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A STUDY OF MESH INFLUENCE ON 
EXTENDED FINITE ELEMENT CRACKED 
PLATE AND FINITE ELEMENT PLATE 
BENDING

The object of this study is a refining mesh effect on discontinuous structures response.
This paper presents a study of mesh influence between cracked and non-cracked plates using extended finite 

element and standard finite element method, respectively. For the first case, the plate is stressed on one side, in which 
cracked zone displacements are given for different mesh refinements. The second case study is bending orthotropic 
and isotropic plates under uniform rectangular impulsive load, in which mesh influence on the structural response 
is presented. The numerical modelization is done using an isoperimetric quadrilateral element. On one hand, the 
stiffness linear matrix of a cracked plate is evaluated numerically by adding an enriched shape function to the 
standard shape function to be able to model discontinuity numerically. On the other hand, for the case of the non-
cracked plate, the use of the finite element method with standard shape function is well suited to the numerical 
design of stiffness and mass matrix.

The essence of this study is to show the mesh effect on cracked and non-craked plate response, which is a first 
step that allows to go even further on monoitoring of our crack evolution.

It is a very useful field as any structure in our daily life is subject to a discontinuity (crack) which we must be 
able to control in order to evoid a future structure collapse.
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1.  Introduction

Researchers are led to use numerical methods and modeli­
zation for the increasing complexity of structural mechanics 
problems. Knowing that finite element method is without 
a doubt the most powerful method for structural analysis, 
and the most common numerical tool, which allows the ap­
proximate solutions of partial differential equations. This later 
has been applied successfully in many complex structures, 
which are not easily calculated by the usual procedures of 
resistance of structures, such as plates and shells. This does 
not mean that it has not shown its limits in certain fields.

Finite Element Methods approximations are piecewise 
differentiable polynomial approximations, which are illu­
suited to represent problems with discontinuities (either 
in the Unknown field or its gradient), singularities and 
boundary layers. To accurately model discontinuities with 
finite element methods, it is necessary to conform the dis­
cretization (mesh) to the line or surface of discontinuity.  
This becomes a major difficulty when treating problems 
with evolving discontinuities where the mesh must be re­
generated at each step. In standard finite element methods, 
singularities or boundary layers are resolved by requir­
ing significant mesh refinement in the regions where the 
gradients of the fields are large.

It is possible to say that the finite element method 
relies on polynomials approximation properties, so they 
often require smooth solutions to achieve optimal accuracy. 
However, if the solution contains strong discontinuities in 
the displacement field as in the case of cracked bodies, 
then the finite element method becomes computationally 
expensive. Hence the emergence of the extended finite 
element method (XFEM), which is a numerical technique 
that enables the incorporation of local enrichment ap­
proximation to overcome the limits facing the finite ele­
ment method, by enriching the standard shape functions 
using Heaviside and Branch functions allowing a numerical 
modelization of discontinuities  [1–6]. Recently a lot of 
work in this field has been done by  [7, 8].

One of the most awkward problems encountered in 
the analyses of crack growth is that remeshing is required 
near the crack tip as the crack grows. Such remeshing is 
not only burdensome.

The aim of this research is to know if there is a refin­
ing mesh effect on discontinuous structures response as is 
the case for continuous one, by the use of the extended 
finite element method to apprehend the problem that the 
finite element method cannot solve, namely, a cracked plate 
stressed on one side and embedded on another side, with 
a central crack. In addition, the use of the finite element  
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method for dynamic analysis of orthotropic and isotropic 
plates under uniform rectangular impulsive load is studied 
using temporal step-by-step integration.

2.  Materials and Methods

The object of this research is a refining mesh effect on 
discontinuous structures response.

2.1.  Extended finite element formulation. Knowing that 
discontinuity surfaces may cut the finite elements, in this 
case it is necessary to enrich the elements cut by a discon­
tinuity with new functions at different crack zone. Crack 
modelling using Extended Finite Element Method includes 
two types of enrichment: an enrichment for the front of the 
crack using branch functions characterizing the asymptotic 
behaviour displacement field near the crack front  [1] and 
an enrichment for the interior of the crack using a step 
function with value 1.0 above the crack and –1.0 below [9]. 
The fact that a node is enriched or not and the type of 
enrichment depends on the relative position of its support 
relative to the crack  [10–14] as shown in Fig.  1.

 
Fig. 1. Step and branch function enriched node

The 2D modelling of the displacement field can be 
written as follows:
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where N xI ( ),  N xJ ( ),  N xK ( ) – standard finite element 
shape function; B xα ( )  – branch function; H x( )  – Heaviside  
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where N – set of nodes constituting the mesh; N xI ( )  – shape  
function associated with node I, note that N xI I IJ( ) ;= δ   
xI  – node I coordinates; UIi  – nodal unknown of node I  
for the i th component. The enriched approximation field is:
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where P.U. – set of functions building 
the partition of unity; f xJ ( )  – func­

tion of the partition of unity; ψ( )x  – enriched or additional 
function; AJi  – additional unknowns associated with the 
function f xJ ( ).

If to take all the additional unknowns AJi  equal to 1 
and all the standard nodal unknowns UIi  equal to zero, the 
approximation can recover the additional function ψ( )x . 
The support of the partition of unity is called ΩPU .  This 
support is usually located around the discontinuity but it 
can be extended if one needs to model a high gradient; 
as in the case of a crack tip.

This last expression is not the standard expected rela­
tion where the nodal is the real unknown UKi; displace­
ment on the node. To satisfy this relation, the following 
approximation is often used:
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2.2.  Extended finite element plate formulation. The strain 
tensor components, written as a vector is:
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Numerical implementation by replacing U Me( ){ } using 
its approximated form leads to:

ε{ } = [ ][ ]{ } = [ ]{ }D N M q B M qe e e e( ) ( ) , 	 (6)

where B Me( )[ ]  is the discretized gradient operator, it con­
tains both standard part and enriched part as written:
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e

std
enr( ) ( ) ( ) .[ ] = [ ] 	 (7)

The shape function NI (I from 1 to 4) are bi-linear in 
ξ  and η (coordinates in the parent element)  [15]:
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The enriched discretized gradient operator B Menr
e ( )[ ] 

is equal to:
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In the case of a Heaviside enrichment, the derivative of  
ψ( )x  is zero, so the enriched gradient operator is:

Computation of ∂ ∂y ξ  and ∂ ∂y η  needs Jacobian:
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The expression of stiffness matrix for an enriched ele­
ment is:
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where De[ ] is the material law. The stiffness matrix can be 
decomposed into blocs as presented below:
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2.3.  Plate displacement and deformation field description. 
Plate displacement is based on three independent variables: 
transverse displacement and two rotations written as follows: 

u z x y v z x y w w x yx y= = =β β( , ), ( , ), ( , ).  	 (17)

The deformation field with bending and shear effects 
can be presented below:

–  contribution of bending effect:
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–  contribution of shear effect:
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Motion equations formulation can be given by Lagrange’s 
equations using kinetic, potential energy [16–18] expressed 
as follows:
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Using Lagrange’s equations, which is:
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Thus equation motion can be written as below:

M q K q F t[ ]{ }+ [ ]{ }={ } ( ) , 	 (22)

where M[ ] – global mass matrix; K[ ] – global stiffness matrix; 
F t( ){ } – global external load vector.

2.4.  Finite Element Plate Formulation. Bending interpola­
tion and shear deformations matrix can be written as follow:

χ ε β

β
{ } = { } =

∂
∂

∂
∂

∂
∂

∂
∂

























f

T

T

T T

x

N

x
N

y

N

y

N

x

W
0 0

0 0

0





yy

c

T
T

T
T

x

y

N

x
N

N

y
N

W

















{ } ={ }=

∂
∂

∂
∂





















,

ε γ β

β

0

0



















. 	 (23)

The constitutive matrix of the orthotropic plate takes 
the form:
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where Df   – bending constitutive matrix; Dc[ ] – shear con­
stitutive matrix; E E1 2,   – Young moduli (x) and (y) directions 
respectively; n n12 21,   – Poisson’s ratios; G G G12 13 23, ,  – shear 
moduli; k  – cross-shear correction coefficient.

Stiffness and mass matrix expression using deformation 
energy and Kinetic energy, respectively  [16–19]:
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where J[ ] – Jacobian matrix; K f  – bending stiffness ma­
trix; Kc[ ] – shear stiffness matrix; M[ ]  – mass matrix.

The load vector is expressed as follows:
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2.5.  Resolution method. The approach under consider­
ation, for second-order differential equations system resolu­
tion, is a direct resolution method  [16–20].

The direct analysis of a structure in transitory mode 
implies step-by-step integration motion:

M q K q F t[ ] { } +[ ] { }= { } ( ) .

In this method; displacements, velocity and accelera­
tions vector at time T = 0 are known. The period T, over 
which the response is required, is subdivided in N intervals 
time and equalizes Dt. The use of this integration scheme 
establishes a solution approximation at times: Dt,  2Dt,...,  t, 
t+Dt,...,  T. The resolution algorithm (Newmark’s method) 
is represented in Table 1 which is divided into two parts.

Table 1
Step-by-step resolution algorithm

Step Designation

A. Initial calculation

1. Form stiffness 
and mass matrix

[K], [M]

2. Initialize q0{ } ,  q0{ }  and q0{ }
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α, β, and calculate 
integrations con-
stants
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3.  Results and Discussion

3.1.  Central crack of square plate. Consider a homogeneous 
isotropic square plate, with a width and height equal to 
1  m, stressed by a distributed load: σ = 100  KN/m2  (Fig.  2),  
with a central crack length equal to 20 cm whose elastic pro­
perties are as follows: modulus of elasticity: E = 7·106 MPA, 
Poisson’s ratio: υ = 0.3.

The 2D model of the cracked square plate is repre­
sented in Fig.  3.

 

1 m 

20 cm 

Fig. 2. Geometry of a homogeneous isotropic cracked square plate

 
Fig. 3. 2D model of cracked square plate

The aim is to study a mesh refinement influence of cracked 
square plate under tension, on the top side and embedded 
on the bottom side. Results are represented in Fig. 4, which 
gives information about the numerical model with different 
meshes as well as stress and numerical deformed configuration 
corresponding to each mesh refinement. It is possible to notice 
in Fig.  4 that mesh refinement has a big influence on the 
cracked zone itself as well as the zone surrounding the crack.

3.2.  Finite element example
3.2.1.  Simply supported isotropic square plate. Let’s 

consider an isotropic square plate, subjected to a uniform 
rectangular impulsive load, structure geometry and mate­
rial properties are represented in Fig.  5.

Data:
–	 Initial condition: a = 2.438  m; P0(x,y,t) = 47.9  N/m2;
–	 w w= = 0: E = 6.897·1010 N/m2; P0(x,y,t) = 48.82 N/m2;
–	 Newmark parameters: r = 254 kg/m3; n = 0.25; α β= =1 2 1 4,   

α β= =1 2 1 4,   (Newmark). r = 254.7  kg/m3; h = 6.35·10–3  m.
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Fig. 4. Stress and deformed configuration results for different mesh refinement: a – cracked plate model result with 39×39 elements; b – cracked plate 
model result with 49×49 elements; c – cracked plate model result with 59×59 elements; d – cracked plate model result with 69×69 elements;  

e – cracked plate model result with 79×79 elements
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a

b

a a

t (s)
0 t1

P(t)

0 ≤ t ≤ 0.13 s

a a

t (s)
0 t1

P(t)

0 ≤ t ≤ 0.13 s

Fig. 5. Isotropic plate under uniform rectangular impulsive load:  
a – structure geometry; b – uniform rectangular impulsive load

3.2.2.  Orthotropic square plate. For the second ex­
ample, let’s consider a thin orthotropic plate (corrugated  
aluminium plate), subjected to a rectangular impulsive 
load with intensity P, data plate information is presen­
ted  below:

a = 1.5 m; E1 = 30·1010 N/m2;

r = 2710 kg/m3; E2 = 0.8·1010  N/m2;

h = 7·10–3  m; G12 = G13 = G23 = 0.375·1010  N/m2;

P0(x,y,t) = 950  N/m2; n12 = 0.33.

For a time step equal to 0.0025  s, and for the case of 
simple support, mesh influence is shown in Fig.  6.

 
Fig. 6. Mesh influence of orthotropic simply supported square plate  

on the transient response displacement [20]

The first case is a square central cracked plate stressed 
on the top side and embedded on the bottom side, in which 
Fig. 4 shows a direct influence of mesh on stress results in both 
cracked zone and zone surrounding the crack using 39, 49, 59, 
69 and 79 elements per side. It is possible to notice that more 
the mesh is refined, more lightened are the stress; on different 
level namely, cracked zone, non-cracked zone and crack tip.

The second case is the study of mesh influence for the 
isotropic and orthotropic non-cracked plates under uniform 
rectangular impulsive load. Table 2 and Fig. 6 indicate the 
maximum normal displacement amplitude and transient re­
sponse displacement values in the plate centre according to 
mesh using 4, 6, 8 and 10 elements per side, respectively.

Table 2

Maximum deflection amplitude of simply supported isotropic plate according 
to mesh with the time step Dt = 0.005 s

Mesh (4 × 4) (6 × 6) (8 × 8) (16 × 16)

Newmark (Q4) dis-
placement (cm)

0.85858 0.86662 0.88252 0.88801

Newmark (DKT)  
displacement (cm) [19]

0.80853 0.85401 0.86588 0.88258

HHT displace-
ment (cm) [19]

0.82756 0.86261 0.88344 0.89498

Knowing that Finite Element Methods approximations 
are piecewise differentiable polynomial approximations, 
which are ill-suited to represent problems with discon­
tinuities (either in the Unknown field or its gradient), 
singularities and boundary layers, extended finite element 
method is well suited for disocntinuities modeling.

4.  Conclusions

This work sheds light on the mesh effect on structures 
whether cracked or not, starting by using an elegant 
method that allows numerical modelization of cracks. Finite 
element methods approximations are piecewise differentiable 
polynomial approximations, which are ill-suited to represent 
problems with discontinuities. Hence the emergence of the 
extended finite element method to overcome the limits 
presented by the finite element method.

Using the two methods (extended finite element and finite 
element) for cracked and non-cracked plates, respectively, it 
is possible to conclude that there is a direct mesh influence 
on stress results whether in the cracked zone and around, 
using 39, 49, 59, 69 and 79 elements per side, as well as 
a  big mesh influence for non-crack isotropic and orthotropic 
plate in dynamic transient response.
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