor position in the Swift
source file points to the beginning of an expression and,
if so, provide the corresponding abstract syntax tree node
for that expression. Also, if the cursor points to a to-
ken representing the name of an entity (variable, class,
method), ResolvedCursorInfo contains a declaration cor-
responding to that name. Similarly, ResolvedRangeInfo
contains information about a given range of source code,
such as whether the code in selected range has several
entry or exit points.

The object of research in the paper is the built-in refac-
toring mechanism in the Swift programming language.

The aim of research is to analyze the limitations of
the built-in refactoring mechanism of the Swift language
and to find ways to improve this mechanism [5].

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

7TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(67), 2022

ISSN 2664-9969

2. Research methodology

There is no need to start work with an unprocessed
representation of cursor positions or a range to introduce
the new refactoring action in Swift programming language.
Instead, ResolvedCursorInfo and ResolvedRangeInfo may
be utilized; they can be used to retrieve preparsed data
relevant for the refactoring.

To write the functionality for refactoring, it is necessary to
consider the specifics of the compilation process as a whole [6].

For refactoring, only the first few basic steps of com-
pilation, which transform the source code into an abstract
syntax tree (AST), are important.

An Abstract Syntax Tree (AST)
is a graph whose main elements
are operators (i. e., vertices of the
graph) and operands (i. e., leaves).

All nodes of Swift’s abstract
syntax tree can be divided into
three types: Decl (declarations),
Expr (expressions), and Stmt (sta-
tements).

They correspond to the three
entities used in the Swift language.
Names of functions, structures, pa-
ra meters are declarations. Expres-
sions are entities that return values,
such as a function call. Statements
are parts of the language that de-
fine the control flow and execu-
tion of code, but do not return
a value (for example, if or do-
catch). Fig. 1 shows part of an
abstract syntax tree that describes
the declaration of class members.

After the AST is available, refactoring embedded in the
compiler may be executed (that is, code from the compiler
describing possible refactoring methods may be applied to
the source code). For refactoring of source code, according
to the programmer’s needs, an API that allows working
with AST is used. The code describing the refactoring
action is added to a special file that is later compiled
and itself becomes a part of the compilation tools of the
given language.

To create a refactoring tool, it is necessary to know how
to work with Swift’s AST. An important characteristic of
the Swift AST is that it is directly linked to the source
code because it derives from tokens. This means that it is
possible to get a reference to the location of raw code in
the source file represented by a specific AST node. Without
this information, it would be impossible to rename iden-
tifiers, perform movements, and simplify invocation – in
general, to perform refactoring.

The AST in its final form has defined types and links
to the source code. Only for such an AST is it pos sible to
carry out refactoring in terms of processing the code (check-
ing the implementation of rules, the presence of repetitions,
necessary invocations, etc.) and replacing the source code
with the necessary one.

To find opportunities to improve refactoring, it is need to:
– learn more about the principles of adding a refac-
toring action in Swift language;
– familiarize yourself with the principle of Swift source
code compilation and construction;

– assess the complexity of developing new actions for
refactoring and their integration with the development
environment.
To fulfill the goals, it is advisable to complete one of

the open proposals in the Swift defect tracking system [7]
regarding adding a new refactoring action by implement-
ing it. The task is to add the possibility to automatically
complete code with the method required by the Equat-
able protocol.

To implement refactoring based on cursor position (Add
Equatable Conformance), it must be declared in the Refac-
toringKinds.def file with the entry shown in Fig. 2.

This is necessary so that the IDE, when interacting
with the sourcekit, can provide information about avail-
able refactoring action and show it in the context menu.
CURSOR_REFACTORING keyword indicates that specified
refactoring action can be initiated by the position of cursor
and will utilize ResolvedCursorInfo object in the implementa-
tion. The refactoring action definition contains a few extra
things like an internal refactor ID for unique addressing,
a string representation that will be displayed to users when
the context menu is presented, and a stable key. This definition
record allows the compiler of C++ to generate a «skeleton»
description of the RefactoringActionAddEquatableConfor-
mance class for refactoring and its invocations. Taking this
into account, it should be noted that one of the disad-
vantages of such development is that the developer should
focus not directly on the implementation of the necessary
functions, but on writing the correct code within the com-
plicated infrastructure of classes for built-in refactoring [8].

After the declaration of a new refactoring action is
made, it is necessary to programmatically implement two
functions that will give information about:

1) when it is necessary to show the refactoring action;
2) what code change should be applied when the user

invokes this refactoring action.
Both functions are automatically generated as part of

the class «skeleton» after adding a new refactoring action
registration entry. For the IDE to display the new refac-
toring action as applicable under the correct conditions,
it is necessary to implement the isApplicable() function of
the RefactoringActionAddEquatableConformance class in

Fig. 1. Visual representation of an abstract syntax tree

Fig. 2. Declaration of refactoring

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

8 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(67), 2022

ISSN 2664-9969

Refactoring.cpp (as shown in Fig. 3). Resolved-
CursorInfo is an object that contains a descrip-
tion of the context (binding to the code) in
which the refactoring action was invoked [9].

The isValid() method (Fig. 4) checks whether
the selected declaration context (class, structure,
enumeration) meets the conditions for refactor-
ing application, namely: it has stored properties,
it does not conform to the Equatable protocol,
and whether the requirements of the protocol
are correct. If the method returns true, then
this type of refactoring will be available in the
integrated development environment when the
cursor is placed in the appropriate place.

Next, it is necessary to state how the code
specified by the cursor position or selection should
be transformed if the refactoring action is applied.
For this, it is necessary to implement the per-
formChange() method of the RefactoringAction-
AddEquatableConformance class. During the
performChange() implementation, it is possible
to access the same ResolvedCursorInfo object
that was obtained in isApplicable() method [9].

In Fig. 5, in the performChange() method,
the context of the invocation is obtained, based
on which the insertion place for the name of the
protocol to be added is searched along with the
place for members of the class (function) that
will also be added. In the body of the function,
EditConsumer object can be used to edit the
text around the statement pointed by the cursor
position with the proper API calls (insertAfter).

All actions for the source code processing
are implemented in other additional methods.

The developed refactoring action (after it
is applied to the source code) inserts the line
«: Equatable» after the token of the selected dec-
laration, which denotes the conformance to the
protocol by a class, structure, or enumeration.
Then the method implementation required by
the Equatable protocol is inserted into the dec-
laration body.

Fig. 6 shows the code that obtains the name
of the protocol and formation of the text buffer,
which must be inserted into the source code.

Fig. 7 describes the code that receives the text
of the method to be inserted. First, the protocol
requirements (method name and its parameters)
are searched. Next, the necessary indentation
is searched, considering the place of insertion
of the method body. After that, a class that
formally prints the method body in the source
code considering all parameters is configured.

In addition to the methods described above,
it was necessary to develop a relatively large
number of auxiliary functions to organize the
correct operation of the main functions.

A special approach for writing tests is used [9].
It is necessary to declare the presence of a cer-
tain kind of tests for refactoring actions, create
files with input and output data, apply functions,
and then the testing framework will compare
the obtained result with the desired one. Fig. 8
shows an example of one of these tests.

Fig. 3. Implementation of the isApplicable() method

Fig. 4. Implementation of the isValid() method

Fig. 5. Implementation of the performChange() method

Fig. 6. Obtaining the text for the protocol

Fig. 7. Obtaining the text for the protocol method

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

9TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(67), 2022

ISSN 2664-9969

The development of refactoring actions, which are based
on the selected range of code, is done in a similar way:

– action declaration in the RefactoringKinds.def file;
– implementation of the isApplicable() method, which
shows when the refactoring action can be applied (the
ResolvedRangeInfo object is used to describe the con-
text of the invocation);
– implementation of the performChange() method for
applying changes;
– testing.
Importantly, it is possible to access in the body

of the performChange function not only the original
ResolvedCursorInfo or ResolvedRangeInfo objects
for the location or range selected by the user, but
also other important utilities such as EditConsumer
and SourceManager, which makes the implementa-
tion more convenient.

3. Research results and discussion

As a result of experiments with the existing API
of the sourcekit utility responsible for refactoring in
the Swift language, it was found that to add just
one relatively simple refactoring action it was neces-
sary to write about 300 lines of code. And there’s
no reason to believe that it will be needed to write
significantly fewer lines of code in other cases. Thus,
there is a crucial need to improve and automate the
advanced refactoring process, which would allow the
programmer to avoid writing a considerable amount of
«infrastructure» code and to focuse more on the aim
of refactoring. The written refactoring action code is
a part of the Swift language and cannot be paramete-
rized at runtime (all new refactoring functions that are
added are strictly formalized and implemented only
according to the provided framework). Let’s review
the result of application of the developed refactoring
action. The source file for refactoring is shown in Fig. 9.

Fig. 9. Output file

Refactoring action is applied to the declaration of the
TestAddEquatable class. The result of the utility execution
is shown in Fig. 10 – protocol name after class name
and method implementation in class body using all class
properties are added.

Next, refactoring action is applied to the extension
of the TestAddEquatable class, which contains some in-
formation in its body. The result of the work looks as
shown in Fig. 11.

A limitation of this study is the focus on one specific
type of refactoring that was added.

The development of methods and approaches of refac-
toring, which do not depend entirely on the source code
of the programming language, should be considered as

Fig. 8. Writing the test

Fig. 10. The result of using the utility for the class

Fig. 11. The result of using the utility to expand with text

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

10 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(67), 2022

ISSN 2664-9969

a promising direction for the development of this research.
This is due to the fact that the new approach will not
have limitations for refactoring actions that exist in the
old one (such as access only to the context of the in-
voked action) [10].

4. Conclusions

The method of performing refactoring in the Swift
language, based on the features of the sourcekit «raw»
source code handler is studied in this paper. The sequence
of adding a new type of refactoring to the source code
of the Swift programming language is described, as well
as the functionality available for writing new refactoring
actions is considered.

The work of the programming language compiler and
the structure of the abstract syntactic tree, which is the
result of the work of several first stages of code com-
pilation, were considered. Using binding to an abstract
syntax tree is a necessity for building functional tools
for non-trivial refactoring. However, experimental studies
have shown that writing refactoring rules with built-in
Swift language tools is possible only in a strictly defined
way using classes and specific requirements of a provided
framework. The refactoring functionality created in this
way cannot be properly parameterized, and the process
of creating the refactoring functionality itself is too time-
consuming. That is why the possibility of parameterization
and the flexibility of utilities for refactoring based on
formalized knowledge about the source code are priority
directions for further research.

Conflict of interest

The authors declare that they have no conflict of inte-
rest in relation to this study, including financial, personal,
authorship, or any other, that could affect the study and
its results presented in this article.

Financing

The study was performed without financial support.

Data availability

The manuscript has associated data in a data repository.

References

1. Sandoval Alcocer, J. P., Siles Antezana, A., Santos, G., Bergel, A.
(2020). Improving the success rate of applying the extract
method refactoring. Science of Computer Programming, 195,
102475. doi: https://doi.org/10.1016/j.scico.2020.102475

2. Kaur, G., Singh, B. (2017). Improving the quality of software
by refactoring. 2017 International Conference on Intelligent Com-
puting and Control Systems (ICICCS), 185–191.

3. Saca, M. A. (2017). Refactoring improving the design of exist-
ing code. 2017 IEEE 37th Central America and Panama Con-
vention (CONCAPAN XXXVII). doi: https://doi.org/10.1109/
concapan.2017.8278488

4. Simmonds, J. (2002). A Comparison of Software Refactoring
Tools. Available at: https://www.researchgate.net/publication/
2946408_A_Comparison_of_Software_Refactoring_Tools

5. Chouchen, M., Olongo, J., Ouni, A., Mkaouer, M. W. (2021).
Predicting Code Review Completion Time in Modern Code Re-
view. ArXiv. doi: https://doi.org/10.48550/arXiv.2109.15141

6. Inoue, K., Roy, C. K. (2021). Code Clone Analysis. Singapore:
Springer. doi: https://doi.org/10.1007/978-981-16-1927-4

7. Swift Issues. Available at: https://github.com/apple/swift/issues/
8. Lacerda, G., Petrillo, F., Pimenta, M. S., Guéhéneuc, Y. (2020).

Code Smells and Refactoring: A Tertiary Systematic Review
of Challenges and Observations. ArXiv. doi: https://doi.org/
10.48550/arXiv.2004.10777

9. Swift Local Refactoring. Available at: https://swift.org/blog/
swift-local-refactoring/

10. Improving Swift Tools with libSyntax. Available at: https://
academy.realm.io/posts/improving-swift-tools-with-libsyntax-
try-swift-haskin-2017/

*Andrii Tkachuk, Postgraduate Student, Department of System
Design, National Technical University of Ukraine «Igor Sikorsky
Kyiv Polytechnic Institute», Kyiv, Ukraine, ORCID: https://orcid.org/
0000-0002-9127-6381, e-mail: andrewtkachuk@yahoo.com

Bogdan Bulakh, PhD, Associate Professor, Department of System
Design, National Technical University of Ukraine «Igor Sikorsky Kyiv
Polytechnic Institute», Kyiv, Ukraine, ORCID: https://orcid.org/
0000-0001-5880-6101

*Corresponding author

