
INFORMATION TECHNOLOGIES

6 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(71), 2023

UDC 004.42
DOI: 10.15587/2706-5448.2023.284518

PERFORMANCE EVALUATION OF
LU MATRIX DECOMPOSITION USING
THE SYCL STANDARD

The object of this study is the performance of the SYCL standard tools when solving the LU matrix decompo-
sition problem. SYCL is a fairly new technology for parallel computing in heterogeneous systems, so the topic of
evaluating the performance of the standard on specific tasks in the field of parallel computing is relevant. In the
study, the algorithm of parallelized LU decomposition of a square matrix was implemented by means of the SYCL
standard and standard C++, and an experiment was conducted to test the implementation in a heterogeneous
system with several types of processors. During testing, the program received square matrices of various dimen-
sions as input, and the output was the execution time of the LU schedule on the selected processor. The obtained
results, presented in the form of tabular and graphic data, show the advantage of the implementation of the SYCL
standard over ordinary C++ by more than 2 times when using a graphics processor. It was experimentally shown
that the implementation on SYCL is almost not inferior in speed to the implementation on ordinary C++ when
executed on a central processor. Such results are caused both by the high possibility of parallelizing the LU schedule
algorithm itself, and by the great work of the developers of the standard on its optimization.

The obtained results indicate the possibility of speeding up the solution of the LU decomposition of the matrix
and similar algorithms by means of SYCL when using heterogeneous systems with processors optimized for data
parallelism. The results of the study can be used in justifying the choice of technology for solving LU matrix de-
composition problems or problems with a similar parallelization scheme.

Keywords: SYCL standard tools, parallel computing, LU decomposition, SYCL performance, numerical methods.

Dmytro Nasikan,
Vadym Yaremenko

© The Author(s) 2023

This is an open access article

under the Creative Commons CC BY license

How to cite

Nasikan, D., Yaremenko, V. (2023). Performance evaluation of LU matrix decomposition using the SYCL standard. Technology Audit and Production

Reserves, 3 (2 (71)), 6–9. doi: https://doi.org/10.15587/2706-5448.2023.284518

Received date: 02.05.2023

Accepted date: 12.06.2023

Published date: 30.06.2023

1.  Introduction

The SYCL standard is beginning to gain more and more
attention from both application developers and researchers [1].
Regardless, SYCL is a relatively new standard of parallelizing
and hardware-accelerating C++ applications on heterogeneous
systems. Questions often arise regarding the niche and op-
timality of using the standard to solve certain classes of
problems in the field of parallel computing, one of which
is the LU decomposition of a matrix.

Existing literature and research on this topic do not ad-
dress the topic of evaluating the performance of LU schedul-
ing using SYCL. For example, this problem solving was not
included to the «SYCL-bench» test suite [2]. Also, similar
studies have been conducted for other technologies, such
as OpenCL, CUDA or HIP [3–5]. Despite the presence
of a certain relations with them, the results of these works
cannot be extended to SYCL. Given this situation, it can
be considered that the research topic is relevant.

The aim of this research is to implement the LU matrix de-
composition algorithm using SYCL to evaluate its effectiveness
on different backends in comparison with the classical parallel
implementation. This will help to make a more thorough choice
of technologies for solving problems in the future and will pro-
vide an implementation example of the algorithm using SYCL.

2.  Materials and Methods

In this study the performance of the LU decomposi-
tion of the matrix using the SYCL standard for parallel
computing in heterogeneous systems is evaluated.

As is known from the basic course of matrix algebra,
any non-degenerate square matrix A can be represented as
the product of two triangular matrices L and U, where the
matrix L is lower triangular, and the matrix U is upper
triangular. At the same time, the dimensions of the matrices
L and U coincide with the dimension of the matrix A [6]:

A L U .= ⋅ 	 (1)

Therefore, the goal of the LU decomposition problem
is to find the matrices L and U. Classical algorithms for
finding the LU decomposition of a matrix are based on
the well-known Gaussian method or are its partial modi-
fications [7].

For example, in the algorithm that uses elementary
transformations of matrix rows, the decomposition matrices
are found according to recurrence formulas (2) and (3) [8]:

U A L U j nsi si sk sj
k

s

= − ⋅ =
=

−

∑ , ;, 1
1

1

	 (2)

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

7TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(71), 2023

ISSN 2664-9969

L A L U j s nis is ik ks
k

s

= − ⋅ = +
=

−

∑ , ., 1
1

1

	 (3)

In this work, two parallelized algorithms were used
to find the LU decomposition of the matrix. The first
algorithm, the pseudocode of which is described on the
snippet 1, is a classic implementation of a general algo-
rithm for parallel execution on a computer. This imple-
mentation involves the parallel computation of each row
of the matrix A during its decomposition in parallel [9].

LU Decomposition (A):
n=number of rows in matrix A
Let L be an n × n lower triangular matrix initialized
as identity matrix
Let U be an n × n upper triangular matrix initialized
as zero matrix

for k=1 to n:
U[k][k]=A[k][k]
for i=k+1 to n:
L[i][k]=A[i][k]/U[k][k]
U[k][i]=A[k][i]

parallel for j=k+1 to n:
A[i][j]=A[i][j]–L[i][k]·U[k][j]

return L, U

Snippet 1: classic parallel LU decomposition
algorithm pseudocode [9].

The second algorithm is a slightly modified variation
of the first one and allows using massive parallelism and
the SIMD architecture of hardware accelerator cores.

LU Decomposition (A):
n=number of rows in matrix A
Let L be an n × n lower triangular matrix initialized
as identity matrix
Let U be an n × n upper triangular matrix initialized
as zero matrix

for k=1 to n:
U[k][k]=A[k][k]

parallel for i=k+1 to n:
L[i][k]=A[i][k]/U[k][k]
U[k][i]=A[k][i]

parallel for i=k+1 to n:
parallel for j=k+1 to n:
A[i][j]=A[i][j]–L[i][k]·U[k][j]

return L, U

Snippet 2: data-parallel LU decomposition algorithm
pseudocode [9].

By separating the operations of finding the elements
of matrices L and U and calculating the next state of
the matrix in different cycles, it is possible to speed up
the execution of the algorithm on certain hardware ac-
celerators that have light SIMD cores [9].

During the practical part of the work, both algorithms were
implemented in the C++ programming language. The first algo-
rithm was implemented using standard C++11 threading tools.
The second was implemented using SYCL 2020 rev. 3 [10].

The following software infrastructure was used to con-
duct the experiment:

–	 C++11;
–	 gcc;
–	 SYCL ComputeCpp-2.11.0;
–	 SYCL DPC++2023.1.0.
The following backends were used to execute the se

cond algorithm:
–	 OpenCL NVIDIA CUDA 11.8 backend;
–	 OpenCL Intel backend;
–	 NVIDIA CUDA 11.8 backend.
The experiment was conducted on a heterogeneous

system with the following configuration:
–	 CPU – x86_64 11th Gen Intel(R) Core(TM) i5-
11400H @ 2.70GHz;
–	 GPU – NVIDIA GeForce RTX 3050 To Laptop GPU;
–	 RAM – 16GB;
–	 OS – Manjaro Linux, kernel – 5.15.108-1-MANJARO.
During the experiment, the algorithms were using the

heterogeneous system and software tools listed above. Dur-
ing execution, each of the programs received as input
a square matrix A of different dimensions and its LU
decomposition was found. The time taken to perform was
measured for further analysis.

3.  Results and Discussion

The result of the study is the time evaluation of the
implemented algorithms for matrices of different dimen-
sions on each of the platforms. These results are presented
in the Table 1.

As it is mentioned, 15 tests were performed for each
platform with an initial matrix size of 1000×1000 and a step
of 1000. At the same time, the minimum number of elements
is 1 million, and the maximum is 225 million. Execution time
varied from a few tens of milliseconds to 20 minutes. For
clarity, the results were presented graphically in the Fig. 1.

The graph in Fig. 1 illustrates the dependence of exe
cution time on the number of matrix elements. As can be
seen, when executed on a central processor (CPU) both
using the SYCL standard and the usual C++11 paral-
lelization tools give almost the same result. This is not
surprising, since the tested processor has 12 physical cores,
which during testing are 100 % occupied with useful work.

As expected, the NVIDIA GPU execution using DPC++’s
Native CUDA backend performed the best, outperforming
the CPU execution by almost a factor of two.

However, ComputeCpp’s OpenCL CUDA driver has
the worst performance, averaging 1/3 times the execution
time on a CPU. Such results are explained by serious
gaps in driver optimization – its support was stopped
several years ago.

In general, analyzing the obtained data, it can be con-
cluded that the use of the SYCL standard to solve the
LU decomposition problem can increase the performance
of the solution when performed in a heterogeneous system,
if it has hardware accelerators that support massive paral-
lelism in the data parallelism paradigm. However, when
executed on the central processor, both implementations
show approximately the same speed.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

8 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(71), 2023

ISSN 2664-9969

The results of a practical experiment and its analysis
can be practically used when choosing a technology at
the stage of planning a software tool for solving problems
of a similar class that require high parallelization. Also,
developments in the form of adaptation of the algorithm
and its implementation by means of SYCL in the form of
raw code can be used for integration into existing systems.

The limitations of this study are testing the imple-
mentation of the algorithms on one heterogeneous system.
Additional testing on a larger number of hardware accele
rators would allow for a more objective assessment of the
results and form a list of platforms on which execution
will provide a guaranteed acceleration.

Also, the conditions of martial law in Ukraine have
a certain negative influence on this research. Thus, dur-
ing the experimental part of the research, problems arose

in while trying to use the GPU hardware of the
university department – certain parts of the func-
tionality are temporarily unavailable for use due to
the difficulties of their maintenance in the conditions
of martial law. That’s why the testing is done using
our personal computers.

4.  Conclusions

In this work, the performance of the SYCL standard
tools for solving the matrix LU decomposition problem
was investigated. During the study, the implementa-
tion of the algorithm on SYCL was implemented and
its execution was tested on several heterogeneous
systems. The results were also compared with the
classic C++11 implementation. As a result of the
research, it can be concluded that using SYCL to
solve the LU decomposition problem can speed up
execution by more than two times, when selecting
a heterogeneous system containing suitable hardware
accelerators.

It is possible to suggest the extension of this rule to
other tasks similar to the LU decomposition, from the
point of view of the organization of the parallel part.
However, this assumption needs further verification, which
is beyond the scope of this work.

Conflict of interest

The authors declare that they have no conflict of inte
rest in relation to this research, whether financial, personal,
authorship or otherwise, that could affect the research and
its results presented in this paper.

Financing

The research was performed without financial support.

Table 1
LU decomposition benchmark results

Matrix
dimension

Number
of elements

Processing time

ComputeCpp OpenCL CUDA
Nvidia 3050 Ti, с

ComputeCpp OpenCL Intel
Core i5-11400H, с

Native C++ threading
(12 threads), с

DPC++
CUDA Nvidia 3050 Ti, с

1000 1.00E+06 0.287 0.115 0.398 0.095

2000 4.00E+06 2.941 0.798 2.482 0.926

3000 9.00E+06 9.26 3.891 7.472 3.314

4000 1.60E+07 21.186 10.528 16.197 8.104

5000 2.50E+07 40.256 20.868 30.684 16.188

6000 3.60E+07 69.839 36.975 52.407 28.145

7000 4.90E+07 107.531 59.728 81.326 45.181

8000 6.40E+07 157.045 90.011 127.99 67.18

9000 8.10E+07 225.308 140.701 170.823 96.204

10000 1.00E+08 303.839 207.852 232.319 132.295

11000 1.21E+08 402.758 287.888 308.394 175.12

12000 1.44E+08 513.328 383.379 399.074 226.099

13000 1.69E+08 659.079 497.839 504.891 287.8

14000 1.96E+08 825.754 631.822 629.679 359.183

15000 2.25E+08 997.38 783.543 772.416 438.459

Fig. 1. LU decomposition benchmark graphical results

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

9TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(71), 2023

ISSN 2664-9969

Data availability

The manuscript has no associated data.

References

1.	 Alpay, A., Heuveline, V. (2020). SYCL beyond OpenCL: The
architecture, current state and future direction of hipSYCL. Pro-
ceedings of the International Workshop on OpenCL. doi: https://
doi.org/10.1145/3388333.3388658

2.	 Lal, S., Alpay, A., Salzmann, P., Cosenza, B., Hirsch, A., Stawi
noga, N. et al. (2020). SYCL-Bench: A Versatile Cross-Platform
Benchmark Suite for Heterogeneous Computing. Lecture Notes
in Computer Science. Cham: Springer, 629–644. doi: https://
doi.org/10.1007/978-3-030-57675-2_39

3.	 Diop, T., Gurfinkel, S., Anderson, J., Jerger, N. E. (2013).
DistCL: A Framework for the Distributed Execution of OpenCL
Kernels. 2013 IEEE 21st International Symposium on Modelling,
Analysis and Simulation of Computer and Telecommunication
Systems, 556–566. doi: https://doi.org/10.1109/mascots.2013.77

4.	 Ozcan, C., Sen, B. (2012). Investigation of the performance
of LU decomposition method using CUDA. Procedia Techno
logy, 1, 50–54. doi: https://doi.org/10.1016/j.protcy.2012.02.011

5.	 Ghysels, P., Synk, R. (2022). High performance sparse multi
frontal solvers on modern GPUs. Parallel Computing, 110, 102897.
doi: https://doi.org/10.1016/j.parco.2022.102897

6.	 Mittal, R. C., Al-Kurdi, A. (2002). LU-decomposition and
numerical structure for solving large sparse nonsymmetric linear

	 systems. Computers & Mathematics with Applications, 43 (1-2),
131–155. doi: https://doi.org/10.1016/s0898-1221(01)00279-6

7.	 Lambers, J. (2021). «The LU Decomposition» in MAT 610 –
Numerical Linear Algebra, Sec. 3.2. Available at: https://www.
math.usm.edu/lambers/mat610/class0125.pdf

8.	 Yang, A., Liu, C., Chang, J., Guo, X. (2020). Research on
Parallel LU Decomposition Method and its Application in
Circle Transportation. Journal of Software, 5, 1250–1255.
doi: https://doi.org/10.4304/jsw.5.11.1250-1255

9.	 Peng, S., Tan, S. X.-D. (2020). GLU3.0: Fast GPU-based Paral-
lel Sparse LU Factorization for Circuit Simulation. IEEE De-
sign & Test, 37 (3), 78–90. doi: https://doi.org/10.1109/
mdat.2020.2974910

10.	 SYCL Working Group, «SYCL™ 2020 Specification (revision 7)»
(2023). The Khronos Group. Available at: https://registry.
khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

Dmytro Nasikan, Department of System Design, National Technical
University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»,
Kyiv, Ukraine, ORCID: https://orcid.org/0009-0007-1840-4344

*Vadym Yaremenko, Postgraduate Student, Assistant, Depart-
ment of System Design, National Technical University of Ukraine
«Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine, e-mail:
yaremenko.v.s@gmail.com, ORCID: https://orcid.org/0000-0001-
8557-6938

*Corresponding author

