
INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

10 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(74), 2023

ISSN 2664-9969

8.	 Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F.,
Nolfi, S., Baaboura, T. et al. (2013). Swarmanoid: A Novel
Concept for the Study of Heterogeneous Robotic Swarms.
IEEE Robotics & Automation Magazine. Available at: https://
citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=09d
b526ea45bf5829f049f69100eb86322fe44fb

9.	 Price, I. C. (2006). Evolving Self-Organized Behavior for Ho-
mogeneous and Heterogeneous UAV or UCAV Swarms. USAF.
Air Force Institute of Technology. Available at: https://scholar.
afit.edu/cgi/viewcontent.cgi?article=4466&context=etd

10.	 Albrekht, Y., Pysarenko, A. (2023). Unknown location targets
searching system in known environment using reinforcement
learning. Adaptive systems of automatic control, 1 (42), 9–14.
doi: https://doi.org/10.20535/1560-8956.42.2023.278920

*Yosyp Albrekht, Postgraduate Student, Department of Informa-
tion Systems and Technologies, National Technical University of
Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine,
e-mail: yosyp.albrekht@gmail.com, ORCID: https://orcid.org/0000-
0003-0093-6397

Andrii Pysarenko, PhD, Associate Professor, Department of Infor-
mation Systems and Technologies, National Technical University of
Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine,
ORCID: https://orcid.org/0000-0001-7947-218X

*Corresponding author

UDC 004.02
DOI: 10.15587/2519-4798.2023.293067

THE DEVELOPMENT OF THE
METHOD OF OPTIMIZING COSTS
FOR SOFTWARE TESTING IN THE
AGILE MODEL

The object of research in the article is the process of testing and operating software with cost minimization.
In the Software Development Life Cycle, depending on the chosen option of the flexible methodology, special
attention is focused on testing software versions both in the process of passing iterations and in the process of
releasing alpha, beta and production versions.

This article is devoted to the problem of developing a method for software testing cost optimization method that
estimates the test cost function and the losses cost function from the occurrence of an error.

Using the optimization method (for example, the first-order descent method) from the two functions of testing
costs and estimating the losses caused during operation, it is possible to calculate the optimal cost of testing and
operating the software product.

The results obtained show that with the correct assessment of a cost function and a loss function such calcula-
tions allow to significantly save money and time for the production of the next version of the software product.

These results are explained by the fact that the method of optimizing the cost function finds the optimum point
and allows to pre-estimate the budget and risks during the development and operation of the software.

The article provides several examples of the calculation and optimization of testing costs within the proposed
concept for one iteration in a flexible software development cycle.

The results of the study can be used in practice, provided that the functions of estimating costs for testing and
compensation for losses caused during the operation of the software are set correctly. Experienced managers and
project supervisors determine these functions quite accurately for a certain number of iterations, which makes it
possible to apply the method of finding the minimum budget costs for testing and operating a software product.

Keywords: agile, SCRUM, software development life cycle, testing, QA, risk management.

Kostyantyn Kharchenko,
Oleksandr Beznosyk,
Bogdan Bulakh,
Ganna Ishchenko,
Vadym Yaremenko

© The Author(s) 2023

This is an open access article

under the Creative Commons CC BY license

How to cite

Kharchenko, K., Beznosyk, O., Bulakh, B., Ishchenko, G., Yaremenko, V. (2023). The development of the method of optimizing costs for software testing

in the Agile model. Technology Audit and Production Reserves, 6 (2 (74)), 10–14. doi: https://doi.org/10.15587/2519-4798.2023.293067

Received date: 18.10.2023

Accepted date: 12.12.2023

Published date: 15.12.2023

1.  Introduction

The constant development of IT and programming metho
dologies requires new methods of planning and forecasting the
quality of the resulting software product and information system.

One of the key aspects of software development is testing.
In flexible methodologies, such as Agile, software testing stages
play an important role, which directly affect the quality of the
proposed solution and, accordingly, the cost of operating the
information system [1–3].

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

11TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(74), 2023

ISSN 2664-9969

Considering the importance and complexity of the test-
ing process, it is necessary to have a certain strategy for
minimizing costs both directly for the testing stage itself
and for risk compensation [4–6]. This should take place
in the context of an iterative approach and Agile metho
dology in order to achieve an optimal balance between
testing costs and operating costs and covering possible
losses associated with downtime (or incorrect operation)
of the information system, loss of the company’s image,
moral damages, etc. [7].

In this context, the authors try to solve the actual
problem of optimization of software testing costs by pro-
posing an appropriate calculation method based on the
evaluation of the function of testing costs and the func-
tion of the cost of damages that may occur during the
operation of the information system due to detected errors.

The aim of the research is to apply optimization methods
to identify the best-case scenario for allocating funds bet
ween testing expenses and covering potential risks dur-
ing the operation of software. Relevant functions have
been developed to assess these costs, and a solution to
the posed problem has been developed using the Python
language and mathematical libraries.

From a practical standpoint, this approach can be utilized
in both large and small projects. It is expected that the
application of such an approach will result in significant
cost savings during the operation of software, while, on
the other hand, enabling the sensible expenditure of the
budget on software testing.

2.  Materials and Methods

Let’s consider an approach to optimizing the costs of
testing and operating a software product.

Let’s suppose that the function P of software testing
cost estimation has the form of a piecewise linear function
and depends on the number of tests performed.

Let’s suppose that the function Q of estimating the
costs of compensation for damages caused by errors in
the software operation has the form of a piecewise linear
function and also depends on the number of software tests.

To begin w = sith, consider an example when P and Q
depend on only one parameter. Let’s Suppose that one version
of the software is tested for x iterations. Then the perfor-
mance of this test can be described by the function f(x).

Let’s suppose that the cost estimation function for
software testing has the form:

P = f(x),	 (1)

where P is the cost of testing, x is the number of test
iterations.

Assuming that the cost estimation function for compensat-
ing losses from errors in the software operation has the form:

Q = g(x),	 (2)

where Q are expenses for compensation of losses during
the operation of the software product for a separate part
of the functionality, x is the number of test iterations.

Then the total cost of testing, taking into account com-
pensation for damages for software errors, is estimated as:

R = P+Q,	 (3)

or

R = f(x)+g(x).	 (4)

Let’s set the test cost function as piecewise linear (Fig. 1).
Let’s plot the number of testing iterations on the x-axis,
and the cost of testing on the y-axis. Let’s also set the cost
function for compensation of losses during the operation of
the software product as piecewise linear (Fig. 2). On the
x-axis, let’s set aside the number of testing iterations, and
on the y-axis the cost of compensation for losses during the
operation of the software product (for example, loss of revenue
from customers during system unavailability). Such a function
can be empirically estimated due to previous operating data.

Fig. 1. Graph of costs for testing during the development
of a software product

Fig. 2. Graph of costs for compensation of errors during abnormal
operation of the software product

First, the Python code defines two data sets representing
x and y coordinates for two different functions [8]: x1 and
y1 are coordinates for a piecewise linear increasing function,
and x2 and y2 – for a decreasing one, where x1, y1 define
the function Q, and x2, y2 define the function R. Then
the points and the line connecting them are constructed

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

12 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(74), 2023

ISSN 2664-9969

for the first data set (x1, y1). A red color is used for the
points and a descriptive legend is added. The construction
of the second graph takes place similarly. Then plt.show()
displays the final figure with two graphs. Each of these
graphs shows piecewise linear functions of P and Q.

import numpy as np
import matplotlib.pyplot as plt

Increasing piecewise linear function
x1=np.array([0, 1, 2, 3, 4])
y1=np.array([0, 0.5, 1.5, 3, 5])

Decreasing piecewise linear function
x2=np.array([0, 1, 2, 3, 4])
y2=np.array([16, 9, 4, 1, 0])

Display graphs
plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)
plt.plot(x1, y1, ‘ro’, label=‘Starting points’)
plt.plot(x1, y1, label=‘P(x)’)
plt.plot(x1_interp, y1_interp, label=‘P(x)’)
plt.xlabel(‘x’)
plt.ylabel(‘y’)
plt.title(‘A increasing piecewise linear function’)
plt.legend()
plt.grid(True)

plt.subplot(1, 2, 2)
plt.plot(x2, y2, ‘ro’, label=‘Starting points’)
plt.plot(x2, y2, label=‘Q(x)’)
plt.xlabel(‘x’)
plt.ylabel(‘y’)
plt.title(‘A decreasing piecewise linear function’)
plt.legend()
plt.grid(True)

plt.tight_layout()
plt.show()

Now let’s search for the minimum of the function
R = f(x)+g(x) using the optimization method:

R(x)→min, x∈X,	 (5)

where X is an admissible set, each point x of this set is an
admissible point of the problem [9].

The value of хmin in this case will correspond to the mini-
mum costs for testing and compensation for losses during
the operation of the software product, and the possible total
costs for testing and operation together will be R(хmin).

This Python code demonstrates the optimization process,
namely finding the minimum for the sum of two piecewise
linear functions R = P+Q. The numpy, matplotlib, and scipy
libraries are used for visualization and optimization. First,
let’s create an objective function. The objective(x) function
determines the sum of two piecewise linear functions. This
is achieved using the np.interp function, which is used to
perform a linear interpolation of each function, and the
results are summed. The minimize_scalar function from
scipy.optimize is used to search for the minimum of the
sum of two functions [10]. This function automatically

selects an optimization method and looks for the value
of x at which objective(x) reaches its minimum value. To
illustrate the results, a graph of the total function and
the minimum point is constructed. Finally, plt.show() is
called to display the final plot showing the function and
the minimum point found.

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize_scalar

Increasing piecewise linear function
x1=np.array([0, 1, 2, 3, 4])
y1=np.array([0, 0.5, 1.5, 3, 5])

Decreasing piecewise linear function
x2=np.array([0, 1, 2, 3, 4])
y2=np.array([16, 9, 4, 1, 0])

Function, the sum of two piecewise linear
functions
def objective(x):
y1_interp=np.interp(x, x1, y1)
y2_interp=np.interp(x, x2, y2)
return y1_interp+y2_interp

We find the minimum point using the
optimization algorithm
result=minimize_scalar(objective)

Output the result
if result.success:
print("Minimum point: x =", result.x)
print("The value of the function at the minimum
point: f(x) =", result.fun)
else:
print("The optimization algorithm could not find
the minimum point.")

Graph of the function
x_interp=np.linspace(x1.min(), x1.max(), num=100)
y_interp=objective(x_interp)

plt.plot(x_interp, y_interp, label=‘Function R(x)’)
plt.scatter(result.x, result.fun, color=‘red’,
label=‘Minimum point’)
plt.xlabel(‘x’)
plt.ylabel(‘R(x)’)
plt.title(‘Graph of the function’)
plt.legend()
plt.grid(True)
plt.show()

3.  Results and Discussion

In our case, the minimum value of the R(x) function,
which is found with a small error using the numpy.mini-
mize_scalar() function, equals to 3.0000000103012523 (the
calculation considers the calculation error), while the total
costs for testing and operation will be 4.000000010301252.
The minimum of the function is shown on the graph in Fig. 3.

Moreover, approximately 3 units of the budget were
spent on testing and 1 unit of the budget was spent on
compensation for losses during operation.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

13TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(74), 2023

ISSN 2664-9969

Fig. 3. Graph of the total testing cost and operation
of the software product

In this case, when the number of tests increases (x > 3),
the budget for general operation also increases, but when
the number of tests decreases, the budget for general ope
ration also increases, because the cost of compensation
for operational risks increases.

In the Agile methodology, when developing software,
the project is executed in iterations. Then, at each itera-
tion, before starting work, it is possible to estimate the
function P of software testing costs and the function Q
of costs to compensate for losses due to errors in the
software operation process.

During each iteration, the project manager and system
architect, along with a team of testers, can conduct peer
review and set parameters for P and Q functions.

In further work, the authors propose to develop a method
of forecasting the next values of the R function depending
on the accuracy of previous estimates and the amount
of work performed on the software of the information
system. It is assumed that at each cycle of the iterative
methodology, it is possible to refine the dependence graphs P
and Q and build a prediction function using, for example,
the extrapolation method, the autoregressive and moving
average (ARMA) model, or neural networks.

The estimated cost Q of software downtime losses
can be quite significant if to consider losses from services
such as, say, public transport ticketing, where an hour of
downtime can lead to millions in losses.

A significant drawback of the proposed method is the
influence of the human factor on the assessment of the scope
of work and risks for the construction of P and Q dependen-
cies, but in the end, this method provides a stable assessment
metric and the ability to analyze how the calculated values
after optimization correspond to real data. Particular attention
should be paid to the construction of the Q function, that
is, the compensation of losses during the operation of the
software product on the number of test iterations. Although
experienced project managers quickly master such an assess-
ment and can apply the method in practice.

Among the disadvantages of the method, it is also
worth noting that in certain critical information systems,
software failure is not allowed in any case (medical infor-
mation systems, strategic object management systems, etc.)
and then the proposed method will not work, since P will
always be several orders of magnitude higher than Q.

The limitations of the proposed method are that the
optimization of the R function may depend on the form
of this function, which can lead to falling into a local
minimum when a better solution exists. It is advisable to
review the graph of the R function and the calculated
optimal value when making a decision, which will allow
for a more careful analysis of the optimization results.

If the actual data of the evaluation of functions in the
process of execution of iterations is significantly underesti-
mated, then the project managers can determine this and
make corrections for risk assessments in the next iterations,
which as a result will give a useful effect in the process
of execution of the entire project.

The impact of war on research. The authors claim that
there was no influence of the war while conducting this
research.

4.  Conclusions

The article highlights the actual problem of cost op-
timization for software testing in the context of Agile
methodologies with iterative development models. The
authors propose a mathematical method for minimizing
the total costs of testing and compensation for losses dur-
ing the operation of the software product. The method
is based on the estimation of two main functions – the
function of testing costs (P) and the function of the cost
of damage caused by errors (Q).

Optimization methods such as first-order descent or
Newton’s method can be used to find the optimal balance
between these two types of costs. The experimental data
presented in the article confirm the effectiveness of the
proposed method.

It is important that with the correct estimation of the
cost functions, the optimal value will be found. In several
Agile iterations, the estimation of cost functions can be
selected more accurately.

The article pays special attention to the calculation
of the total cost of testing and operating the software
product. In the proposed example, based on the optimiza-
tion results, the authors find that the optimal number of
tests corresponds to approximately 3 units of the budget,
while the compensation of operating costs requires ap-
proximately 1 unit of the budget.

These data confirm the importance of a comprehensive
approach to cost optimization in the software development
process and demonstrate how to balance costs to minimize
risks during the operation of the software product.

This method is proposed for use in the field of software
testing and quality management in Agile environments.
The method can be used both in scientific research and
in practical activities to reduce costs and increase the
efficiency of software development projects.

Conflict of interest

The authors declare that they have no conflict of inte
rest in relation to this study, including financial, personal,
authorship, or any other, that could affect the study and
its results presented in this article.

Financing

The study was conducted without financial support.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

14 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(74), 2023

ISSN 2664-9969

Availability of data

The manuscript has no associated data.

Use of artificial intelligence

The authors confirm that they did not use artificial
intelligence technologies when creating the presented work.

References

1.	 Sadiq, Mohd., Khalid Imam Rahmani, Mohd. Wazih Ahmad,
Jung, S. (2010). Software risk assessment and evaluation pro-
cess (SRAEP) using model based approach. 2010 International
Conference on Networking and Information Technology. Manilam,
171–177. doi: https://doi.org/10.1109/icnit.2010.5508535

2.	 Mohamud Sharif, A., Basri, S.; Zain, J. M., Wan Mohd, W. M. B.,
El-Qawasmeh, E. (Eds.) (2011). Software Risk Assessment:
A Review on Small and Medium Software Projects. Communications
in Computer and Information Science. Berlin, Heidelberg: Springer,
214–224. doi: https://doi.org/10.1007/978-3-642-22191-0_19

3.	 McGraw, G. (2004). Risk analysis in software design. Available
at: https://www.synopsys.com/blogs/software-security/software-
risk-analysis/ Last accessed: 20.10.2023

4.	 Taylor, L., Shepherd, M. (2007). Performing a System Risk Assess-
ment. FISMA Certification and Accreditation Handbook, 275–294.
doi: https://doi.org/10.1016/b978-159749116-7/50022-6

5.	 Seniv, M. M., Roik, O. O. (2021). Means of calculating the
reliability of software based on models, taking into account
imperfect debugging. Scientific Bulletin of UNFU, 31 (6), 87–91.
doi: https://doi.org/10.36930/40310613

6.	 Yakovyna, V. S., Fedasiuk, D. V., Seniv, M. M., Nytrebych, O. O.
(2015). Modeli, metody ta zasoby analizu nadiinosti prohram-
nykh system. Lviv: Vydavnytstvo Lvivskoi politekhniky, 220.

7.	 Software Risk Analysis Tutorial: Comprehensive Guide With Best
Practices. Available at: https://www.lambdatest.com/learning-
hub/software-risk-analysis Last accessed: 15.10.2023

8.	 NumPy. The fundamental package for scientific computing with
Python. Available at: https://numpy.org/ Last accessed: 25.10.2023

9.	 Zhaldak, M. I., Tryus, Yu. V. (2005). Osnovy teorii i metodiv
optymizatsii. Cherkasy: Brama-Ukraina, 608.

10.	 Scypy. Fundamental algorithms for scientific computing in Python.
Available at: https://scipy.org/ Last accessed: 27.10.2023

Kostyantyn Kharchenko, PhD, Associate Professor, Department
of System Design, National Technical University of Ukraine «Igor
Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine, ORCID: https://
orcid.org/0000-0002-7334-8038

*Oleksandr Beznosyk, PhD, Associate Professor, Department of
System Design, National Technical University of Ukraine «Igor Sikorsky
Kyiv Polytechnic Institute», Kyiv, Ukraine, ORCID: https://orcid.org/
0000-0003-2775-6070, e-mail: beznosyk.oleksandr@lll.kpi.ua

Bogdan Bulakh, PhD, Associate Professor, Department of System
Design, National Technical University of Ukraine «Igor Sikorsky Kyiv
Polytechnic Institute», Kyiv, Ukraine, ORCID: https://orcid.org/0000-
0001-5880-6101

Ganna Ishchenko, Senior Lecture, Department of System Design,
National Technical University of Ukraine «Igor Sikorsky Kyiv Poly-
technic Institute», Kyiv, Ukraine, ORCID: https://orcid.org/0000-
0001-5086-5991

Vadym Yaremenko, Assistant, Department of System Design, National
Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Insti-
tute», Kyiv, Ukraine, ORCID: https://orcid.org/0000-0001-8557-6938

*Corresponding author

