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RESEARCH OF ORTHOTROPIC 
COMPOSITES FAILURE TAKING 
INTO ACCOUNT THEIR STRUCTURAL 
STOCHASTICITY

The object of the study is the construction of the reliability assessing algorithm for the orthotropic composite plate, 
taking into account the stochasticity of its structure under the conditions of plane deformation. The plate consists 
of a matrix and reinforcement elements. The main orthotropic directions of the material coincide with the directions 
of the loading. The conducted studies are based on the failure criteria expressed through the components of macro 
stresses. The hypothesis of the weakest link is used, which for the case of the statistical theory of strength sounds like 
this: the ultimate (failure) loading for an orthotropic composite plate is equal to the ultimate loading for its weakest 
element. Defects-cracks are characterized by independent random variables – the half-length and the orientation 
angle between the defect line and the axis of orthotropy with a higher modulus of elasticity. The proposed model 
of orthotropic composite material corresponds to known experimental studies epoxy phenolic fiberglass on the cord 
glass fiber. The distribution probabilities density of defect orientation takes into account their predominant orienta-
tion in the direction of reinforcement. On the basis of the obtained composite failure loading integral probability 
distribution function, the construction and study of the dependence of the plate failure probability diagrams for 
different number of cracks, structural inhomogeneity and type of applied loading was carried out.

Complex application of the composite materials fracture mechanics deterministic solution and the methods of 
probability theory and mathematical statistics allows for a more adequate assessment of the composite materials 
reliability, taking into account the stochasticity of their structure.

The main content of this work is the construction and analysis of dependence of stochastically defective rein-
forced composite materials failure probability diagrams.

The obtained results make it possible to evaluate the reliability of orthotropic stochastically defective materials 
under conditions of plane deformation.

The algorithm of a compatible combination of defectiveness and randomness of the orthotropic composite 
material structure makes it possible to qualitatively investigate its failure under various types of applied loading.
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1.  Introduction

Composite materials, in particular orthotropic, are an 
important component in the design of structural materials. 
When assessing their strength, an important factor is taking 
into account the randomness and stochasticity (certain pro
bability distribution) of the structure. Therefore, for a  more 
adequate display of their strength properties and reliability, 
there is a need for the complex application of known deter-
ministic solutions of the composite materials fracture mechanics 
and probabilistic statistical methods. Such complex applica-
tion can be traced in the articles of a number of authors.

In the article [1], the composite laminated plates failure 
under random loading conditions was investigated using the 
layer-wise plate theory and a number of analytical solutions 

based on the Kirchhoff-Lave plate theory were written. In 
paper  [2], an analysis of the probability of failure of the 
composite material microstructure is carried out, taking into 
account the strength of the components and the random 
nature of the elastic properties. A conclusion was drawn on 
the study of the dependence of the microscopic probability 
of failure of the composite material on the microscopic 
random variable structure. The work  [3] considered the 
failure of laminated composite plates under the conditions 
of uniaxial and biaxial loadings. The stochastic method of 
finite elements is used in the study of random failure, which 
is based on the complex application of the perturbation 
method and the theory of shear deformation. In  [4], the 
types of uncertain parameters, properties and geometry of the 
composite plate material are considered as random variables.  
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An analysis of plate reliability was carried out using Monte 
Carlo simulation. In  [5], the expediency of taking into 
account the effects of the sequence of loadings when as-
sessing the reliability of structure orthotropic composite 
elements under fatigue conditions is substantiated. The 
effect of initial damage on the reliability of such elements 
was investigated. A study of the change in the stress state 
and the failure of a symmetrical laminated plate were car-
ried out  [6]. The plate contains elliptical cutouts and is 
under conditions of flat tensile loading.

A complex combination of probabilistic statistical methods 
and deterministic solutions of composite materials fracture 
mechanics is an urgent task. Thus, the object of the research 
is construction of an algorithm for assessing the reliability of 
a stochastically defective orthotropic composite plate under 
different conditions of the applied loading (conditions of 
plane deformation).

The aim of this study is to extension of the methodo
logy for assessing the reliability of stochastically defective 
materials to orthotropic composite materials with the pre-
dominant orientation of defects-cracks in the direction of 
reinforcement under complex stress conditions. The study 
is based on the deterministic failure criterion, expressed 
through macro stress components. An analysis of the effect 
of heterogeneity, size  (number of cracks) and type of ap-
plied loading on the probability of failure (reliability) of the 
composite plate was carried out. This will make it possible 
to more adequately evaluate the mechanism of composite 
materials failure, taking into account the randomness and 
defectiveness of their structure.

2.  Materials and Methods

Consider a plate made of composite material, which 
consists of a matrix and reinforcing elements (Fig. 1). Such 
a material will be considered orthotropic in terms of elastic 
properties. Under the action of a uniformly distributed 
loading, the plate is in plane deformation conditions. The 
main orthotropic directions of the material coincide with 
the directions of the action loading P and Q = ηP.

 
Fig. 1. Model of a stochastically defective reinforced plate

The structure of the material is characterized by de-
fectiveness of various scales, that is, uniformly distributed  
N defects-cracks that do not interact with each other. The 
parameters of the defects are considered the half-length 
and the angle between their line and the axis of orthot-

ropy ox1. These parameters are statistically independent 
random variables. For physical reasons, let’s consider the 
most likely cracks orientation in the direction of the axis 
ox1 with a higher Young’s modulus E1 of the material, that 
is, in the direction of reinforcement.

For such a case of crack orientation, let’s choose the dis
tribution probability density according to the results of  [7]:

f
E

E
( )

( sin cos )
, .

/

α
λ

π λ α α
λ=

+
= >

3 2

3 2 2

1

2
1 	 (1)

The proposed model of the orthotropic composite mate-
rial corresponds to experimental studies of epoxy phenolic 
fiberglass on the cord glass fiber carried out [8], for which 
the ratio of Young’s moduli λ = 3.2.

Let’s assume that the random half-length of cracks 
can take arbitrary values ( ).0 ≤ < ∞l  The assumption that 
the maximum crack size is unlimited simplifies material 
modeling and mathematical calculations, but it makes it 
possible to obtain quite simply a number of results that 
adequately reflect reality. This assumption is accepted in 
a number of works, as indicated in  [9].

Let’s enter a random variable L = ρ1/l (ρ1 is fixed, the 
size of the structural element), Fig.  1  [10]. The value ρ1 
is small compared to the crack half-length.

In paper [7], the probability distribution density of a ran-
dom variable L was chosen in the form of a power distribution:
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Distribution (2) is a two-parameter statistical model for 
random variables that vary in the range from zero to infinity.

In this study, let’s choose the distribution probability 
density of a random variable L in the form of a beta dis-
tribution  [11]. The beta distribution is a statistical model 
for random variables whose values are bounded by a finite 
interval. The density of this distribution:
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With j = 1 and β = + ≥r r1 0( ) from expression (3), let’s 
obtain a partial case – a distribution with a constant or 
monotonically decreasing probability density:
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According to the expression (4), the integral probabi
lity distributions function:
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The mean value and dispersion of a random variable 
with distribution (4) have the form:
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The nature of law (4) is reflected in the parameter r. With 
r > 0, a decreasing beta distribution describes random variables 
whose probability of meeting decreases as it increases. At larger 
value r > 0, the lower the probability of meeting random values 
that is close to the largest value d and the greater the pro
bability of meeting small values of the random value (Fig. 2).  
Formula (4) is confirmed by experimental data  [12].

 
Fig. 2. Beta distribution with a constant or monotonically decreasing 

probability density

The distribution probability density of the random variable 
L, as the inverse of l is chosen in the form of a decreasing 
beta distribution (4):
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According to (5), the integral probability distributions 
function of a random variable L:
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The mean value and dispersion according to (6) will 
be written as follows:
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Joint probability distribution density of statistically in-
dependent random variables α and L according to (1), (7) 
has the form:
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Graphs of the joint probability distribution density 
f(α,  L) for L = 0.1, λ = 3.2 (9) are shown in Fig.  3.

 
Fig. 3. Joint probability distribution density f (α, L)  

for different parameter values r

The joint probability distribution density f(α, L) curves 
are symmetric with respect to the ordinate axis. When the 
value r changes, the shape of the curve of joint probability 
distribution density does not undergo significant changes.

3.  Results and Discussion

3.1.  The failure loading integral probability distribution 
function. Let’s use the hypothesis of the weakest link, which 
for the case of the statistical theory of strength sounds like 
this: the limited (failure) loading for an orthotropic com-
posite plate is equal to the limited loading for its weakest 
element. Let’s consider a plate that contains N defects as  
a random sample of the volume N from the general popula-
tion of the material primary elements.

In accordance with the proposed in  [9] algorithm, the 
failure loading integral probability distribution function for 
a plate element with one crack is defined as follows:
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By substituting expressions (1) and (8) into formula (10),  
let’s obtain:
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where the function L P( , , )η α  is determined from the failure 
criterion expressed in terms of macro stress components [7]:
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where σcr  is the strength of the composite, macroscopic 
stresses [ ]σij  were obtained in paper [10] and, in particular, 
recorded in [7].

3.2.  Probability of failure of an orthotropic compos-
ite plate. Under a fixed loading P and Q in accordance 
with (11), (12), the probability of failure of an ortho-
tropic composite plate under biaxial tension-compression 
according to the methodology  [9] is determined by the 
following expression:
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Formula (13) makes it possible to calculate the depen-
dence of the probability of failure Pf of the investigated plate 
on different types of loading (parameter η), for different 
number of cracks N (different sizes of the plate) and diffe
rent structural inhomogeneity of the material (parameter r).  
Fig.  4–6 show the corresponding diagrams (solid for η = 0, 
dashed for η = 1, dotted dashed for η = –1).

In Fig. 4, diagrams of the dependence of the probability 
of failure on the dimensionless loading P crσ  for different 
types of loading cases are constructed. Curves are plotted 
for different number of cracks.

Fig.  5 shows the dependence of the plate probability 
of failure at a given loading P crσ = 0 4.  on the number of 
cracks and different structural inhomogeneity of the material.

Fig.  6 shows the effect on the probability of failure 
of the structural material inhomogeneity and the type of 
applied loading at fixed dimensions of the plate (N = 80).
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In Fig.  4, let’s observe a certain loading range, which 
corresponds to a low probability of failure. Under a fixed 
loading, an increase in the number of defects leads to an 
increase in the probability of failure, which depends on 
the type of stress state (from η).

According to Fig. 5, at each loading level 
and material structural inhomogeneity corre-
sponds to a range of composite sizes, at which 
the probability of its failure increases (a certain 
scale threshold of the probability of failure).

For a fixed loading with an increase in the 
parameter r (the structure of the material goes to 
the homogeneous) let’s obtain the pattern of de-
creasing the probability of failure (Fig. 6). This 
pattern depends on the type of stressed state.

The proposed algorithm for assessing the 
reliability of orthotropic composite plates is 
of practical importance in the use of sto-
chastic modeling and statistical description 
of random variables affecting the process of 
structural materials failure.

A limitation of this study is the flat model 
of the orthotropic composite material. There-
fore, the construction of a spatial model for 
assessing the reliability of composite materials 
opens up new possibilities in the combination of 
deterministic solutions of the failure materials 
mechanics with research using probabilistic 
and statistical methods.

Conducting research under martial law 
was affected by frequent power outages and, 
accordingly, the absence of the Internet.

4.  Conclusions

The obtained distribution function of 
failure loading F1(P,  η) under a fixed load-
ing determines the orthotropic composite 
materials probability of failure.

The composite probability of failure Pf 
depends on the type of the number of de-
fects in plate (dimensions of the composite), 
the structural inhomogeneity of the material 
and type of applied loading. There are certain 
intervals of the composite dimensions and ap-
plied loading, in which let’s observe a signifi-
cant increase in the probability of failure Pf.

The highest reliability of the investigated 
material is observed for equal biaxial tension, 
the smallest for tension-compression. This 
regularity can be explained by the influence 
of the orthotropy of the plate material. In 
the study, it is proposed to consider the pre-
dominance of the defects orientation of in the 
direction of reinforcement in accordance with 
the physical meaning of law (1). Therefore, 
with equal biaxial tension, the action of the 
loading Q causes the closing of cracks, that 
is, an increase in the strength of the material 
and, accordingly, its reliability.

Similar statistical patterns were observed 
in [7] when choosing a probability distribu-
tion density of a random variable L in the 
power distribution form.
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Fig. 4. Probability of failure for various types of stress state

 
Fig. 6. Probability of failure for different material structural inhomogeneity

 
Fig. 5. Probability of failure for the given loading



INDUSTRIAL AND TECHNOLOGY SYSTEMS:
MATERIALS SCIENCE

18 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 2/1(70), 2023

ISSN 2664-9969

authorship or otherwise, that could affect the research and  
its results presented in this paper.

Financing

The study was performed without financial support.

Data availability

The manuscript has no associated data.

References

1.	 Onkar, A. K., Upadhyay, C. S., Yadav, D. (2007). Probabilis-
tic failure of laminated composite plates using the stochastic 
finite element method. Composite Structures, 77 (1), 79–91. 
doi: https://doi.org/10.1016/j.compstruct.2005.06.006

2.	 Sakata, S., Ashida, F., Enya, K. (2012). A Microscopic failure 
probability analysis of a unidirectional fiber reinforced com-
posite material via a multiscale stochastic stress analysis for 
a microscopic random variation of an elastic property. Com-
putational Materials Science, 62, 35–46. doi: https://doi.org/ 
10.1016/j.commatsci.2012.05.008

3.	 Gadade, A. M., Lal, A., Singh, B. (2016). Stochastic progres-
sive failure analysis of laminated composite plates using Puck’s 
failure criteria. Mechanics of Advanced Materials and Structures, 
739–757. doi: https://doi.org/10.1080/15376494.2015.1029163

4.	 Saberi, S., Abdollahi, A., Inam, F. (2021). Reliability analysis 
of bistable composite laminates. AIMS Materials Science, 8 (1), 
29–41. doi: https://doi.org/10.3934/matersci.2021003

5.	 Xu, J.-H., Zhou, G.-D., Zhu, T.-Y. (2021). Fatigue Reliability 
Assessment for Orthotropic Steel Bridge Decks Considering 

	 Load Sequence Effects. Frontiers in Materials, 8. doi: https://
doi.org/10.3389/fmats.2021.678855

6.	 Magar, A., Lal, A. (2021). Progressive failure analysis of lami-
nated plate containing elliptical cutout. International Journal 
of Structural Integrity, 12 (4), 569–588. doi: https://doi.org/ 
10.1108/ijsi-10-2020-0092

7.	 Baitsar, R., Kvit, R. (2018). Method of the reliability calcula-
tion of orthotropic composite materials with random defects. 
ScienceRise, 10 (51), 28–32. doi: https://doi.org/10.15587/2313-
8416.2018.146636

8.	 Serensen, S. V., Zaitcev, G. P. (1982). Nesushchaia sposobnost 
tonkostennykh konstruktcii iz armirovannykh plastikov s defektami. 
Kyiv: Naukova dumka, 295.

9.	 Vitvitckii, P. M., Popina, S. Iu. (1980). Prochnost i kriterii 
khrupkogo razrusheniia stokhasticheski defektnykh tel. Kyiv: 
Naukova dumka, 186.

10.	 Deliavsky, M., Kvit, R. (1992). Macro-stress distribution near 
crack-like defects in anisotropic micro-inhomogeneous body 
under flat deformation and longitudinal displacement. Physico
chemical Mechanics of Materials, 2, 50–54.

11.	 Koroliuk, V. S., Portenko, N. I., Skorokhod, A. V., Turbin, A. F.  
(1985). Spravochnik po teorii veroiatnostei i matematicheskoi 
statistike. Moscow: Nauka, 640.

12.	 Cheng, A. S., Laird, C. (1981). Fatigue life behaviour of copper 
single crystals. Part II: Model for crack nucleation in persistent 
slip bands. Fatigue & Fracture of Engineering Materials & Struc-
tures, 4, 343–353. doi: https://doi.org/10.1111/j.1460-2695.1981.
tb01131.x 

Roman Kvit, PhD, Associate Professor, Department of Mathematics, 

Lviv Polytechnic National University, Lviv, Ukraine, ORCID: https://

orcid.org/0000-0002-2232-8678, e-mail: roman.i.kvit@lpnu.ua


