
INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

31TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/2(75), 2024

ISSN 2664-9969

UDC 004.75, 004.318
DOI: 10.15587/2706-5448.2024.297339

RESEARCH OF MICROPROCESSOR
DEVICE AND SOFTWARE FOR REMOTE
CONTROL OF A ROBOTIC SYSTEM

The modern stage of the development of intelligent robotic systems is characterized by the expansion of fields
of application, which is due to autonomous work and decision-making in conditions of uncertainty. The object of
research is the system of remote control of robotic systems. During the remote control of robotic systems, prob-
lems arise that are associated with the use of wireless communication in real time. The article analyzes software
and hardware implementations of various remote control systems suitable for use as part of autonomous robotic
systems and analyzes promising microcontroller platforms for implementing a remote control device for a robotic
system. A brief review of existing protocols for transmitting control signals using radio communication equipment
and microprocessor platforms for the development of embedded systems is performed, among which a solution is
selected for research. Several approaches to the control of a robotic system are highlighted – control using a wired
connection and corresponding protocols, control via wireless communication or via the Internet, control via general-
purpose network protocols. The target platform is chosen and justified, and the S.BUS protocol is analyzed with the
provision of an algorithm for obtaining the values of the control channels from the S.BUS package. The structure
and algorithm of functioning of the microprocessor remote control system based on the ESP32 microcontroller and
the FreeRTOS OS are given. A study of the operation process of the proposed remote control system is carried
out, for which it is placed on the chassis of a ground autonomous robotic system with four-wheel drive, and the
delay time of the control signal from the receiver to the engine control modules is determined. According to the
conducted analysis, the expediency of using specialized radio communication equipment with the S.BUS protocol
for controlling executive devices as part of a robotic system, for precise movement control in real time, is shown.

Keywords: robotic systems, IoT, microcontrollers, wireless communication channels, remote control, S.BUS,
ESP32, FreeRTOS.

Andrii Zuiev,
Viktoriia Krylova,
Anatolii Hapon,
Stanislav Honcharov

© The Author(s) 2024

This is an open access article

under the Creative Commons CC BY license

How to cite

Zuiev, A., Krylova, V., Hapon, A., Honcharov, S. (2024). Research of microprocessor device and software for remote control of a robotic system. Technology

Audit and Production Reserves, 1 (2 (75)), 31–37. doi: https://doi.org/10.15587/2706-5448.2024.297339

Received date: 08.12.2023

Accepted date: 18.01.2024

Published date: 29.01.2024

1.  Introduction

Thanks to the development and application of autono-
mous robotic technologies, daily monitoring operations of
industrial facilities, in particular power lines (power lines)
and energy infrastructure facilities, are gradually being car-
ried out with the help of robotic systems (RTS), which
are equipped with various sensors, daylight cameras and
infrared, lidars, etc. But some situations still require and
will require the intervention of a human operator or manual
work [1, 2]. It can be an operating robot that is located
on the power line and is remotely controlled in the process
of performing the task of cleaning insulators, tightening
bolts, etc., or a sapper robot that neutralizes an explosive
device, or a robot that welds industrial structures. This
paper considers the issue of remote control of an operating
robot through a wireless communication system in real time.
The development and spread of embedded systems, such
as, for example, Internet of Things (IoT) devices, ensures
their deep penetration into various spheres of human acti
vity: agriculture, household and communal spheres, industry,

medicine. According to estimates by leading experts in the
field [2, 3], by the beginning of the 20s, the number of
smart devices organized into a single network around the
world should reach almost 30 billion, and in areas where
devices are networked and interact between without human
intervention, more than 15 billion units. There is a prac-
tice of using traditional, well-proven IoT tools, which have
a low price, to solve tasks in other industries, for example,
for automation devices of monitoring and control systems.

Rapid prototyping using existing commercial compo-
nents is a key aspect for developing innovative robots and
systems [3]. Modular approaches are common for software
development, requiring the design of a system framework
that is based on a high-quality, real-time architecture and
uses off-the-shelf basic modules (e. g., sensors, actuators,
and controllers), integrating hardware and software. When
designing any autonomous RTS, it is also necessary to
ensure that the communication paths to all major subsys-
tems use a reliable communication and control protocol.

The aim of research is the development and research
of the software and hardware part of the microprocessor

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

32 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/2(75), 2024

ISSN 2664-9969

device for remote control of RTS using a wireless com-
munication channel in real time using commercial com-
ponents of IoT systems.

2.  Materials and Methods

Recently, many review works have been published that
consider the use of various protocols and methods of re-
mote control of robots, RTS and autonomous systems.

Work [4] focuses on the creation of an automated robo
tics module used both offline and online, provides a common
interface and architecture that can process data from virtual
and physical sensors, and provides autonomous operation at
the sensor level. A theoretical example of the use of arc
welding with seam tracking for RTS is given. In work [5],
issues of real-time control of RTS, which are equipped with
sensors for monitoring collisions, are also considered. This
document provides a robot control protocol that provides
an interface to standard ABB S4 robot controllers and can
be used to remotely control the robot. The results are cur-
rently being used in ongoing welding experiments. But the
works actually do not consider practical issues of control
protocols and application of the given RTS model, only is-
sues of modeling and virtual simulation.

In [6], an approach to controlling robots via the Internet
in real time is considered. Transport Protocol (RTP) is used
as the communication protocol instead of the traditional
use of TCP and UDP. Theoretical analysis, simulation,
and experimental research were conducted to assess the
feasibility and effectiveness of the proposed approach for
practical use. But no way to solve the problem of non-
guaranteed sequence of arrival of packets, which is inherent
in the RTP protocol, is given. Also, there are no solutions
to the problem associated with the variable delay of the
arrival time of packets in wireless Wi-Fi networks, only
it is noted that it can reach 120 ms.

The work [7] summarizes the requirements for commu-
nication systems in RTS and shows the limits of existing
communication protocols. A description of the CAN-Bus
protocol is given, which works in real-time and combines the
advantages of different communication planning approaches.
RTCAN takes into account time-triggered communication
received from control loops, ensuring temporal determinism,
as well as event-triggered communication using sensors, which
is transmitted with low latency. Also given are the results
of tests performed on the hardware, which demonstrate the
functionality of this protocol. But it should be noted that
this protocol is implemented only with the help of wired
communication systems and has a very limited application
for control systems of autonomous robots.

In [8], a controller for a robotic arm created using Internet
of Things (IoT) technologies is considered. Such a robotic
hand can be controlled via the Internet. MK Raspberry Pi
is used as a controller, as well as for the operation of the
web server system. All four servo motors can be individually
controlled using pulse width modulation (PWM) signals. In
addition, there is the ability to track and control the direc-
tion of the robotic arm, as well as perform pick and place
tasks similar to the manufacturing industry. The results of
this study are confirmed by practical testing. But the work
also does not consider the issues of sequence and delay in
the arrival of control packets, and communication reliability.

The paper [9] describes the implementation of a de-
centralized architecture for autonomous groups of air and

ground RTS engaged in joint actions. The system provides
transparent integration of information from various sensors.
The information-theoretic measure of usefulness, which cap-
tures the purpose of the task and the interdependence of
the robot, is considered. A distributed decision mechanism
is used to determine trajectories and assignments taking
into account the limitations of individual vehicles and sen-
sor subsystems. The results of experiments on autonomous
vehicles equipped with cameras are given. A radio modem
with an extended spectrum is used to control and com-
municate with RTS agents, vehicles and the base station
communicate via a Wi-Fi network. The paper also does not
consider the technical points related to the control proto-
col of individual parts of the RTS, as well as the features
of the software implementation of the control algorithms.

Thus, several approaches to RTS control can be identified:
–	 control using a wired connection and appropriate
protocols (usually used for stationary industrial robots);
–	 wireless or Internet control, for example, control
over general-purpose network protocols. Special men-
tion should be made of the specialized control protocols
that are becoming increasingly common these days, and
which are used in commercial control systems for drones
or autonomous robots.

3.  Results and Discussion

3.1.  RTS remote control protocols. All protocols can be
conditionally divided into 3 groups:

1.	 Protocols that provide communication between a ra
dio transmitter and a radio receiver.

2.	 Communication protocols between the radio receiver
and the RTS controller.

3.	 Communication protocols between the RTS control-
ler and executive mechanisms.

Usually, for autonomous RTS, the communication between
the radio transmitter and the receiver is wireless (group
1 protocols). Most manufacturers of radio transmitters for
control systems have their own protocols, or use open source
radio systems such as ExpressLRS. Some protocols (such
as DSM2) are immune to noise, interference, and other
transmitters, or can use a backup frequency in case of a fai
lure to transmit commands on the primary frequency. This
significantly reduces the chance of signal loss. To implement
radio communication, it is advisable to use commercial de-
vices, for example, control panels from FPV drones of vari-
ous manufacturers (Futaba, Frsky, Flysky, Spektrum, JR),
which have a low price and considerable reliability.

The protocols of the second group, unlike the wireless
communication between the transmitter and the receiver, use
a wired transmission channel. One of the most important
properties of any control protocol is the signal delay, which
is essentially the time it takes for the receiver to convert
the signal from the transmitter into the signal it is going
to send to the RTS controller. A lower delay means that
the RTS will respond more quickly to the instructions
of the operator who controls it, and, as a result, to an
increase in control accuracy and a decrease in the probabi
lity of emergency situations when it comes to autonomous
robots. Some protocols of the second group are universal
and used in receivers from different manufacturers, but
some may be proprietary. The most common protocols
are: universal (PWM, PPM/CPPM, Mavlink), as well
as S.BUS (Futaba, Frsky), IBUS (Flysky), XBUS (JR),

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

33TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/2(75), 2024

ISSN 2664-9969

FPort (Frsky), MSP (Multiwii), CRSF (ExpressLRS, TBS
Crossfire and Tracer).

1) PWM – Pulse Width Modulation, the oldest con-
trol protocol that can be used directly to control servos
and motors if there is no motor control controller in the
RTS. The protocol requires three wires for control and
power on one channel. The length of the pulse determines
the output signal of the servo or throttle position. The
length of the signal pulse usually ranges from 1000 µs
to 2000 µs. The disadvantage of this protocol is the need
for each signal to have a separate signal wire.

2) PPM – Pulse Position Modulation, also known as
CPPM or PPMSUM. A PPM signal is a series of PWM
signals sent one after the other on the same signal wire but
modulated differently. The advantage of PPM over PWM
is that only one wire is required for multiple channels,
which greatly reduces the number of wires. But since the
values on the communication channel do not arrive at the
same time, it is not as accurate as PWM.

But serial protocols that appeared with the development
of digital communication equipment are more modern. Se-
rial protocol is a digital interference-tolerant protocol that
also uses only 3 wires (signal, power, ground) for multiple
channels (up to 16). Unlike PPM, which is a time-domain
signal, serial protocols are completely digital. Usually, to
receive serial protocols in the RTS controller, it is ne
cessary a serial port to which the receiver is connected.

3) S.BUS or Serial BUS, commonly used in Futaba
and FrSky equipment. It supports up to 16 channels and
uses only one signal wire. The S.BUS signal is usually
connected to the RX UART pin in the controller, this
signal is inverted, and therefore the controller must have
a dedicated input with an inverter for such a signal. Some
MKs (STM32 F3 and F7, ESP32) have built-in inverters
on all UART lines, so it is possible to connect S.BUS to
any UART. It should also be noted that the CPPM and
PWM signals have a delay of about 60–80 ms, while the
S.BUS is only 10–20 ms.

4) IBUS, XBUS are serial protocols of Flysky and JR
companies and are actually a copy of S.BUS. The latter
can transmit only 14 channels, but theoretically has the
lowest signal delay among serial protocols. Both protocols
support two-way communication.

5) CRSF is a protocol developed by Team Black Sheep
(TBS) for their Crossfire RC system. It is also very similar
to S.BUS and other digital protocols in terms of coding. The
main advantages of the protocol include low latency and
two-way communication capabilities. With only four wires,
it provides not only control, but also telemetry transmission.

6) MSP (Multiwii Serial Protocol) is created as part
of the Multiwii software. It basically allows to send MSP
commands to the controller input, which is usually done
during the initial setup of the controller via USB, and
supports 8 channels in one signal wire.

7) FPort is a protocol developed by Frsky and Betaflight
for controlling drones. Normally, the control signal and
telemetry data require separate connections, but FPort
combines them into one bidirectional signal, making it more
compact and easier to configure. Unlike S.BUS (Frsky),
which is inverted, FPort is UART compatible without
additional inverters.

8) MAVLINK is a telemetry protocol similar to FPort
developed by the Pixhawk/ArduPilot community that pro-
vides two-way communication between the controller and
the receiver.

Group 3 protocols provide communication between the
controller and the executive devices (motors or servos)
through a wired communication channel, and in fact they
set the speed and direction of rotation of the motors. Their
feature is that the controller must control the motors
at a higher speed than the receiver receives commands,
because in addition to receiving control commands, the
RTS controller usually constantly receives a lot of data
from various sensors, such as gyroscope and accelerome
ter, at a much higher speed (e. g., from 2 to 8 thousand
times per second), which are used to correct the error
of control or hold position and direction. The number of
protocols of group 3 is small, these are: PWM, Oneshot,
Multishot, Proshot and Dshot. It should be noted that
DShot is a two-way protocol, in which not only motor
control commands are issued from the controller, but it
also tells the controller how fast the motors work (RPM),
this data is used in feedback. S.BUS (FrSky) and PWM
protocols for motor control will be considered for research
into the RTS microprocessor control tool.

3.2.  Selection and justification of the target platform. An
analysis of promising microcontroller (MC) platforms for
the implementation of the RTS remote control device was
carried out (Table 1). Among all the candidates, develop-
ment kits based on the MK ESP32 – which is a mul-
tifunctional system on a crystal, developed by Espressif
Systems – a Chinese company based in Shanghai, drew
special attention. ESP32 is positioned as an autonomous
solution for the organization of Wi-Fi wireless networks,
which can organize the connection of any third-party MK
device to Wi-Fi, and is also able to run programs auto
nomously [10].

Table 1
Summary characteristics of the most popular platforms for embedded systems

Device CPU RAM ROM (Flash) Wi-Fi Input/output lines OS Cost

Arduino 8–20 MHz 1–8 Kb 16–256 Kb – 14–54 n/d 6–25 USD

ESP8266 80 MHz 80 Kb 512 Kb + 9 FreeRTOS 3–12 USD

ESP32 160 MHz 512 Kb 4–16 Kb + 43 FreeRTOS 5–15 USD

RPi Pico (W) 133 MHz 256 Kb 2–16 Mb – (+) 26 n/d 6–12 USD

Omega2 580 MHz 64 Kb 16 Mb + 12 Linux 22 USD

RPi Zero (W) 1 GHz 512 Mb 16–32 Gb – (+) 40 Linux 15–20 USD

C.H.I.P. 1 GHz 512 Mb 4–8 Gb + 45 Linux 50 USD

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

34 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/2(75), 2024

ISSN 2664-9969

The positive features of this platform include a low
price and high power: the MK has 3 cores, 2 of which
operate at a frequency of up to 240 MHz [11], and many
different hardware modules for input and output, includ-
ing UART and PWM, as well as Wi-Fi and Bluetooth
modules, which opens up great opportunities for the ap-
plication of this platform for the manufacture of various
IoT devices [12] and automation systems in general. The
ESP32 is supported by various popular development en-
vironments (IDEs) such as Arduino, PlatformIO, or can
be programmed using the ESP-IDF framework from MK.

The ESP32 platform is used in various industries to
receive and process data from sensors [13], to control
solar panels and irrigation systems [14], for smart home
systems and air quality control systems [15, 16].

Thus, this MK can be used as a controller of the remote
control system, having connected to it a radio receiver
that works according to the serial S.BUS protocol and
engine control modules.

Let’s take a closer look at what the S.BUS protocol
packet looks like, which the receiver sends to the controller.
The length of an S.BUS packet is 25 bytes, and each chan-
nel is 11 bytes. The total number of channels is 16. The
starting byte 11110002 = (240), which comes as MSB (that
is, the most significant bit comes first) – on an ESP32-type
MK should be checked as 000011112 = (15). The last byte
is 000000002 or xxxx01002. The penultimate byte (23)
contains additional binary flags: 17 and 18 channels in the
first and second bits, respectively, a lost frame and signal
loss indication, in the third and fourth bits, respectively.

To obtain channel values, after receiving a packet and
checking the first and last bytes, it is necessary to de-
code as follows (bytes are received in MSB format, but
assembled as LSB):

ch1 = b1|((b2<<8)&0x07FF),
ch2 = (b2>>3)|((b3<<5)&0x07FF),
ch3 = (b3>>6)|(b4<<2)|((b5<<10)&0x07FF),
ch4 = (b5>>1)|((b6<<7)&0x07FF),
ch5 = (b6>>4)|((b7<<4)&0x07FF),
ch6 = (b7>>7)|(b8<<1)|((b9<<9)&0x07FF),
ch7 = (b9>>2)|((b10<<6)&0x07FF),
ch8 = (b10>>5)|((b11<<3)&0x07FF),
ch9 = b12|((b13<<8)&0x07FF),
ch10 = (b13>>3)|((b14<<5)&0x07FF),
ch11 = (b14>>6)|(b15<<2)|((b16<<10)&0x07FF),
ch12 = (b16>>1)|((b17<<7)&0x07FF),
ch13 = (b17>>4)|((b18<<4)&0x07FF),
ch14 = (b18>>7)|(b19<<1)|((b20<<9)&0x07FF),
ch15 = (b20>>2)|((b21<<6)&0x07FF),
ch16 = (b21>>5)|((b22<<3)&0x07FF),

where chn – channel n, bi – i-th byte from the packet,
& – bitwise AND operation, | – bitwise OR operation,
>> – bitwise shift operation to the right, << – bitwise
shift operation to the left.

The data transfer speed of the protocol reaches 100 Kbit/s,
and is non-standard for UART. Other UART configuration
parameters: parity – even, stop bits: 2, data bits: 8. The
signal is inverted, which means that some ICs, such as
Arduino, cannot accept this signal. A simple transistor and
resistor inverter circuit can be used to invert the signal.
But on most modern MKs, including ESP32, it is pos-
sible to configure the UART to read an inverted signal.

3.3.  Features of implementation and choice of program-
ming language. The process of controlling an autonomous
RTS is complicated for many reasons, the main of which is
the minimization of the delay in the arrival of the control
signal from the remote control to the executing devices.
Some MCs have advanced capabilities for parallelism, have
a mechanism for changing the operating frequency: they
purposefully become slower or faster, depending on the need
for calculations. In the absence of load or when executing
certain commands, they can significantly reduce the operating
frequency, which reduces energy consumption and extends
the possible time of operation from a limited power source.

Another important aspect is the choice of programming
language for implementing the program on MС. Typically,
this choice is driven by support for supporting hardware
and peripherals such as:

–	 general purpose signal input/output interface (GPIO);
–	 analog input lines and analog-digital signal conver
ters (ADC);
–	 wired digital interfaces (UART, SPI, I2C) and com-
munication modules (Wi-Fi, Bluetooth), which are re-
quired to solve the problem. Availability of signal output
hardware (PWM, RMT). MС developers almost always
suggest using certain libraries of abstract representation
of hardware resources (HAL) to access certain registers
and peripherals for some programming languages (mostly
C/C++). Another aspect is the support of one or another
high-level language. Very often, too complex capabilities
of a supported high-level programming language are lim-
ited or not implemented at all in the compiler version
for certain hardware platforms. It is also important to
consider the compiler and tools that will be used to
compile the code. For embedded environments, the ability
to optimize not only the performance of the compiled
application, but also the size of the code that imple-
ments it is very important.
The code is executed under the control of the operat-

ing system, which also performs some other tasks, such
as handling the events of transceivers such as Wi-Fi or
Bluetooth modules. All this can lead to variability in the
execution time of the same code.

The most expedient for the implementation of remote
control algorithms in accordance with the specified condi-
tions will be the choice of C/C++ programming languages.
Development in these programming languages can be done
for most platforms, they provide direct control over memory
allocation, and these languages have the necessary libraries
to support hardware and peripherals. In comparison, the
Python language (MicroPython) does not provide control
over memory allocation, and has somewhat poor performance,
and the Go language (TinyGo) also lacks support for wireless
peripherals (Wi-Fi and Bluetooth) on the ESP32 platform.

3.4.  Practical implementation and research of the RTS
control system on the ESP32 platform. FrSky R9 Mini
900 MHz was used as the receiver, which was connected
to UART1 MK. FrSky Taranis X-Lite 2.4GHz ACCST
Radio 16CH was used as the control panel. To control the
engines, a bridge circuit module was used on the L298N
for each pair of engines, to ensure the possibility of re-
versing the autonomous RTS.

At startup, the driver configures the UART to the fol-
lowing settings: 8 data bits, even, 2 stop bits, 100 Kbit/s,
and sets the UART interrupt handler, which retrieves

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

35TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/2(75), 2024

ISSN 2664-9969

messages from the OS queue. It also sets the flags for
inverting the signals coming to the UART from the receiver.

After that, the configuration and setting of PWM
hardware modules is carried out using the ESP-IDF ledc
library. A separate timer is selected for each pair of control
signals (for one motor), which allows each motor to be
controlled independently (2 KHz PWM frequency, 10-bit
timer resolution). The calculation of PWM splicing de-
pending on the desired speed of rotation p (in percent)
is calculated by the expression:

d
p d

=
⋅ max

,
100

	 (1)

where d r
max = −2 1 – maximum value of duty cycle; r = 10 –

PWM timer resolution.
Software-wise, each motor is a separate object with

two PWM phases that are linked by a separate timer for
clocking. This object has an interface that allows to set
the speed and direction of rotation or disable the motor.
An OS queue is connected to each object, with the help
of which control commands are received, which allows
to significantly reduce the reaction time in the engine
control chain, due to the parallel processing of messages
on different computing cores of the MC.

After receiving and checking the next control packet,
which arrived via the S.BUS protocol, the value of the
control channels is read: movement speed, lateral displace-
ment, rotation and settings (direction of movement, engine
blocking, etc.). The received values are sent to the RTS
control routine, which decomposes them into commands
for controlling individual engines, which in turn are sent
to the engine control modules. The time of successful ar-
rival of a control packet is memorized, and if no packets
are received for some time, a forced command to stop the
engines is issued, and the movement of the RTS is stopped
until the control signals are restored. The structure of
the remote control system is shown in Fig. 1.

To reduce the delay time, the PWM setpoints are cached
and if the change from the next signal is less than 1 %,
the motor control signal remains unchanged.

MC
(ESP32)

Receiver
(FrSky F9)

UART
(S.BUS)

Control Panel
(Taranis X-Lite)

MCD
(L298N) PWM MCD

(L298N)PWM

D1 D2 D3 D4

Fig. 1. Structural diagram of the remote control system

3.5.  System efficiency analysis and conclusions. The
MCU platform ESP32-WROOM v3.1 is chosen for the
implementation of the control system: processor frequen-
cy 160 MHz, software environment ESP-IDF 5.01.0001.
The software implementation of the considered control

algorithms is implemented using the C++ language. The
program was compiled using the GCC compiler with set-
tings for performance (Optimize for performance-O2). The
program was downloaded to the flash memory of the MK
and executed under the control of the OS FreeRTOS [17]
with a quantization time of 1 ms.

A study of the functioning of the proposed remote con-
trol system was carried out, for which it was placed on the
chassis of a ground autonomous RTS with four-wheel drive.
Steering was carried out by all wheels, regardless of the
possibility of reversing, which, in combination with a special
chassis, provides significant mobility of the RTS, includ-
ing the possibility of lateral displacement without rotation.

In the course of the study, the time of processing con-
trol signals and their decomposition by PWM channels
was measured (Table 2). Time was measured using the
MC’s internal counter (esp_timer_get_time() function) with
a resolution of up to 1 µs.

Table 2

Calculation time for the algorithm for decomposing control commands
on PWM channels (ESP32, 1 core, 160 MHz)

No. State
Calculation time

min, μs
Calculation time

max, μs

1 No control (Disable) 3 3

2 Rotation 20 40

3 Side shift 25 45

4
Change of speed or
direction of movement

10 15

Table 3 and Fig. 2 show the measurements of the delay
time of the control signals on separate PWM channels in
the mode of parallel and serial (without the use of a queue)
processing at different frequencies of the processor. The
delay time was measured at the limit of simplification of
command queues for all motor controllers.

Also, the software implementation of the algorithm
was additionally tested at a frequency of 240 MHz, from
which it was found that the delay time decreases by
~1.3–1.4 times, which is practically proportional to the
increase in frequency. From the obtained results, it can
be seen that the delay in the case of parallel processing
when using the OS queue is reduced by 1.7–2.8 times,
compared to the sequential implementation of the algorithm.

Table 3

Comparison of the delay time for parallel and serial implementations
of the algorithm for sending signals through PWM channels depending

on the frequency of the processor

No. State

Delay time
(160 MHz), μs

Delay time
(240 MHz), μs

min max min max

1 Processing and recording 3 3 2 2

Parallel sending of a PWM signal (queue)

2
Change of speed or direction of move-
ment, or lateral shift (4 channels)

40 46 29 32

3 Rotation (2 channels) 24 30 19 23

Sequential sending of a PWM signal (no queuing)

4
Change of speed or direction of move-
ment, or lateral shift (4 channels)

66 130 49 73

5 Rotation (2 channels) 91 104 48 60

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

36 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/2(75), 2024

ISSN 2664-9969

Fig. 2. Comparison of the maximum delay time for different

implementations of the algorithm for sending signals through PWM
channels depending on the frequency of the processor

3.6.  Discussion. The results obtained in the work can
be applied to the development and improvement of remote
control systems for robotics and drones. Also, the proposed
system can be used as part of simulation training com-
plexes for the training of operators of robotic equipment,
for which the MС, which is part of the system, must be
directly connected to the control computer of the training
complex using the UART/USB interface. This will ensure
the uniformity of remote control and the possibility of
a seamless transition from training to operation of the tool.

The proposed system uses only commercial components
of general purpose with low cost, which reduces the cost of
both the robotic complex and the simulation-exercise complex.
In the conditions of martial law in Ukraine, the low cost
and availability of the components that make up the system
give significant advantages to the proposed solution.

Further research may focus on closer integration of
the control system with simulators and support for digital
motor control protocols, including brushless ones such
as DShot.

4.  Conclusions

From the obtained results, it can be seen that both
implementations of the algorithm provide a negligible delay
compared to the signal transcoding delay, which is tens of
milliseconds. Also, the total delay time obtained is signifi-
cantly less than the delays that are present when exchanging
wireless communication channels via Wi-Fi or Bluetooth
networks. Thus, it is possible to note the expediency of
using specialized radio communication equipment with the
S.BUS protocol to control the executive devices in the
RTS, for accurate traffic control in real time.

Conflict of interest

The authors declare that they have no conflict of inte
rest in relation to this research, whether financial, personal,
authorship or otherwise, that could affect the research and
its results presented in this paper.

Financing

The research was performed without financial support.

Data availability

The manuscript has no associated data.

Use of artificial intelligence

The authors confirm that they did not use artificial
intelligence technologies when creating the current work.

References

1.	 Chen, L., Dong, X., Sun, Y., Su, Z. (2019). Real-time Image
Transmission and Operation Control for Power Transmission
Line Patrol using Unmanned Aerial Vehicle. 25th International
Conference on Electricity Distribution. Madrid, 3–6 June 2019.
Paper No. 488. doi: https://doi.org/10.34890/79

2.	 Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., Mustaqim, M.
(2020). Internet of Things (IoT) for Next-Generation Smart
Systems: A Review of Current Challenges, Future Trends and
Prospects for Emerging 5G-IoT Scenarios. IEEE Access, 8,
23022–23040. doi: https://doi.org/10.1109/access.2020.2970118

3.	 Bonarini, A., Matteucci, M., Migliavacca, M., Rizzi, D. (2014).
R2P: An open source hardware and software modular approach
to robot prototyping. Robotics and Autonomous Systems, 62 (7),
1073–1084. doi: https://doi.org/10.1016/j.robot.2013.08.009

4.	 Cederberg, P., Olsson, M., Bolmsj , G. (2002). Virtual trian-
gulation sensor development, behavior simulation and CAR
integration applied to robotic arc-welding. Journal of Intel-
ligent and Robotic Systems, 35, 365–379. doi: https://doi.org/
10.1023/a:1022306821640

5.	 Bolmsj , G., Cederberg, P., Olsson, M. (2002). Remote Control
of a Standard ABB Robot System in Real Time Using the
Robot Application Protocol (RAP). Proceedings of the 33rd
ISR (International Symposium on Robotics). Stockholm.

6.	 Duong, P. M., Hoang, T. T., Vinh, T. Q. (2010). Control of an
Internet-based Robot System Using the Real-time Transport
Protocol. Proc of the 5th Vietnam Conference on Mechatronics.
doi: https://doi.org/10.48550/arXiv.1707.05456

7.	 Migliavacca, M., Bonarini, A., Matteucci, M. (2013). RTCAN:
a Real-Time CAN-Bus Protocol for Robotic Applications. Pro-
ceedings of the 10th International Conference on Informatics
in Control, Automation and Robotics (ICINCO-2013), 353–360.
doi: https://doi.org/10.5220/0004484303530360

8.	 Ishak, K. A., Ishak, M. K., Roslan, M. I. (2018). Design of
Robotic Arm Controller based on Internet of Things (IoT).
Journal of Telecommunication, Electronic and Computer Engi-
neering, 10 (2-3), 5–9.

9.	 Grocholsky, B., Bayraktar, S., Kumar, V., Taylor, C. J., Pappas, G.;
Ang, M. H., Khatib, O. (Eds.) (2006). Synergies in Fea-
ture Localization by Air-Ground Robot Teams. Experimental
Robotics IX. Springer Tracts in Advanced Robotics. Vol. 21.
Berlin, Heidelberg: Springer, 352–361. doi: https://doi.org/
10.1007/1155224634

10.	 ESP32 Technical Reference Manual. Version 5.0 Espressif Systems
(2023). Available at: https://www.espressif.com/sites/default/
files/documentation/esp32technical_reference_manual_en.pdf

11.	 ESP32 Series Datasheet. Version 4.3 Espressif Systems (2023).
Available at: https://www.espressif.com/sites/default/files/docu-
mentation/esp32_datasheet_en.pdf

12.	 Maier, A., Sharp, A., Vagapov, Y. (2017). Comparative analysis
and practical implementation of the ESP32 microcontroller
module for the internet of things. 2017 Internet Technologies
and Applications (ITA). IEEE: Piscataway, 143–148. doi: https://
doi.org/10.1109/itecha.2017.8101926

13.	 Hangan, A., Chiru, C.-G., Arsene, D., Czako, Z., Lisman, D. F.,
Mocanu, M., Pahontu, B., Predescu, A., Sebestyen, G. (2022).
Advanced Techniques for Monitoring and Management of Urban
Water Infrastructures – An Overview. Water, 14 (14), 2174.
doi: https://doi.org/10.3390/w14142174

14.	 Allafi, I., Iqbal, T. (2017). Design and implementation of a low
cost web server using ESP32 for real-time photovoltaic system
monitoring. 2017 IEEE Electrical Power and Energy Confe
rence (EPEC). IEEE: Piscataway. doi: https://doi.org/10.1109/
epec.2017.8286184

15.	 Carducci, C. G. C., Monti, A., Schraven, M. H., Schumacher, M.,
Mueller, D. (2019). Enabling ESP32-based IoT Applications in
Building Automation Systems. 2019 II Workshop on Metrology
for Industry 4.0 and IoT (MetroInd4.0&IoT). IEEE: Piscataway,
306–311. doi: https://doi.org/10.1109/metroi4.2019.8792852

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

37TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/2(75), 2024

ISSN 2664-9969

16.	 Ta tan, M., G kozan, H. (2019). Real-Time Monitoring of Indoor
Air Quality with Internet of Things-Based E-Nose. Applied
Sciences, 9 (16), 3435. doi: https://doi.org/10.3390/app9163435

17.	 FreeRTOS. Available at: https://docs.espressif.com/projects/
esp-idf/en/latest/esp32/api-reference/system/freertos.html Last
accessed: 15.11.2022

Andrii Zuiev, PhD, Associate Professor, Department of Automation
and Control in Technical Systems, National Technical University
«Kharkiv Polytechnic Institute», Kharkiv, Ukraine, ORCID: https://
orcid.org/0000-0001-8206-4304

*Viktoriia Krylova, PhD, Associate Professor, Department of
Automation and Control in Technical Systems, National Techni-

cal University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine,
e-mail: viktoriia.krylova@khpi.edu.ua, ORCID: https://orcid.org/
0000-0002-4540-8670

Anatolii Hapon, PhD, Associate Professor, Department of Automa-
tion and Control in Technical Systems, National Technical University
«Kharkiv Polytechnic Institute», Kharkiv, Ukraine, ORCID: https://
orcid.org/0000-0002-2582-6154

Stanislav Honcharov, Postgraduate Student, Department of Automa-
tion and Control in Technical Systems, National Technical University
«Kharkiv Polytechnic Institute», Kharkiv, Ukraine, ORCID: https://
orcid.org/0009-0002-9874-3189

*Corresponding author

UDC 658.51
DOI: 10.15587/2706-5448.2024.297399

ANALYSIS OF EXPERIENCE
IN OPTIMIZING THE OPERATION OF
AN AUTOMATED PRODUCTION LINE
FOR FOLDING CARDBOARD BOXES

The object of research is an automated system for controlling the bending mechanisms of the folding-gluing line
for cardboard packaging products. In the work, the ways of optimization and the development of an automated
control system for the bending mechanisms of the folding and gluing line, which makes it possible to fold various
structures and standard sizes of cardboard boxes using modern automation tools based on programmable logic
controllers, were carried out in the work.

A mathematical model has been proposed to describe operations on the folding-gluing line. Based on the model,
a methodology has been developed for calculating the parameters of the automated control system for the box
folding production line, depending on the technical parameters of the line and the parameters of the boxes to be
bent. This will make it possible to choose optimal technological modes of the production process and obtain high
quality parameters of cardboard packaging products. To verify the mathematical model of the production line,
software has been developed in the Delphi development environment, which was applied with the developed auto-
mated production process control system based on a programmable logic controller (PLC) and an operator panel.
This produced a number of results, in particular, controlling the speed of the hook bend in proportion to the speed
of the line. And also provided an opportunity to increase line speed and, accordingly, production productivity.
It has been possible to change the mutual location of system elements, which made it possible to reduce the distance
between workpieces and increase the capacity of the line tape by 30 %.

The obtained research results were implemented at the production enterprise of typographic products «Di-
nas» (Zaporizhzhia, Ukraine), which contributed to the improvement and optimization of production processes.
Conducting further research will provide an opportunity to expand the proposed methodology for use on all types
of folding and gluing lines.

Keywords: automated system, technological process, structural diagram, programmable logic controller, panel-
controller.

Oleksandr Malyi,
Nataliia Furmanova,
Vadym Onyshchenko,
Iryna Pospeieva,
Pavlo Kostianoi

© The Author(s) 2024

This is an open access article

under the Creative Commons CC BY license

How to cite

Malyi, O., Furmanova, N., Onyshchenko, V., Pospeieva, I., Kostianoi, P. (2024). Analysis of experience in optimizing the operation of an automated production

line for folding cardboard boxes. Technology Audit and Production Reserves, 1 (2 (75)), 37–45. doi: https://doi.org/10.15587/2706-5448.2024.297399

Received date: 11.12.2023

Accepted date: 23.01.2024

Published date: 29.01.2024

1.  Introduction

Cardboard is often used as packaging material for vari-
ous products. It has a low cost, a wide range of standard

sizes, design and assembly variability. Dense paper packag-
ing simply folds, saves space during storage, and is easily
disposed of. At the same time, the boxes are quite strong,
which led to their use in various industries, from the food

