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DEVELOPMENT OF FLOATING POINT 
OPERATING DEVICES

The paper shows a well-known approach to the construction of cores in multi-core microprocessors, which is 
based on the application of a data flow graph-driven calculation model. The architecture of such kernels is based 
on the application of the reduced instruction set level data flow model proposed by Yale Patt. The object of research 
is a model of calculations based on data flow management in a multi-core microprocessor.

The results of the floating-point multiplier development that can be dynamically reconfigured to handle five 
different formats of floating-point operands and an approach to the construction of an operating device for 
addition-subtraction of a sequence of floating-point numbers are presented, for which the law of associativity is 
fulfilled without additional programming complications. On the basis of the developed circuit of the floating-point 
multiplier, it is possible to implement various variants of the high-speed multiplier with both fixed and floating 
points, which may find commercial application. By adding memory elements to each of the multiplier segments, 
it is possible to get options for building very fast pipeline multipliers. The multiplier scheme has a limitation: the 
exponent is not evaluated for denormalized operands, but the standard for floating-point arithmetic does not 
require that denormalized operands be handled. In such cases, the multiplier packs infinity as the result.

The implementation of an inter-core operating device of a floating-point adder-subtractor can be considered 
as a new approach to the practical solution of dynamic planning tasks when performing addition-subtraction 
operations within the framework of a multi-core microprocessor. The limitations of its implementation are related 
to the large amount of hardware costs required for implementation. To assess this complexity, an assessment of 
the value of the bits of its main blocks for various formats of representing floating-point numbers, in accordance 
with the floating-point standard, was carried out.
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1.  Introduction

When building the cores of most modern microproces-
sors with the x86-64 architecture, the OoOE (Out-of-Order 
Execution) technology is used, which is based on the imple-
mentation of restricted data flow architecture (Restricted 
Data Flow (RDF))  [1, 2]. Such microprocessors are called 
superscalar microprocessors  [3], or microprocessors with 
CISC-RISC architecture («CISC-outside RISC-inside»). As 
CISC – Complex Instruction Set Computing, let’s consider 
a set of instructions in the x86-64 architecture. The term 
RISC – Reduced instruction set computing means a shortened 
set of commands implemented by a set of microprocessor 
operating devices. Instead of RISC, microprocessor develo
pers use the names: uop, micro-ops, µops, or similar terms.

During the operation of the cores of such micropro-
cessors, a certain number of CISC commands of the cur-
rently active command flow are simultaneously decoded 
into a set of RISC operations. The planning of execution 
of RISC operations is carried out in accordance with the 
RDF architecture, based on the readiness for execution 
of operands of RISC operations. Before the RISC opera-
tions become ready for execution, they are placed in the 
cells of the reservation station  [4–7]. A RISC operation 

that has reached the ready state can be transferred from 
the backup station cell to a free operating device that 
can execute it. Thus, dynamic parallelism at the level of 
RISC operations is organized in modern microprocessors.

When forming streams of CISC commands operating 
with floating-point operands, both programmers and de-
velopers of optimizing compilers have to take into account 
the peculiarities of the implementation of floating-point 
arithmetic  [8]. As a result of these features, for example, 
standard mathematical laws, such as commutative and as-
sociative [9], are not fulfilled for floating-point arithmetic, 
and it is not difficult to conduct them so poorly that the 
calculated answers consist almost entirely of «noise» [10].

So, for example, the operations of multiplication and divi-
sion do not greatly increase the relative error, but the subtrac-
tion of almost equal quantities can significantly increase it. 
One of the consequences of the possible unreliability of the 
floating-point addition-subtraction operation is the violation 
of the associativity law: (u+v)+w ≠ u+(v+w) for some u, v, w.  
The law of distributivity connecting operations × and + 
may also be violated: u×(v+w) ≠ (u×v)+(u×w). Even memos 
for programmers containing recommendations for organizing 
calculations to reduce errors have been developed  [11]. 
So, for example, if it is necessary to add-subtract a long 
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sequence of numbers  [11], it is possible to sort them and 
perform operations starting with the smallest numbers.

The analysis of such a note shows that it is often difficult 
for a programmer to follow such rules, for example, due to 
ignorance of the possible values of variables before the start 
of the program, due to the need to pre-sort numbers by 
size, due to the need for routine conversion of formulas, etc. 
The execution of such rules is not done by a programmer, 
and the compiler at the stages of preparing calculations for 
execution are also complicated, due to the same reasons.  
In addition, the enforcement of these rules, for example, 
changing the order of submission of operands, creates dif-
ficulties for the implementation of parallel calculations.

To reduce the error of adding-subtracting a long se-
quence of floating-point numbers, without performing their 
preliminary sorting, the Kahan algorithm, also known as 
compensatory summation, is used  [12]. Error reduction is 
achieved by introducing an additional variable to store the 
increasing amount of errors. With compensatory summa-
tion, the worst-case error does not depend on the number 
of operands, so a large number of operand values can be 
summed with an error that depends only on the precision 
of the floating-point number representation format. But 
according to this algorithm, each operation of addition-
subtraction of the next operand of the sequence to the 
intermediate sum is transformed into 4 operations of the 
type of addition-subtraction and 4 operations of assignment.

The aim of research is to develop a high-speed operat-
ing device of a multiplier for each microprocessor core 
and an inter-core adder-subtractor with a floating point, 
which can be used for dynamic branching of work, at the 
level of RISC operations, both universal and specialized 
multi-core superscalar microprocessors and at the same 
time, without additional software complications, will ensure 
the fulfillment of commutativity and associativity laws.

2.  Materials and Methods

The object of research is a model of calculations based 
on data flow management in a multi-core microprocessor.

Fixed-point arithmetic is poorly suited for many engi-
neering and scientific calculations. To provide a dynamic 
range of representation of real numbers (without the need 
to scale operands), a representation of a number in the 
form of a floating point is used.

The number of integers is infinite, but it is always 
possible to choose such a number of bits to represent any 
integer that arises when solving a particular problem. The 
set of real numbers is not only infinite, but also continuous,  
so no matter how many bits it takes, let’s inevitably en-
counter numbers that do not have an exact representation. 
Floating-point numbers are one of the possible ways of 
representing real numbers, which is a compromise between 
precision and the range of accepted values.

Ensuring the fulfillment of the associativity law for the 
addition-subtraction operation on a sequence of floating-
point numbers without additional programming compli-
cations is possible if the calculation of all intermediate 
results is performed without losing significant bits.

Below are described the functional circuits of the 
floating-point multiplier and adder-subtractor for various 
formats of the representation of floating-point numbers 
that do not require microprogram control elements in 
their operation.

3.  Results and Discussion

3.1.  Floating point multiplier. In work [13], a configuration 
library of nodes of the scheme from Fig.  1 when building 
them on the basis of PLD (programmable logic device).

Fig. 1. Structural diagram of a floating-point multiplier

Fig. 1 shows the structural diagram of a floating-point 
multiplier capable of processing all formats of floating-
point numbers provided by the standard  [8]. There are 
five such formats: half precision  (SF) – 16 bits, single 
precision  (F) – 32 bits, double precision (DF) – 64 bits, 
double extended precision (DEF) – 80 bits and quadruple 
precision  (QF) (128 digits).

Multiplication over floating-point operands c = axb is 
reduced to the following operations:

(±fax2(ea+bias))x(±fbx2(eb+bias)) = ±faxfbx2(ea+eb+bias) = 

= ±fcx2(ec+bias).

Care must be taken when constructing a floating-point 
multiplier to ensure correctness and prevent undue loss of 
precision. In addition, handling of possible exceptions should 
be implemented.

Unpacking includes extracting the sign of the significant, 
as well as restoring the hidden MSB bit for each of the 
operands. During unpacking, the formats of the operands 
are also converted to the internal format of the computing 
module (for example, to the quadruple precision format). The 
unpacked operands are tested for the presence of exceptions 
among them: 0, NaN, ±∞. If there are exceptions, the result 
of operations is formed in the appropriate form [8] and sent 
to the package, bypassing multiplication.

The previous exponent of the product is calculated by 
adding the two shifted exponents of the operands and sub-
tracting from the resulting shift sum:

(ea+bias)+(eb+bias)–bias = (ea+eb)+bias = ec+bias.

The most difficult to implement in this scheme is the 
matrix multiplier of the significants represented by the 
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additional code. The Baugh-Wooley algorithm  [14] was 
used for its construction.

The Baugh-Wooley algorithm is currently the best of 
the known algorithms because it increases the regularity of 
the multiplier structure and is well suited for implementing 
a matrix multiplier based on it  [13].

Let’s consider in detail the principle of operation of the 
Baugh-Wooley algorithm using the example of the imple-
mentation of the 5×5 multiplier (Fig.  2)  [14].

 
Fig. 2. An example of the Baugh-Wooley algorithm  

when implementing a 5×5 multiplier

The first 4 lines are partial products of the multiplier a 
by the significant bits of the multiplier bj (j = 0,  1,  2,  3) 
and are formed by four two-input AND elements (from one 
significant bit of a and bit bj) and one two-input NAND 
element (from the sign bit a and bit bj). The fifth line is 
a partial product of the multiplier a  
on the sign bit of the multiplier b4 
and is formed by one AND (from 
the sign bit a and bit b4) and four 
NANDs (from one significant bit a 
and bit b4).

The Baugh-Wooley algorithm needs 
correction of the result. For this, when 
multiplying n-bit operands, 1 should 
be added to the digits of the formed 
product with weights: 22n–1 and 2n.

According to the processed format, 
the significant multiplication unit has 
the ability to process significants (along 
with the sign and hidden bits) of sizes:  
12, 25, 54, 66 and 114  bits. The func-
tional scheme of such a significant mul-
tiplier is shown in Fig.  3.

Let’s consider the operation of the 
scheme using the example of the sig-
nificant multiplication operation:

fc = fa×fb.

Reconfiguration of the significant 
multiplier block to handle the desired 
operand format is done by padding the 
lower digits of the significants fa and fb 
with zeros to the size of the significant in 
the QF format. Thus, a 114×114 signifi-
cant multiplication is always performed 
in the significant multiplier block. The 
significants fa and fb supplemented to 
the QF format must be fed to the inputs 
of the significant multiplier block as 
shown in the diagram of Fig.  3.

The significant multiplier scheme consists of 114×114 two-
input & elements, each of which calculates one digit of 
intermediate products (some of these elements, according 
to the Baugh-Wooley algorithm, are changed to NOT & ele
ments in Fig.  3). The digits of intermediate products 
calculated in this way are summed using single-bit full 
adders (FA-full adder in Fig.  3).

The product calculated by the Baugh-Wooley algorithm 
needs correction  [13]. In our case, the correction of the 
product consists in the fact that «1» should be added to 
the 0th and 113th digits of the product, as shown in Fig. 3.

At the final stage of multiplication of significants, the 
spread of transfers is carried out in the upper half of 
the calculated product. For this, carry-skip adders  [15] 
are used, which occupy an intermediate place between 
carry-skip adders and carry-skip adders, both in terms 
of speed and cost.

After multiplying two normalized significants, each of 
which is in the range  [1, 2), the significant of the result can 
be in the range  [1, 4). In this regard, its normalization may 
require a shift by one digit to the right with an increase of 
1 from the previous value of the exponent of the product. 
After the first normalization, the 2(n+1) digit significant of 
the product is truncated to n+3 digits.

When rounding the significant of the product fc, its 
normalization may again be lost. At the same time |fc| may 
be equal to 2 and its normalization may again need to be 
shifted one bit to the right with an increase of ec+bias by 1.

 
Fig. 3. Functional diagram of the mantis multiplication unit
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To increase speed, it is possible to precalculate the 
value of ec+bias increased by 1 at each normalization step 
and choose its correct value after it is known whether an 
offset is required after rounding. Due to the fact that the 
multiplication of significants is the most complicated part 
of floating-point multiplication, there is enough time for 
such calculations. Also, rounding should not be a separate 
step at the end of the operation. It can be combined with 
the mantis reproduction apparatus.

3.2.  An inter-core floating-point adder-
subtractor operating device. Let’s consider 
the possibility of building an inter-core ope
rational device (IOD) adding-subtracting 
a sequence of floating-point numbers that 
performs calculations of all intermediate 
results without losing significant bits. For 
this, at each step of the calculation, it per-
forms the following operation:

o = o ± x,

where x is the next operand of the sequence, 
which, at each step of  calculations, can be 
accepted at the IOD inputs for processing; o is 
an intermediate result of addition-subtraction 
of a sequence of numbers. To increase the 
accuracy, o in IOD will be calculated with 
an accuracy limited only by the range of 
the exponent change and the accuracy of 
the representation of the significant of the 
processed format [8]. At the beginning of the 
calculation of a new sequence of numbers, 
o will be set to zero. Simultaneously with 
the calculation of the new value of o, its 
previous value will be converted to the pro-
cessed number format with rounding to the 
nearest  [8] and output to the IOD outputs.

Let each floating-point number x have 
the form at the IOD input, in accordance 
with the standard  [8]:

x = fx×2ex,

where fx – the n-digit normalized (1 ≤ | fx| < 2, at 
x ≠ 0) fractional part of the number x (signifi-
cant); ex – the exponent of the number (a non-
negative integer from the interval [emax, 0]); 
fx and ex are represented in direct binary. 
A floating-point number has two signs: the 
sign of the number (sign) is displayed by 
a separate bit; the sign of the exponent is 
reflected by the exponent bias (bias)  [8].

The schematic solution for building IOD 
floating-point addition/subtraction with in-
creased execution accuracy is shown in Fig. 4.  
Its work is carried out as follows.

Submission of terms is carried out one by one per 
cycle of operation of the IOD. So, on the i-th cycle of 
operation, another term (number x) is applied to the 
IOD inputs. At the same time, at control node 1, it is 
converted from the processed format of floating-point 
numbers [8] to the internal range of number processing r,  
where r = emax+1+n and is the number of binary digits in 

the representation of a fixed-point number. Namely, the 
normalized significant term is applied to the input fx, the 
exponent of the term is applied to the input ex, and the 
sign of the term is applied to the input signx. With the 
arrival of the leading edge of the clock pulse at the clock 
input, data is written, respectively, in the significant RG fx,  
exponent RG ex and control trigger Tg signx registers. At 
the same time, if the number x is the starting operand of  
a new sequence of numbers, the value of RG f0 is reset 
to zero using the reset signal.

Using the MUX1 multiplexer and depending on the 
value of signx, the inverted significant code fx is transferred 
from the RG fx to the input of the key block with the 
restoration of the hidden bit MSB  [8] and signx. Depend-
ing on the value of the exponent ex, a signal is generated 
at one of the outputs of the DC decoder, which ensures 
the transmission of the input of the key block to the 
first input of the adder ∑fo. As a result of this transfer, 

 
Fig. 4. Functional diagram of a floating-point addition-subtraction  

inter-core operating device (IOD)
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an arithmetic left shift of the inverted code fx is carried 
out together with the MSB and signx on ex digits, and 
all other lower digits of the first input of the adder ∑fo 
are filled with the value of signx, which together with the 
supply of signx also to the input of the transfer of the 
lower digit ∑fo ensures the formation of the additional 
code x reduced to the range r.

On the (i+1)-th cycle of IOD operation, the next term 
of the calculated sequence can be accepted at its inputs. 
At the same time, the result of the summation of the 
previous term will be written into the RG fo register at 
node 2 of the summation from the outputs ∑fo, and the 
sign, exponent and significant of the partially normalized of 
the previous value of o (from the summation of the term 
that could be accepted at the IOD inputs in the (i–1)-th 
cycle of its operation).

Thus, the MOP is a conveyor converter of informa-
tion consisting of three segments. At each cycle of IOD 
operation, the next value of the number x of the per-
formed operation o = o+x can be accepted at its inputs, 
in general, from different microprocessor cores (from the 
core that captured the cycle of IOD operation). If one of 
the cores needs to perform the operation o = o–x, then the 
signx value applied to the IOD inputs must be changed 
to the opposite.

Simultaneously with the summation on ∑fo of the 
number x with the accumulated sum fo, which flows from 
the RG fo register to the second input ∑fo through the 
feedback circuit, an overflow signal is formed (as a sum 
modulo 2 of the two higher digits ∑fo), which indicates 
about the output of a new value fo from the range r.

Simultaneously with the formation of a new value of 
fo, at node 3 of the formation of the result, the previous 
accumulated amount of fo is transferred into an inter-
mediate representation in the form of a floating point 
with a 2n-bit binary code of the significant of the result 
foI in direct code and an m-bit value of the exponent 
corresponding to the significant of foI. To do this, first, 
the value fo from RG fo is converted into a direct code 
using the MUX2 multiplexer and the CTR1 counter, and 
signo is removed from its representation, which is written 
to Tg signo in the next IOD operation cycle. Then, with 
the help of group OR1 consisting of [(emax+n)/n]n input 
elements «OR» (the oldest element in the group has  
(emax+n)modn inputs) the input address to the permanent 
ROM memory is formed (actually turns out to be the 
largest non-zero group of binary bits in fo). At this ad-
dress, the value of exponent eo

I is read from the first ROM 
outputs, which corresponds to finding the most significant 
digit fo at the position of the least significant digit of 
the most significant non-zero group of binary digits in fo.  
This read value of the exponent of eo

I is written to RG eo
I  

on the next cycle of IOD operation. A zero signal is read 
from the second ROM output at address zero, which 
indicates that fo = 0. At the same time, a  zero value of  
exponent eo

I is read from the first ROM outputs  [8]. 
From the third outputs of the ROM at the address 
formed in OR1, the control information is read by the 
multiplexer MUX3. This information provides passage 
from the CTR1 outputs through MUX3 to the RG fo

I 
inputs of only the most senior non-zero group of binary 
digits fo and the group of digits following it. On the 
next cycle of IOD operation, these two groups of digits 
are written to RG fo

I.

In the next IOD operation, the significant of the fo 
result is normalized with the removal of the hidden bit, 
its rounding to the nearest, and the corresponding cor-
rection of the eo value is carried out. For this, control 
information is generated by the MUX4 multiplexer using 
the encoder, depending on the number of zeros to the 
first significant bit in fo. This information provides the 
passage from the outputs of RG fo

I through MUX4 to the 
inputs of the counter CTR2 n most significant bits of fo, 
shifted to the left by k bits, where k is the number of 
zeros to the first significant bit in fo. At the same time, 
the first significant bit in fo is not transmitted to the 
inputs of the CTR2 counter, which ensures the removal 
of the hidden bit. At the same time, a correction of the 
exponent eo equal to (emax+n)modn–k is formed on the 
other outputs of the encoder, if the first significant bit 
in the direct code fo was detected in the older group of 
bits, or n–k – in all other groups of bits.

With the help of the adder ∑eo, this correction is 
added to the value of eo

I, which comes to the other 
inputs of the adder with RG eo

I and is summed up with 
the value of the carryover input of the lower digit of 
the adder, which comes from the counter CTR2 and 
indicates the overflow of the significant fo as a result 
of its rounding to the nearest  [8]. The significant value 
fo thus obtained, as without the CTR2 overflow signal, 
will be normalized, rounded, and with the hidden bit 
removed, and fed from the outputs of CTR2 through a 
group of (n–1) 2-input AND elements to the output fo 
of the IOD. At the same time, from the outputs ∑eo 
through input 0 of the MUX5 multiplexer, the value of 
the exponent of the intermediate result is output to the 
output eo of the IOD. When the transfer signal from  
the higher exponent ∑eo occurs, which indicates an over-
flow of eo, i.  e. eo > emax according to  [8], a zero value is 
given to the output fo of the IOD, and the value emax  
is given to the output eo of the IOD via input 1 of 
the MUX5 multiplexer.

3.3.  Discussion. Practical significance. The results ob-
tained in the course of the study can help business enti-
ties implement a multiplying operating device that can 
be included in the core of a superscalar microprocessor. 
Modern microprocessor cores, after becoming superscalar, 
have become so complex that only a small number of 
specialists, except, for example, employees of the Intel 
research center located in the city of Haifa (Israel) and 
engaged in the development of new microarchitectures, 
understand the details of their work. Thus, most of the 
world’s universities study the peculiarities of the opera-
tion of modern microprocessor cores according to the 
work  [3], which has already passed its sixth edition and 
has the telling title A Quantitative Approach. Features 
of the construction and operation of the hardware, which 
are part of the modern microprocessor core, are a com-
mercial secret of the companies that produce them. In this 
regard, it is not easy to find in the open information 
space publications explaining some features of the ope
ration of such hardware. The results obtained during the  
research are primarily aimed at teaching students to un-
derstand how their parallel program will be executed in 
a modern microprocessor core with a superscalar archi-
tecture, which they will most likely deal with in their 
professional activities.
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Limitations of research. The proposed multiplier scheme 
has limitations: the product is not calculated for denor-
malized operands, but the standard  [8] does not require 
mandatory processing of denormalized operands. In such 
cases, the multiplier packs infinity as the result.

The limitations of the implementation of the inter-core 
operating device of the floating-point adder-subtractor are 
associated with a large amount of hardware costs required 
for its implementation. To assess this complexity in the 
Table  1 summarizes the bit values of its main blocks for 
various formats of floating-point number representation, 
according to  [8].

Table 1

Bit values of the main IOD blocks for different formats of number 
representation

IOD block
Half 
(SF)

Single 
(F)

Double 
(DF)

Double 
Extended 

(DEF)

Qua-
drupled 

(QF)

RG fx 10 23 52 64 112

RG ex, RG eoI, ∑eo, MUX5 5 8 11 15 15

MUX1, MUX4, CTR2 11 24 53 65 113

RG fo, ∑fo 43 280 2101 32833 32881

MUX2, CTR1 42 279 2100 32832 32880

OR1 4 12 40 506 291

ROM 16×8 4K×13 T×18 2506×25 2291×25

MUX3, RG foI 22 48 106 130 226

The impact of martial law. Modern microprocessor cores  
with a superscalar architecture include ten operating de-
vices that are focused on performing various scalar and 
vector operations with both fixed and floating point 
and work in parallel. To implement their microprocessor 
cores, Intel and AMD use technologies for the produc-
tion of large integrated circuits with topological norms of 
10–5  nm. Currently, Ukraine does not have such produc-
tion technology. The full-scale invasion of the territory 
of Ukraine had a negative impact on their development 
and implementation, since a large amount of material re-
sources of enterprises are directed to support the army, and 
not to the development, purchase and implementation of  
such technologies.

Prospects for further research. On the basis of the deve
loped circuit of the floating-point multiplier, it is possible 
to implement various variants of the high-speed multiplier 
with both fixed and floating points, which may find com-
mercial application. By adding memory elements to each 
of the multiplier segments, it is possible to get options 
for building very fast pipeline multipliers.

4.  Conclusions

A structural diagram of a floating-point multiplier has 
been developed, which can be dynamically reconfigured 
to handle five different formats of operands, which are 
regulated by the standard for floating-point arithmetic [8]. 
The advantages of the developed circuit are that it is 
made as a set of combinational circuits, without the use 
of memory elements and microprogram control.

The entire operand multiplication operation starts and 
ends in one machine cycle. The inputs of the floating-point 

multiplier must be supplied with operands from the block 
of general-purpose registers, and the processed format sig-
nal must come from the reservation station, which stores 
the RISC operation of the executed CISC multiplication 
instruction. The result of the performed operation must 
be entered in the result reordering buffer.

To reconfigure the multiplier to process operands of 
the desired format, no additional actions are required, 
except for applying a signal of the processed format to 
its control inputs.

This paper also considers the possibility of building an 
inter-core operating device for adding-subtracting a sequence 
of floating-point numbers with accuracy limited only by 
the range of the exponent change and the accuracy of the 
representation of the significant of the processed format.

This approach to building an operating device for add-
ing-subtracting a sequence of floating-point numbers looks 
very promising due to the simplification of the calcula-
tion process from the programmer’s point of view, because 
it ensures the implementation of the law of associativity 
without additional programming complications.

The implementation of such a device can be considered 
as a new approach to the practical solution of dynamic 
planning tasks when performing addition-subtraction opera-
tions within the framework of a multi-core microprocessor.
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