
INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

11TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(73), 2023

ISSN 2664-9969

UDC 004.7
DOI: 10.15587/2706-5448.2023.290127

DEVELOPMENT OF FLOATING POINT
OPERATING DEVICES

The paper shows a well-known approach to the construction of cores in multi-core microprocessors, which is
based on the application of a data flow graph-driven calculation model. The architecture of such kernels is based
on the application of the reduced instruction set level data flow model proposed by Yale Patt. The object of research
is a model of calculations based on data flow management in a multi-core microprocessor.

The results of the floating-point multiplier development that can be dynamically reconfigured to handle five
different formats of floating-point operands and an approach to the construction of an operating device for
addition-subtraction of a sequence of floating-point numbers are presented, for which the law of associativity is
fulfilled without additional programming complications. On the basis of the developed circuit of the floating-point
multiplier, it is possible to implement various variants of the high-speed multiplier with both fixed and floating
points, which may find commercial application. By adding memory elements to each of the multiplier segments,
it is possible to get options for building very fast pipeline multipliers. The multiplier scheme has a limitation: the
exponent is not evaluated for denormalized operands, but the standard for floating-point arithmetic does not
require that denormalized operands be handled. In such cases, the multiplier packs infinity as the result.

The implementation of an inter-core operating device of a floating-point adder-subtractor can be considered
as a new approach to the practical solution of dynamic planning tasks when performing addition-subtraction
operations within the framework of a multi-core microprocessor. The limitations of its implementation are related
to the large amount of hardware costs required for implementation. To assess this complexity, an assessment of
the value of the bits of its main blocks for various formats of representing floating-point numbers, in accordance
with the floating-point standard, was carried out.

Keywords: floating-point multiplier, superscalar processor, associativity law, Baugh-Wooley algorithm, CISC-RISC.

Georgi Luсkij,
Oleksandr Dolholenko

© The Author(s) 2023

This is an open access article

under the Creative Commons CC BY license

How to cite

Luсkij, G., Dolholenko, O. (2023). Development of floating point operating devices. Technology Audit and Production Reserves, 5 (2 (73)), 11–17.

doi: https://doi.org/10.15587/2706-5448.2023.290127

Received date: 06.09.2023

Accepted date: 30.10.2023

Published date: 31.10.2023

1.  Introduction

When building the cores of most modern microproces-
sors with the x86-64 architecture, the OoOE (Out-of-Order
Execution) technology is used, which is based on the imple-
mentation of restricted data flow architecture (Restricted
Data Flow (RDF)) [1, 2]. Such microprocessors are called
superscalar microprocessors [3], or microprocessors with
CISC-RISC architecture («CISC-outside RISC-inside»). As
CISC – Complex Instruction Set Computing, let’s consider
a set of instructions in the x86-64 architecture. The term
RISC – Reduced instruction set computing means a shortened
set of commands implemented by a set of microprocessor
operating devices. Instead of RISC, microprocessor develo
pers use the names: uop, micro-ops, µops, or similar terms.

During the operation of the cores of such micropro-
cessors, a certain number of CISC commands of the cur-
rently active command flow are simultaneously decoded
into a set of RISC operations. The planning of execution
of RISC operations is carried out in accordance with the
RDF architecture, based on the readiness for execution
of operands of RISC operations. Before the RISC opera-
tions become ready for execution, they are placed in the
cells of the reservation station [4–7]. A RISC operation

that has reached the ready state can be transferred from
the backup station cell to a free operating device that
can execute it. Thus, dynamic parallelism at the level of
RISC operations is organized in modern microprocessors.

When forming streams of CISC commands operating
with floating-point operands, both programmers and de-
velopers of optimizing compilers have to take into account
the peculiarities of the implementation of floating-point
arithmetic [8]. As a result of these features, for example,
standard mathematical laws, such as commutative and as-
sociative [9], are not fulfilled for floating-point arithmetic,
and it is not difficult to conduct them so poorly that the
calculated answers consist almost entirely of «noise» [10].

So, for example, the operations of multiplication and divi-
sion do not greatly increase the relative error, but the subtrac-
tion of almost equal quantities can significantly increase it.
One of the consequences of the possible unreliability of the
floating-point addition-subtraction operation is the violation
of the associativity law: (u+v)+w ≠ u+(v+w) for some u, v, w.
The law of distributivity connecting operations × and +
may also be violated: u×(v+w) ≠ (u×v)+(u×w). Even memos
for programmers containing recommendations for organizing
calculations to reduce errors have been developed [11].
So, for example, if it is necessary to add-subtract a long

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

12 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(73), 2023

ISSN 2664-9969

sequence of numbers [11], it is possible to sort them and
perform operations starting with the smallest numbers.

The analysis of such a note shows that it is often difficult
for a programmer to follow such rules, for example, due to
ignorance of the possible values of variables before the start
of the program, due to the need to pre-sort numbers by
size, due to the need for routine conversion of formulas, etc.
The execution of such rules is not done by a programmer,
and the compiler at the stages of preparing calculations for
execution are also complicated, due to the same reasons.
In addition, the enforcement of these rules, for example,
changing the order of submission of operands, creates dif-
ficulties for the implementation of parallel calculations.

To reduce the error of adding-subtracting a long se-
quence of floating-point numbers, without performing their
preliminary sorting, the Kahan algorithm, also known as
compensatory summation, is used [12]. Error reduction is
achieved by introducing an additional variable to store the
increasing amount of errors. With compensatory summa-
tion, the worst-case error does not depend on the number
of operands, so a large number of operand values can be
summed with an error that depends only on the precision
of the floating-point number representation format. But
according to this algorithm, each operation of addition-
subtraction of the next operand of the sequence to the
intermediate sum is transformed into 4 operations of the
type of addition-subtraction and 4 operations of assignment.

The aim of research is to develop a high-speed operat-
ing device of a multiplier for each microprocessor core
and an inter-core adder-subtractor with a floating point,
which can be used for dynamic branching of work, at the
level of RISC operations, both universal and specialized
multi-core superscalar microprocessors and at the same
time, without additional software complications, will ensure
the fulfillment of commutativity and associativity laws.

2.  Materials and Methods

The object of research is a model of calculations based
on data flow management in a multi-core microprocessor.

Fixed-point arithmetic is poorly suited for many engi-
neering and scientific calculations. To provide a dynamic
range of representation of real numbers (without the need
to scale operands), a representation of a number in the
form of a floating point is used.

The number of integers is infinite, but it is always
possible to choose such a number of bits to represent any
integer that arises when solving a particular problem. The
set of real numbers is not only infinite, but also continuous,
so no matter how many bits it takes, let’s inevitably en-
counter numbers that do not have an exact representation.
Floating-point numbers are one of the possible ways of
representing real numbers, which is a compromise between
precision and the range of accepted values.

Ensuring the fulfillment of the associativity law for the
addition-subtraction operation on a sequence of floating-
point numbers without additional programming compli-
cations is possible if the calculation of all intermediate
results is performed without losing significant bits.

Below are described the functional circuits of the
floating-point multiplier and adder-subtractor for various
formats of the representation of floating-point numbers
that do not require microprogram control elements in
their operation.

3.  Results and Discussion

3.1.  Floating point multiplier. In work [13], a configuration
library of nodes of the scheme from Fig. 1 when building
them on the basis of PLD (programmable logic device).

Fig. 1. Structural diagram of a floating-point multiplier

Fig. 1 shows the structural diagram of a floating-point
multiplier capable of processing all formats of floating-
point numbers provided by the standard [8]. There are
five such formats: half precision (SF) – 16 bits, single
precision (F) – 32 bits, double precision (DF) – 64 bits,
double extended precision (DEF) – 80 bits and quadruple
precision (QF) (128 digits).

Multiplication over floating-point operands c = axb is
reduced to the following operations:

(±fax2(ea+bias))x(±fbx2(eb+bias)) = ±faxfbx2(ea+eb+bias) = 

= ±fcx2(ec+bias).

Care must be taken when constructing a floating-point
multiplier to ensure correctness and prevent undue loss of
precision. In addition, handling of possible exceptions should
be implemented.

Unpacking includes extracting the sign of the significant,
as well as restoring the hidden MSB bit for each of the
operands. During unpacking, the formats of the operands
are also converted to the internal format of the computing
module (for example, to the quadruple precision format). The
unpacked operands are tested for the presence of exceptions
among them: 0, NaN, ±∞. If there are exceptions, the result
of operations is formed in the appropriate form [8] and sent
to the package, bypassing multiplication.

The previous exponent of the product is calculated by
adding the two shifted exponents of the operands and sub-
tracting from the resulting shift sum:

(ea+bias)+(eb+bias)–bias = (ea+eb)+bias = ec+bias.

The most difficult to implement in this scheme is the
matrix multiplier of the significants represented by the

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

13TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(73), 2023

ISSN 2664-9969

additional code. The Baugh-Wooley algorithm [14] was
used for its construction.

The Baugh-Wooley algorithm is currently the best of
the known algorithms because it increases the regularity of
the multiplier structure and is well suited for implementing
a matrix multiplier based on it [13].

Let’s consider in detail the principle of operation of the
Baugh-Wooley algorithm using the example of the imple-
mentation of the 5×5 multiplier (Fig. 2) [14].

Fig. 2. An example of the Baugh-Wooley algorithm

when implementing a 5×5 multiplier

The first 4 lines are partial products of the multiplier a
by the significant bits of the multiplier bj (j = 0, 1, 2, 3)
and are formed by four two-input AND elements (from one
significant bit of a and bit bj) and one two-input NAND
element (from the sign bit a and bit bj). The fifth line is
a partial product of the multiplier a
on the sign bit of the multiplier b4
and is formed by one AND (from
the sign bit a and bit b4) and four
NANDs (from one significant bit a
and bit b4).

The Baugh-Wooley algorithm needs
correction of the result. For this, when
multiplying n-bit operands, 1 should
be added to the digits of the formed
product with weights: 22n–1 and 2n.

According to the processed format,
the significant multiplication unit has
the ability to process significants (along
with the sign and hidden bits) of sizes:
12, 25, 54, 66 and 114 bits. The func-
tional scheme of such a significant mul-
tiplier is shown in Fig. 3.

Let’s consider the operation of the
scheme using the example of the sig-
nificant multiplication operation:

fc = fa×fb.

Reconfiguration of the significant
multiplier block to handle the desired
operand format is done by padding the
lower digits of the significants fa and fb
with zeros to the size of the significant in
the QF format. Thus, a 114×114 signifi-
cant multiplication is always performed
in the significant multiplier block. The
significants fa and fb supplemented to
the QF format must be fed to the inputs
of the significant multiplier block as
shown in the diagram of Fig. 3.

The significant multiplier scheme consists of 114×114 two-
input & elements, each of which calculates one digit of
intermediate products (some of these elements, according
to the Baugh-Wooley algorithm, are changed to NOT & ele
ments in Fig. 3). The digits of intermediate products
calculated in this way are summed using single-bit full
adders (FA-full adder in Fig. 3).

The product calculated by the Baugh-Wooley algorithm
needs correction [13]. In our case, the correction of the
product consists in the fact that «1» should be added to
the 0th and 113th digits of the product, as shown in Fig. 3.

At the final stage of multiplication of significants, the
spread of transfers is carried out in the upper half of
the calculated product. For this, carry-skip adders [15]
are used, which occupy an intermediate place between
carry-skip adders and carry-skip adders, both in terms
of speed and cost.

After multiplying two normalized significants, each of
which is in the range [1, 2), the significant of the result can
be in the range [1, 4). In this regard, its normalization may
require a shift by one digit to the right with an increase of
1 from the previous value of the exponent of the product.
After the first normalization, the 2(n+1) digit significant of
the product is truncated to n+3 digits.

When rounding the significant of the product fc, its
normalization may again be lost. At the same time |fc| may
be equal to 2 and its normalization may again need to be
shifted one bit to the right with an increase of ec+bias by 1.

Fig. 3. Functional diagram of the mantis multiplication unit

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

14 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(73), 2023

ISSN 2664-9969

To increase speed, it is possible to precalculate the
value of ec+bias increased by 1 at each normalization step
and choose its correct value after it is known whether an
offset is required after rounding. Due to the fact that the
multiplication of significants is the most complicated part
of floating-point multiplication, there is enough time for
such calculations. Also, rounding should not be a separate
step at the end of the operation. It can be combined with
the mantis reproduction apparatus.

3.2.  An inter-core floating-point adder-
subtractor operating device. Let’s consider
the possibility of building an inter-core ope
rational device (IOD) adding-subtracting
a sequence of floating-point numbers that
performs calculations of all intermediate
results without losing significant bits. For
this, at each step of the calculation, it per-
forms the following operation:

o = o ± x,

where x is the next operand of the sequence,
which, at each step of calculations, can be
accepted at the IOD inputs for processing; o is
an intermediate result of addition-subtraction
of a sequence of numbers. To increase the
accuracy, o in IOD will be calculated with
an accuracy limited only by the range of
the exponent change and the accuracy of
the representation of the significant of the
processed format [8]. At the beginning of the
calculation of a new sequence of numbers,
o will be set to zero. Simultaneously with
the calculation of the new value of o, its
previous value will be converted to the pro-
cessed number format with rounding to the
nearest [8] and output to the IOD outputs.

Let each floating-point number x have
the form at the IOD input, in accordance
with the standard [8]:

x = fx×2ex,

where fx – the n-digit normalized (1 ≤ | fx| < 2, at
x ≠ 0) fractional part of the number x (signifi-
cant); ex – the exponent of the number (a non-
negative integer from the interval [emax, 0]);
fx and ex are represented in direct binary.
A floating-point number has two signs: the
sign of the number (sign) is displayed by
a separate bit; the sign of the exponent is
reflected by the exponent bias (bias) [8].

The schematic solution for building IOD
floating-point addition/subtraction with in-
creased execution accuracy is shown in Fig. 4.
Its work is carried out as follows.

Submission of terms is carried out one by one per
cycle of operation of the IOD. So, on the i-th cycle of
operation, another term (number x) is applied to the
IOD inputs. At the same time, at control node 1, it is
converted from the processed format of floating-point
numbers [8] to the internal range of number processing r,
where r = emax+1+n and is the number of binary digits in

the representation of a fixed-point number. Namely, the
normalized significant term is applied to the input fx, the
exponent of the term is applied to the input ex, and the
sign of the term is applied to the input signx. With the
arrival of the leading edge of the clock pulse at the clock
input, data is written, respectively, in the significant RG fx,
exponent RG ex and control trigger Tg signx registers. At
the same time, if the number x is the starting operand of
a new sequence of numbers, the value of RG f0 is reset
to zero using the reset signal.

Using the MUX1 multiplexer and depending on the
value of signx, the inverted significant code fx is transferred
from the RG fx to the input of the key block with the
restoration of the hidden bit MSB [8] and signx. Depend-
ing on the value of the exponent ex, a signal is generated
at one of the outputs of the DC decoder, which ensures
the transmission of the input of the key block to the
first input of the adder ∑fo. As a result of this transfer,

Fig. 4. Functional diagram of a floating-point addition-subtraction

inter-core operating device (IOD)

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

15TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(73), 2023

ISSN 2664-9969

an arithmetic left shift of the inverted code fx is carried
out together with the MSB and signx on ex digits, and
all other lower digits of the first input of the adder ∑fo
are filled with the value of signx, which together with the
supply of signx also to the input of the transfer of the
lower digit ∑fo ensures the formation of the additional
code x reduced to the range r.

On the (i+1)-th cycle of IOD operation, the next term
of the calculated sequence can be accepted at its inputs.
At the same time, the result of the summation of the
previous term will be written into the RG fo register at
node 2 of the summation from the outputs ∑fo, and the
sign, exponent and significant of the partially normalized of
the previous value of o (from the summation of the term
that could be accepted at the IOD inputs in the (i–1)-th
cycle of its operation).

Thus, the MOP is a conveyor converter of informa-
tion consisting of three segments. At each cycle of IOD
operation, the next value of the number x of the per-
formed operation o = o+x can be accepted at its inputs,
in general, from different microprocessor cores (from the
core that captured the cycle of IOD operation). If one of
the cores needs to perform the operation o = o–x, then the
signx value applied to the IOD inputs must be changed
to the opposite.

Simultaneously with the summation on ∑fo of the
number x with the accumulated sum fo, which flows from
the RG fo register to the second input ∑fo through the
feedback circuit, an overflow signal is formed (as a sum
modulo 2 of the two higher digits ∑fo), which indicates
about the output of a new value fo from the range r.

Simultaneously with the formation of a new value of
fo, at node 3 of the formation of the result, the previous
accumulated amount of fo is transferred into an inter-
mediate representation in the form of a floating point
with a 2n-bit binary code of the significant of the result
foI in direct code and an m-bit value of the exponent
corresponding to the significant of foI. To do this, first,
the value fo from RG fo is converted into a direct code
using the MUX2 multiplexer and the CTR1 counter, and
signo is removed from its representation, which is written
to Tg signo in the next IOD operation cycle. Then, with
the help of group OR1 consisting of [(emax+n)/n]n input
elements «OR» (the oldest element in the group has
(emax+n)modn inputs) the input address to the permanent
ROM memory is formed (actually turns out to be the
largest non-zero group of binary bits in fo). At this ad-
dress, the value of exponent eo

I is read from the first ROM
outputs, which corresponds to finding the most significant
digit fo at the position of the least significant digit of
the most significant non-zero group of binary digits in fo.
This read value of the exponent of eo

I is written to RG eo
I

on the next cycle of IOD operation. A zero signal is read
from the second ROM output at address zero, which
indicates that fo = 0. At the same time, a zero value of
exponent eo

I is read from the first ROM outputs [8].
From the third outputs of the ROM at the address
formed in OR1, the control information is read by the
multiplexer MUX3. This information provides passage
from the CTR1 outputs through MUX3 to the RG fo

I
inputs of only the most senior non-zero group of binary
digits fo and the group of digits following it. On the
next cycle of IOD operation, these two groups of digits
are written to RG fo

I.

In the next IOD operation, the significant of the fo
result is normalized with the removal of the hidden bit,
its rounding to the nearest, and the corresponding cor-
rection of the eo value is carried out. For this, control
information is generated by the MUX4 multiplexer using
the encoder, depending on the number of zeros to the
first significant bit in fo. This information provides the
passage from the outputs of RG fo

I through MUX4 to the
inputs of the counter CTR2 n most significant bits of fo,
shifted to the left by k bits, where k is the number of
zeros to the first significant bit in fo. At the same time,
the first significant bit in fo is not transmitted to the
inputs of the CTR2 counter, which ensures the removal
of the hidden bit. At the same time, a correction of the
exponent eo equal to (emax+n)modn–k is formed on the
other outputs of the encoder, if the first significant bit
in the direct code fo was detected in the older group of
bits, or n–k – in all other groups of bits.

With the help of the adder ∑eo, this correction is
added to the value of eo

I, which comes to the other
inputs of the adder with RG eo

I and is summed up with
the value of the carryover input of the lower digit of
the adder, which comes from the counter CTR2 and
indicates the overflow of the significant fo as a result
of its rounding to the nearest [8]. The significant value
fo thus obtained, as without the CTR2 overflow signal,
will be normalized, rounded, and with the hidden bit
removed, and fed from the outputs of CTR2 through a
group of (n–1) 2-input AND elements to the output fo
of the IOD. At the same time, from the outputs ∑eo
through input 0 of the MUX5 multiplexer, the value of
the exponent of the intermediate result is output to the
output eo of the IOD. When the transfer signal from
the higher exponent ∑eo occurs, which indicates an over-
flow of eo, i. e. eo > emax according to [8], a zero value is
given to the output fo of the IOD, and the value emax
is given to the output eo of the IOD via input 1 of
the MUX5 multiplexer.

3.3.  Discussion. Practical significance. The results ob-
tained in the course of the study can help business enti-
ties implement a multiplying operating device that can
be included in the core of a superscalar microprocessor.
Modern microprocessor cores, after becoming superscalar,
have become so complex that only a small number of
specialists, except, for example, employees of the Intel
research center located in the city of Haifa (Israel) and
engaged in the development of new microarchitectures,
understand the details of their work. Thus, most of the
world’s universities study the peculiarities of the opera-
tion of modern microprocessor cores according to the
work [3], which has already passed its sixth edition and
has the telling title A Quantitative Approach. Features
of the construction and operation of the hardware, which
are part of the modern microprocessor core, are a com-
mercial secret of the companies that produce them. In this
regard, it is not easy to find in the open information
space publications explaining some features of the ope
ration of such hardware. The results obtained during the
research are primarily aimed at teaching students to un-
derstand how their parallel program will be executed in
a modern microprocessor core with a superscalar archi-
tecture, which they will most likely deal with in their
professional activities.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

16 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(73), 2023

ISSN 2664-9969

Limitations of research. The proposed multiplier scheme
has limitations: the product is not calculated for denor-
malized operands, but the standard [8] does not require
mandatory processing of denormalized operands. In such
cases, the multiplier packs infinity as the result.

The limitations of the implementation of the inter-core
operating device of the floating-point adder-subtractor are
associated with a large amount of hardware costs required
for its implementation. To assess this complexity in the
Table 1 summarizes the bit values of its main blocks for
various formats of floating-point number representation,
according to [8].

Table 1

Bit values of the main IOD blocks for different formats of number
representation

IOD block
Half
(SF)

Single
(F)

Double
(DF)

Double
Extended

(DEF)

Qua-
drupled

(QF)

RG fx 10 23 52 64 112

RG ex, RG eoI, ∑eo, MUX5 5 8 11 15 15

MUX1, MUX4, CTR2 11 24 53 65 113

RG fo, ∑fo 43 280 2101 32833 32881

MUX2, CTR1 42 279 2100 32832 32880

OR1 4 12 40 506 291

ROM 16×8 4K×13 T×18 2506×25 2291×25

MUX3, RG foI 22 48 106 130 226

The impact of martial law. Modern microprocessor cores
with a superscalar architecture include ten operating de-
vices that are focused on performing various scalar and
vector operations with both fixed and floating point
and work in parallel. To implement their microprocessor
cores, Intel and AMD use technologies for the produc-
tion of large integrated circuits with topological norms of
10–5 nm. Currently, Ukraine does not have such produc-
tion technology. The full-scale invasion of the territory
of Ukraine had a negative impact on their development
and implementation, since a large amount of material re-
sources of enterprises are directed to support the army, and
not to the development, purchase and implementation of
such technologies.

Prospects for further research. On the basis of the deve
loped circuit of the floating-point multiplier, it is possible
to implement various variants of the high-speed multiplier
with both fixed and floating points, which may find com-
mercial application. By adding memory elements to each
of the multiplier segments, it is possible to get options
for building very fast pipeline multipliers.

4.  Conclusions

A structural diagram of a floating-point multiplier has
been developed, which can be dynamically reconfigured
to handle five different formats of operands, which are
regulated by the standard for floating-point arithmetic [8].
The advantages of the developed circuit are that it is
made as a set of combinational circuits, without the use
of memory elements and microprogram control.

The entire operand multiplication operation starts and
ends in one machine cycle. The inputs of the floating-point

multiplier must be supplied with operands from the block
of general-purpose registers, and the processed format sig-
nal must come from the reservation station, which stores
the RISC operation of the executed CISC multiplication
instruction. The result of the performed operation must
be entered in the result reordering buffer.

To reconfigure the multiplier to process operands of
the desired format, no additional actions are required,
except for applying a signal of the processed format to
its control inputs.

This paper also considers the possibility of building an
inter-core operating device for adding-subtracting a sequence
of floating-point numbers with accuracy limited only by
the range of the exponent change and the accuracy of the
representation of the significant of the processed format.

This approach to building an operating device for add-
ing-subtracting a sequence of floating-point numbers looks
very promising due to the simplification of the calcula-
tion process from the programmer’s point of view, because
it ensures the implementation of the law of associativity
without additional programming complications.

The implementation of such a device can be considered
as a new approach to the practical solution of dynamic
planning tasks when performing addition-subtraction opera-
tions within the framework of a multi-core microprocessor.

Conflict of interest

The authors declare that they have no conflict of inte
rest in relation to this study, including financial, personal,
authorship, or any other, that could affect the study and
its results presented in this article.

Financing

The study was conducted without financial support.

Data availability

The manuscript has no associated data.

Use of artificial intelligence

The authors confirm that they did not use artificial
intelligence technologies when creating the presented work.

References

1.	 Patt, Y., Hwu, W. et al. (1986). Experiments with HPS, a Re-
stricted Data Flow Micro architecture for High Performance
Computers. COMPCON 86, 254–258.

2.	 Simone, M., Essen, A., Ike, A., Krishnamoorthy, A., Maruyama, T.,
Patkar, N. et al. (1995). Implementation trade-offs in using
a restricted data flow architecture in a high performance RISC
microprocessor. ACM SIGARCH Computer Architecture News,
23 (2), 151–162. doi: https://doi.org/10.1145/225830.224411

3.	 Hennessy, J. L., Patterson, D. A. (2019). Computer Architecture:
A Cuantitative Approach. Morgan Kaufmann, 1527.

4.	 Kanter, D. (2012). Intel’s Haswell CPU Microarchitecture. Avail-
able at: http://www.realworldtech.com/haswell-cpu/

5.	 Shen, J., Lipasti, M. (2013). Modern Processor Design: Funda-
mentals of Superscalar Processors. Waveland Press, 642.

6.	 Lutskyi, H. M., Dolholenko, O. M., Aksonenko, S. V., Storo
zhuk, V. O. (2014). Modeliuvannia obmezhenoi realizatsii arkhi-
tektury potoku danykh v strukturi superskaliarnoho protsesora.
Visnyk NTUU «KPI». Informatyka, upravlinnia ta obchysliuvalna
tekhnika, 60, 83–94.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

17TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(73), 2023

ISSN 2664-9969

7.	 Dolholenko, A. O., Yatsun, V. O. (2016). Realizatsiia operatsii
noho prystroiu sumatora/vidnimacha z plavaiuchoiu krapkoiu
dlia yadra superskaliarnoho protsesora. Visnyk NTUU «KPI».
Informatyka, upravlinnia ta obchysliuvalna tekhnika, 64, 106–116.

8.	 IEEE 754: Standard for Binary Floating-Point Arithmetic (2019).
Available at: https://grouper.ieee.org/groups/msc/ANSI_IEEE-
Std-754-2019/background/

9.	 What Every Computer Scientist Should Know About Floating-Point
Arithmetic. Available at: https://ece.uwaterloo.ca/~dwharder/
NumericalAnalysis/02Numerics/Double/paper.pdf

10.	 Knut, D. (1977). Iskusstvo programmirovaniia dlia EVM. Vol. 2.
Moscow: Mir, 724.

11.	 Mak-Kraken, D., Dorn, U. (1977). Chislennye metody i pro-
grammirovanie na FORTRANE. Moscow: Mir, 584.

12.	 Strictly, there exist other variants of compensated summation
as well: see Higham, Nicholas (2002). Accuracy and Stability
of Numerical Algorithms. SIAM, 110–123.

13.	 Lutskyi, H. M. et al. (2016). Metody ta zasoby pidvyshchennia efek-
tyvnosti rishennia zdach na osnovi perestroiuvanykh obchysliuval-
nykh zasobiv na PLIS – Zakl. zvit po NDR No. DR 0216U007635.
Kyiv, 244.

14.	 Baugh, C. R., Wooley, B. A. (1973). A Two’s Complement Parallel
Array Multiplication Algorithm. IEEE Transactions on Compu
ters, C–22 (12), 1045–1047. doi: https://doi.org/10.1109/t-
c.1973.223648

15.	 Parhami, B. (2000). Computer Arithmetic. Algorithms and Hard-
ware Designs. New York: Oxford University Press, 491.

Georgi Luсkij, Doctor of Technical Science, Professor, Department of

Informatics, National Technical University of Ukraine «Igor Sikorsky

Kyiv Polytechnic Institute», Kyiv, Ukraine, ORCID: https://orcid.org/

0000-0002-3155-8301

*Oleksandr Dolholenko, PhD, Associate Professor, Senior Re-

searcher, Department of Informatics, National Technical University

of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine,

e-mail: aleks.dolgolenko@gmail.com, ORCID: https://orcid.org/

0000-0003-3375-7117

*Corresponding author

