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RESEARCH OF THE FU IK SPECTRUM 
FOR THE (p,q)-LAPLACIAN OPERATOR 
BY MIN-MAX THEORY

The object of research is the Fu ik spectrum for the (p,q)-Laplacian operator. In the present paper, we are 
going to introduce the notion of the Fu ik spectrum for a non-linear, non-homogeneous operator, which is the 
(p,q)-Laplacian operator through the study of the following eigenvalue boundary problem:

− − = −
= ∂





+ − − −∆ ∆ Ω
Ω

p q
p qu u u u

u

λ μ( ) ( ) ,

,

1 1

0

in

on

where Ω ⊂ ≥N N,  1 is a bounded open subset with smooth boundary and λ and μ are two real parameters. In 
order to establish and show the existence of non-trivial solutions for the problem described above, we will search 
the weak solution of the energy functional associated to our problem by combining two essentials theorems of the 
Min-Max theory which are the Ljusternick-Schnirelmann (L-S) approach and the Col theorem. In addition to 
that we are going to use the Ljusternick-Schnirelman theorem to show that our problem possesses a critical value 
ck in a suitable manifold that we will define later in the present manuscript. Following to that we will verify the 
Col geometry by using the critical point associated to the critical value ck and by applying the Col theorem, we 
will find a new critical value cn. After that, by employing the critical value cn we will demonstrate the existence 
of the family of curves which generate the set of Fu ik spectrum of the (p,q)-Laplacian operator. To complete our 
research about the structure of the set of the Fu ik spectrum of the (p,q)-Laplacian operator we will give the most 
important properties of the family of curves which are the continuity and the decrease. We have chosen to put our 
interest on the study of the Fu ik spectrum because it’s determination is as important in mathematics as it is in many 
other fields (physics, plasma-physics, reaction-diffusion equation etc.). We can take as an example it’s use in the 
field of waves and vibrations where the starting point of the wave or the vibration is influenced by the structure 
and characteristics of the family of curves which constitute the Fu ik spectrum of the (p,q)-Laplacian operator.
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1.  Introduction

Let λ and μ be fixed real. We have the following non-
linear problem:
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where ∆ r  represents the r-Laplace operator defined by 
∆ r

r
u div u u: ( )= ∇ ∇−2

 with r p q∈{ }, , 1< ≤ <∞q p , and u u u u u= − = { }+ − ± ±, ,max 0 
u u u u u= − = { }+ − ± ±, ,max 0  is the solution of the problem (1).

Hereinafter, the sign W p
0
1, Ω( ) denotes the standard So-

bolev space equipped with the norm || || ,,⋅ 1 r  and || ||⋅ r will 
denote the norm in Lr Ω( ).

We define the Fu ik spectrum of the (p,q)-Laplacian 
operator with the Dirichlet boundary condition as the 
set Σ p q,  of those λ μ,( ) ∈2 such that the problem (1) has 
a  non-trivial solution in the Sobolev space W p

0
1, .Ω( )

The notion of Fu ik spectrum was introduced for p = 2 
in the 1970s by Fu ik  [1] and Dancer  [2] in connection 
with the study of the jumping non linearity. The set 

2
∑ 

itself has attracted an enormous interest among mathe
maticians for the linear case we refer to  [2] where it is 
proved that the two line λ1 × and  × λ1 are isolated in 

2
∑  

and  [3] where the author constructed and characteri
zed  variationally the first curve in 

2
∑  through λ λ2 2, .( )

In the quasi-linear case p ≠ 0, only the ODE situation 
N = 1 seems to have been investigated in  [4].

For the Fu ik spectrum of the Laplacian on a two-di-
mensional torus T 2 we have [5] where the authors show that 
there exist an explicit global curve in the Fu ik spectrum 
and that their asymptotic limits are positives.

The Fu ik spectrum as a notion can be extended to non-
linear differential operator. For the p-Laplacian operator, we 
refer first to [6] where the author has constructed the curve in 

p
∑, and he has shown that this is the first non-linear curve in 

2
∑.
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In  [7] the author has studied the following jumping 
nonlinear problem:
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where the existence of a non-trivial curve in the Fu ik 
spectrum of the p-Laplacian has been proved by using the 
sequence of minimax eigenvalues constructed by cohotno-
logical index.

In  [8] the authors took interest in to the Fu ik spec-
trum of the p-Laplacian operator with no-flux boundary 
condition by studying the following problem:
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It has been demonstrated that the Fu ik spectrum of 
the p-Laplacian operator with no-flux boundary condition 
has a first non-trivial curve being Lipchitz, decreasing 
and with a certain asymptotic behavior.

For the importance and application of the Fu ik spec-
trum of the p-Laplacian, we refer to [9] where the authors 
studied the existence of sign-changing solution for the p-Lap- 
lacian where the Fu ik spectrum possess an important 
role in the proof of the results.

It’s an evidence that as for the p-Laplacian, it is pos-
sible to extend the study of the Fu ik spectrum on the 
(p,q)-Laplacian operator in purpose to exploit at its best 
any problem that involve this operator (in mathematics, 
physics). In the other hand, we need the Fu ik spectrum 
for the study of the existence of nodals solutions (sign-
changing solutions) of the (p,q)-Laplacian.

Starting with the previous works on the Fu ik spectrum 
about the elliptic operators (Laplacian and p-Laplacian) we 
were able for the first time to define the Fu ik spectrum 
of the (p,q)-Laplacian and consequently made its study 
and give its structure.

For the perspectives, we intend to study the existence 
of nodal solutions of the (p,q)-Laplacian problem based 
on its Fu ik spectrum.

The difficulty of the study of the Fu ik spectrum of 
(p,q)-Laplacian operator is due to its non-homogenous 
character which complicates the application of standard 
theorems of the Min-Max theory. In order to go through 
this obstacle we had to combine the Ljusternick-Schnirel-
mann (L-S) theorem and the Col theorem in the manifold 
Mα β, , which we will define later in this paper.

This paper is devoted to study the equation (1) as 
a constrained problem to which an appropriate min-max 
approach is applied to establish the existence of non-trivial 
solution which determinate the Fu ik spectrum for the 
(p,q)-Laplacian operator.

On the one hand the resolution of the problem (1) 
requires the use of a new method which consists in combin-
ing two distinct methods (Col theorem and L-S theory), 
on the other hand by solving the problem (1) we will 
able to define the Fu ik spectrum for the (p,q)-Laplacian 
operator.

In practice, the result of our research will be used 
in the modeling of several phenomena arising in physics, 
plasma physics and elementary particles  [10–13].

2.  Materials and Methods

In this section, we introduce some definitions and 
theorems, which we will apply to obtain our results. We 
start with the definition of the Palais-Smale condition. 
Let X a Banach space, we consider the manifold:

S v X F v= ∈ ( ) ={ } ≠: , ,α α 0

with F C X∈ ( )1 ,  and ∀ ∈ ( ) ≠v S F v, .' 0
Let J C X∈ ( )1 ,  and c ∈. We can affirm that J S|  sa

tisfies the Palais-Smale condition (in the level c) if any 
sequence u b Sn n,( ) ∈ × such that:

J u c J u b F u Xn n n n( ) → ′( ) − ′( ) → ′in and in . 0

Contains a sub-sequence u bn n kk k
,( )  that converges to 

u b,( ) in S ×.
The Ljusternick-Schnirelmann Theorem (L-S)  [14] 

suppose that F and J are even, that J is not constant, 
satisfy the Palais-Smale condition on S and that 0 does 
not belong to S. For any integer, k ≥ 1 we put:

c J vk
A B u Ak

= ( )
∈ ∈

inf sup ,

where B A S X A S A kk = ∈ ( ) ⊂ ( ) ≥{ }; ,γ  and S X( ) designs the 
set of all closed symmetric subsets A of X such that 0 ∉A.

We have for k ≥ 1 such that Bk ≠ ∅ and ck ∈, ck is the 
critical value of j on S. Moreover c ck k≤ +1, and for the integer 
j ≥ 1 we have Bk j+ ≠ ∅ and c ck k j≤ ∈+ , then:

γ k c jk( )( ) ≥ +1,

where

k c u S J u c E u F uk k( ) = ∈ ( ) = ∃ ∈ ′( ) = ′( ){ }; , .λ λ such that

If for any k ≥ 1 we have Bk ≠ ∅ and ck ∈ then:

lim
k

kc
→+

= +
∞

∞.

Let E a Banach space, g f C E, , ,∈ ( )1   M u E g u= ∈ ( )={ }: ,1  
u u M0 1, .∈  Assume that 1 is a regular value of g, ∈> 0 such 
that u u

E1 0− > ∈ and

inf ( ) : , max ( ), ( ) .f u u M u u f u f u∈ − ={ } > { }and, 0 0 1ε

We also assume that f satisfy the Palais-Smale condition  
on M such that non-empty is:

Γ = ∈ −[ ]( ) −( ) = ( ) ={ }γ γ γC M u u1 1 1 10 1, , : , .

Then by the Col theorem, we have a critical value 
of f M|  is:

c f u
u

= ( )
∈ ∈ −[ ]

inf max
γ γΓ 11,

.

In order to solve the problem (1) we must apply first 
the L-S theorem to find the critical value ck that we will 
use to demonstrate the Col geometry.

To show that the Fucik spectrum of the (p,q)-Laplacian 
is mainly constitute of the familly of curves cn we use 
the Col theorem.
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3.  Results and Discussion

3.1.  Existence of solution. Let α β> >0 0, , we define the  
following manifold:

M u W
p

u x
q

u xp p q
α β

α β
,
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the following functional:
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p

, , , ,
,, , .

0 0
1

0
1

α β ∈ ( )( )Ω   Let’s define:

I Is s t t M= , , , | .
,0 0 α β

The set Mα β,  is a smooth sub-manifold of W p
0
1, Ω( ) and 

thus I  is C1. By Lagrange multipliers rule, u M∈ α β,  is a criti-
cal point of I  if and only if there exists λ ∈ such that:

′ ( ) = ′ ( ) ∀ ∈ ( )I u v G u v v W pλ α β,
,, .0

1 Ω 	 (2)

Let’s describe the relationship between the critical points 
of I  and the Fu ik spectrum of problem (1). Given s > 0 
and t > 0, one has that α βc s c t+ +( ),  belongs to the spectrum 
Σ p q,  if and only if there exists a critical point u M∈ α β,  of 
I  such that c I u= ( ).

In order to construct a critical point of I , let’s first 
check the Palais-Smale condition.

Lemma  1. I  satisfies the Palais-Smale condition on 
the sub-manifold Mα β, .

Proof. Let { } ,u Mn n∈ ⊂ α β and { }cn n∈ ⊂N R be sequences 
such that for some constant K > 0 we have:

I u Ks s t t n, , , ,
0 0 ( ) ≤ 	 (3)

and

Ω Ω
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0
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for all v W p∈ ( )0
1, ,Ω  where ∈ →n 0.

From (3) it follows that the sequence un remains 
bounded in W p

0
1, .Ω( )  Consequently, for a subsequence, un 

converges strongly in Lp Ω( ) and weakly in W p
0
1, .Ω( )  Note 

this limit by u.
In order to show that u un →  in W p

0
1, Ω( ) we remind that:

− ( ) → ( )( )∆ Ω Ωr
r rW W: ,, ,

0
1

0
1 *

with r = p or q, owns the S+( ) property. It is to say that if 
u un →  in W r

0
1, Ω( ) and, lim sup | | ( )n n

r

n nu u u u→∞
−

∇ ∇ ∇ − ≤∫ Ω
2

0 
then u un →  in W r

0
1, .Ω( )

Putting v u un= −  in (4), we get:

Ω

Ω

Ω

∫
∫

∫

∇ ∇ ∇ −( ) +

+ ∇ ∇ ∇ −( ) =

= +( ) ( )

−

−

+

u u u u x

u u u u x

c s u

n
p

n n

n
q

n n

n n

2

2

d

d

α pp
n

n n
q

n

n n
p

u u x

c t u u u x

c s u

−

− −

− −

−( ) +

+ +( ) ( ) −( ) +

+ −( ) ( )
∫
∫

1

1

0

d

dβ

α

Ω

Ω

11

0
1

u u x

c t u u u x

n

n n
q

n

−( ) +

+ −( ) ( ) −( )∫ + −

d

dβ
Ω

.

Since,

Ω∫ ∇ ∇ ∇ −( ) →−

→+
u u u un

p
n n

n

2
0

∞
,

and

Ω∫ ∇ ∇ ∇ −( ) →−

→+
u u u un

q
n n

n

2
0

∞
,

and according to the S+( ) property we obtain that u un →  
in W p

0
1, .Ω( )

In the next step, we will look for local minimizers of  
the functional:

J W p: ,,
0
1 Ω( ) 

defined by:

J u
p

u x
q

u x
p q( ) = ∇ + ∇∫ ∫

1 1
Ω Ω

d d .

To fulfill the Mountain-Pass geometry of the functional I .
Lemma 2. For any integer k ∈, the set not empty is:

B A S W A S A kk
p= ∈ ( )( ) ⊂ ( ) ≥{ }0

1, ; , .Ω γ

In particular if X Wk
p⊂ ( )0

1, Ω  is a sub-space of dimen-
sion, then:

γ α βM X kk, .∩( ) =

Proof. Let Xk a sub-space of W p
0
1, Ω( ) such that dim .X kk =  

We can show easily that X Mk ∩( )α β,  is a symmetrical and 
closed set that does not contain the origin, so γ α βM Xk, ∩( ) 
is well defined.

Let now S be the unit sphere in W p
0
1, .Ω( )  Denote by:

P u
u

u u
p

:
|| ||

,
,



1
0

1

≠

the radial projection in W p
0
1, .Ω( )  
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Then P is a bijection between Mα β,  and S. We have:

P X M X P M X Sk k k∩( ) = ∩ ( ) = ∩α β α β, , .

So P is a homomorphism between X Mk ∩ α β,  and X Sk ∩ . 
Since P is odd we get:

γ γα βX M X Sk k∩( ) = ∩( ), .

According to the genus properties we have:

γ α βX M kk ∩( ) =, .

Similar arguments as those used in Lemma 1 show that 
J satisfies the Palais-Smale condition on Mα β, . Combing 
this fact and Lemma  2, one can get by the Ljusternick-
Schnirelmann theorem that for any k ∈ the quantity:

c J uk
A B u Ak

:= ( )
∈ ∈

inf sup

is a critical value of the functional J with respect to the 
manifold Mα β, . Hence, a sequence of critical points that 
we note by { } ,u Mk k

1
∈ ⊂ α β  also exists.

Next we give the main result of the paper.
Lemma  3:
1.  For s > 0, t > 0.
2.  c s t I un

u
s s t t,

,
, , ,( ) = ( )

∈ ∈ −[ ]
inf max
γ γΓ 11 0 0

 is a sequence of critical 

value of Is s t t, , , ,
0 0

 where 

Γ = ∈ −[ ]( ) −( ) = − ( ) ={ }γ γ γα βC M u uk k1 1 1 11 1, , : , .,

3.  The curve s c s t t c s tn n p q+ ( ) + ( )( ) ∈, , , .,Σ
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Since ck is a critical value of J, there exists a Lagrange 
multiplier ϑk ∈  and u M∈ α β,  such that:

′ ( ) = ′ ( )J u G ukϑ α β, .

In other words, we have:
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Taking u v=  in the last equation, we get:
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Since u M∈ α β, , we obtain:

J u k( ) = ϑ .

So ck k= ϑ  and max I u I u cs s t t k s s t t k k, , , , , ,, .
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for all u M∈ α β, . Then, it results:

inf sup
A B w Ak

I w I u
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( ) < ( ),

witch apply that:

inf sup
A B w Ak

I w I u
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( ) < ( )inf ,

for any u M∈ α β, . Consequently,

inf sup
A B w A

k pk

I w I u u M u u
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1

1

and this provides the following estimate:

inf I u u M u u ck p k( ) ∈ − −( ) = ∈{ } >; , ., ,α β
1

1

Since I  verifies the Palais-Smale condition and 1 is 
a regular value of Gα β, , then a critical value of Is s t t, , ,0 0

 is:

c t I un
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s s t ts inf max, .
,

, , ,( ) = ( )
∈ ∈ −[ ]γ γΓ 11 0 0

2.  s c s t t c s tn n p q+ ( ) + ( )( ) ∈, , , ,Σ  if and only if there exist  
a  critical point u M∈ α β,  such that c I un s s t t= ( ), , , ,

0 0
 and since 1 

is satisfies then the curve:

s c s t t c s tn n p q+ ( ) + ( )( ) ∈, , , .,Σ

Lemma 4. If c s t I un u s s t t, , , , ,( ) = ( )∈ ∈ −[ ]inf maxγ γΓ 11 0 0
 is a critical 

value of Is s t t, , ,0 0
 then s cn0 = α  and t cn0 = β .

Proof. We have c c s tn n= ( ),  is a critical value of Is s t t, , ,0 0
 then:
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0 0 α β

where un  is the critical point associated to cn .
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Consequently,
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Taking,

α βc s u v x c t u v xn n
p

n n
q−( ) + −( ) =∫ ∫− − + −

0
1

0
1

0
Ω Ω

d d ,

we get as required:

α βc s c tn n= =0 0and .

3.2.  Properties of the family of curve. We define the 
following family of curves:

C s c s t t c s t t c s t s c s tn n n n n: , , , , , , , .= + ( ) + ( )( ) + ( ) + ( )( ){ }
Lemma  5:
1.  The family of curves s t s c s t t c s tn n, , , ,( ) + ( ) + ( )( )  is 

Lipschitz and continuous in a way that:

s c s t s c s t t c s t t c s tn n n n+ ( ) < ′ + ′( ) + ( ) < ′ + ′( ), , , , ,

and

c s t c s tn n, , .( ) > ′ ′( )

2.  The family of curves s t s c s t t c s tn n, , , ,( ) + ( ) + ( )( )  is 
decreasing in a way that:

s c s t s c s t t c s t t c s tn n n n+ ( ) < ′ + ′( ) + ( ) < ′ + ′( ), , , , ,

and

c s t c s tn n, , .( ) > ′ ′( )

Proof. We start by part 1.
1.  Let ′ <s s, respectively ′ <t t, then:

I u I us s t t s s t t′ ′ ( ) ≥ ( ), , , , , , ,
0 0 0 0

for all u M∈ α β, , then we have:

c s t c s tn n′ ′( ) ≥ ( ), , ,

then ∀ ∈> 0, there exist γ ∈Γ  such that:

max
u

s s t t nI u c s t
∈ −[ ]

( ) ≤ ( )+ ∈
γ 11 0 0,

, , , , ,

then

0

11 10 0

≤ ′ ′( ) − ( ) ≤

≤ ( ) −
∈ −[ ] ′ ′

∈ −

c s t c s t

I u

n n

u
s s t t

u

, ,

,
, , ,

,
max max

γ γ 11 0 0[ ]
( )+ ∈I us s t t, , , ,

putting now u0 1 1∈ −[ ]γ ,  such that:

max
u

s s t t s s t tI u I u
∈ −[ ] ′ ′ ′ ′( ) = ( )

γ 11
00 0 0 0,

, , , , , , .

We get:

0
0 0 0 00 0≤ ′ ′( ) − ( ) ≤ ( ) − ( )+ ∈′ ′c s t c s t I u I un n s s t t s s t t, , ,, , , , , ,

since ∈> 0, then it’s easy to sea that:

s t s c s t t c s tn n, , , ,( ) + ( ) + ( )( )

is continuous and Lipchitz.
2.  Let 0 < ′ <s s, and 0 < ′ <t t, then:

′ + ′ ′( ) ′ + ′ ′( )( ) + ( ) + ( )( ) ∈∑s c s t t c s t s c s t t c s t P Qn n n n
p q

, , , , , , , ,
,⇓

′ + ′ ′( ) ′ + ′ ′( ) < + ( ) + ( )s c s t t c s t s c s t t c s tn n n n, , , , , , ,

since we have:

c s t c s tn n′ ′( ) ≥ ( ), , ,

which means that cn is decreasing.
These Methods can only be used on elliptic nonlinear 

operator in bounded spaces of N. If we want to apply them on 
non-bounded spaces N  we must verify the Sobolev injections.

Based on our work we can further generalize our results 
by imposing measurable weights under Newmann and Robin 
boundary conditions which will lead a use of the Fu ik 
sepectrum of the (p,q)-Laplacian operator in greater spaces.

4.  Conclusions

In this paper, we have shown that the Fu ik spectrum 
of the (p,q)-Laplacian operator is essentially made up by 
a group of curves Cn  given by:

C s c s t t c s tn n n= + ( ) + ( )( ), , , ,

where cn  is a sequence of a critical value.
For that we have used a new method that combines 

the Col and L-S theorems.
This results will lead to a generalization of the Fu ik 

spectrum of the (p,q)-Laplacian operator in a non-bounded 
spaces.
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