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RESEARCH OF MICROPROCESSOR 
DEVICE AND SOFTWARE FOR REMOTE 
CONTROL OF A ROBOTIC SYSTEM

The modern stage of the development of intelligent robotic systems is characterized by the expansion of fields 
of application, which is due to autonomous work and decision-making in conditions of uncertainty. The object of 
research is the system of remote control of robotic systems. During the remote control of robotic systems, prob-
lems arise that are associated with the use of wireless communication in real time. The article analyzes software 
and hardware implementations of various remote control systems suitable for use as part of autonomous robotic 
systems and analyzes promising microcontroller platforms for implementing a remote control device for a robotic 
system. A brief review of existing protocols for transmitting control signals using radio communication equipment 
and microprocessor platforms for the development of embedded systems is performed, among which a solution is 
selected for research. Several approaches to the control of a robotic system are highlighted – control using a wired 
connection and corresponding protocols, control via wireless communication or via the Internet, control via general-
purpose network protocols. The target platform is chosen and justified, and the S.BUS protocol is analyzed with the 
provision of an algorithm for obtaining the values of the control channels from the S.BUS package. The structure 
and algorithm of functioning of the microprocessor remote control system based on the ESP32 microcontroller and 
the FreeRTOS OS are given. A study of the operation process of the proposed remote control system is carried 
out, for which it is placed on the chassis of a ground autonomous robotic system with four-wheel drive, and the 
delay time of the control signal from the receiver to the engine control modules is determined. According to the 
conducted analysis, the expediency of using specialized radio communication equipment with the S.BUS protocol 
for controlling executive devices as part of a robotic system, for precise movement control in real time, is shown.

Keywords: robotic systems, IoT, microcontrollers, wireless communication channels, remote control, S.BUS, 
ESP32, FreeRTOS.
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1.  Introduction

Thanks to the development and application of autono-
mous robotic technologies, daily monitoring operations of 
industrial facilities, in particular power lines (power lines) 
and energy infrastructure facilities, are gradually being car-
ried out with the help of robotic systems (RTS), which 
are equipped with various sensors, daylight cameras and 
infrared, lidars, etc. But some situations still require and 
will require the intervention of a human operator or manual 
work  [1, 2]. It can be an operating robot that is located 
on the power line and is remotely controlled in the process 
of performing the task of cleaning insulators, tightening 
bolts, etc., or a sapper robot that neutralizes an explosive 
device, or a robot that welds industrial structures. This 
paper considers the issue of remote control of an operating 
robot through a wireless communication system in real time. 
The development and spread of embedded systems, such 
as, for example, Internet of Things (IoT) devices, ensures 
their deep penetration into various spheres of human acti
vity: agriculture, household and communal spheres, industry, 

medicine. According to estimates by leading experts in the 
field  [2, 3], by the beginning of the 20s, the number of 
smart devices organized into a single network around the 
world should reach almost 30 billion, and in areas where 
devices are networked and interact between without human 
intervention, more than 15 billion units. There is a prac-
tice of using traditional, well-proven IoT tools, which have 
a  low price, to solve tasks in other industries, for example, 
for automation devices of monitoring and control systems.

Rapid prototyping using existing commercial compo-
nents is a key aspect for developing innovative robots and 
systems [3]. Modular approaches are common for software 
development, requiring the design of a system framework 
that is based on a high-quality, real-time architecture and 
uses off-the-shelf basic modules (e.  g., sensors, actuators, 
and controllers), integrating hardware and software. When 
designing any autonomous RTS, it is also necessary to 
ensure that the communication paths to all major subsys-
tems use a reliable communication and control protocol.

The aim of research is the development and research 
of the software and hardware part of the microprocessor 
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device for remote control of RTS using a wireless com-
munication channel in real time using commercial com-
ponents of IoT systems.

2.  Materials and Methods

Recently, many review works have been published that 
consider the use of various protocols and methods of re-
mote control of robots, RTS and autonomous systems.

Work  [4] focuses on the creation of an automated robo
tics module used both offline and online, provides a common 
interface and architecture that can process data from virtual 
and physical sensors, and provides autonomous operation at 
the sensor level. A theoretical example of the use of arc 
welding with seam tracking for RTS is given. In work  [5], 
issues of real-time control of RTS, which are equipped with 
sensors for monitoring collisions, are also considered. This 
document provides a robot control protocol that provides 
an interface to standard ABB S4 robot controllers and can 
be used to remotely control the robot. The results are cur-
rently being used in ongoing welding experiments. But the 
works actually do not consider practical issues of control 
protocols and application of the given RTS model, only is-
sues of modeling and virtual simulation.

In [6], an approach to controlling robots via the Internet 
in real time is considered. Transport Protocol (RTP) is used 
as the communication protocol instead of the traditional 
use of TCP and UDP. Theoretical analysis, simulation, 
and experimental research were conducted to assess the 
feasibility and effectiveness of the proposed approach for 
practical use. But no way to solve the problem of non-
guaranteed sequence of arrival of packets, which is inherent 
in the RTP protocol, is given. Also, there are no solutions 
to the problem associated with the variable delay of the 
arrival time of packets in wireless Wi-Fi networks, only 
it is noted that it can reach 120  ms.

The work  [7] summarizes the requirements for commu-
nication systems in RTS and shows the limits of existing 
communication protocols. A description of the CAN-Bus 
protocol is given, which works in real-time and combines the 
advantages of different communication planning approaches. 
RTCAN takes into account time-triggered communication 
received from control loops, ensuring temporal determinism, 
as well as event-triggered communication using sensors, which 
is transmitted with low latency. Also given are the results 
of tests performed on the hardware, which demonstrate the 
functionality of this protocol. But it should be noted that 
this protocol is implemented only with the help of wired 
communication systems and has a very limited application 
for control systems of autonomous robots.

In [8], a controller for a robotic arm created using Internet 
of Things (IoT) technologies is considered. Such a robotic 
hand can be controlled via the Internet. MK Raspberry Pi 
is used as a controller, as well as for the operation of the 
web server system. All four servo motors can be individually 
controlled using pulse width modulation (PWM) signals. In 
addition, there is the ability to track and control the direc-
tion of the robotic arm, as well as perform pick and place 
tasks similar to the manufacturing industry. The results of 
this study are confirmed by practical testing. But the work 
also does not consider the issues of sequence and delay in 
the arrival of control packets, and communication reliability.

The paper  [9] describes the implementation of a de-
centralized architecture for autonomous groups of air and 

ground RTS engaged in joint actions. The system provides 
transparent integration of information from various sensors. 
The information-theoretic measure of usefulness, which cap-
tures the purpose of the task and the interdependence of 
the robot, is considered. A distributed decision mechanism 
is used to determine trajectories and assignments taking 
into account the limitations of individual vehicles and sen-
sor subsystems. The results of experiments on autonomous 
vehicles equipped with cameras are given. A radio modem 
with an extended spectrum is used to control and com-
municate with RTS agents, vehicles and the base station 
communicate via a Wi-Fi network. The paper also does not 
consider the technical points related to the control proto-
col of individual parts of the RTS, as well as the features 
of the software implementation of the control algorithms.

Thus, several approaches to RTS control can be identified:
–	 control using a wired connection and appropriate 
protocols (usually used for stationary industrial robots);
–	 wireless or Internet control, for example, control 
over general-purpose network protocols. Special men-
tion should be made of the specialized control protocols 
that are becoming increasingly common these days, and 
which are used in commercial control systems for drones 
or autonomous robots.

3.  Results and Discussion

3.1.  RTS remote control protocols. All protocols can be  
conditionally divided into 3  groups:

1.	 Protocols that provide communication between a ra
dio transmitter and a radio receiver.

2.	 Communication protocols between the radio receiver 
and the RTS controller.

3.	 Communication protocols between the RTS control-
ler and executive mechanisms.

Usually, for autonomous RTS, the communication between 
the radio transmitter and the receiver is wireless  (group 
1 protocols). Most manufacturers of radio transmitters for 
control systems have their own protocols, or use open source 
radio systems such as ExpressLRS. Some protocols  (such 
as DSM2) are immune to noise, interference, and other 
transmitters, or can use a backup frequency in case of a  fai
lure to transmit commands on the primary frequency. This 
significantly reduces the chance of signal loss. To implement 
radio communication, it is advisable to use commercial de-
vices, for example, control panels from FPV drones of vari-
ous manufacturers (Futaba, Frsky, Flysky, Spektrum, JR),  
which have a low price and considerable reliability.

The protocols of the second group, unlike the wireless 
communication between the transmitter and the receiver, use 
a wired transmission channel. One of the most important 
properties of any control protocol is the signal delay, which 
is essentially the time it takes for the receiver to convert 
the signal from the transmitter into the signal it is going 
to send to the RTS controller. A lower delay means that 
the RTS will respond more quickly to the instructions 
of the operator who controls it, and, as a  result, to an 
increase in control accuracy and a decrease in the probabi
lity of emergency situations when it comes to autonomous 
robots. Some protocols of the second group are universal 
and used in receivers from different manufacturers, but 
some may be proprietary. The most common protocols 
are: universal (PWM, PPM/CPPM, Mavlink), as well 
as S.BUS (Futaba, Frsky), IBUS (Flysky), XBUS (JR),  
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FPort (Frsky), MSP (Multiwii), CRSF (ExpressLRS, TBS 
Crossfire and Tracer).

1)  PWM – Pulse Width Modulation, the oldest con-
trol protocol that can be used directly to control servos 
and motors if there is no motor control controller in the 
RTS. The protocol requires three wires for control and 
power on one channel. The length of the pulse determines 
the output signal of the servo or throttle position. The 
length of the signal pulse usually ranges from 1000  µs  
to 2000  µs. The disadvantage of this protocol is the need 
for each signal to have a separate signal wire.

2)  PPM – Pulse Position Modulation, also known as 
CPPM or PPMSUM. A PPM signal is a series of PWM 
signals sent one after the other on the same signal wire but 
modulated differently. The advantage of PPM over PWM 
is that only one wire is required for multiple channels, 
which greatly reduces the number of wires. But since the 
values on the communication channel do not arrive at the 
same time, it is not as accurate as PWM.

But serial protocols that appeared with the development 
of digital communication equipment are more modern. Se-
rial protocol is a digital interference-tolerant protocol that 
also uses only 3 wires (signal, power, ground) for multiple 
channels (up to 16). Unlike PPM, which is a time-domain 
signal, serial protocols are completely digital. Usually, to 
receive serial protocols in the RTS controller, it is ne
cessary a serial port to which the receiver is connected.

3)  S.BUS or Serial BUS, commonly used in Futaba 
and FrSky equipment. It supports up to 16 channels and 
uses only one signal wire. The S.BUS signal is usually 
connected to the RX UART pin in the controller, this 
signal is inverted, and therefore the controller must have 
a dedicated input with an inverter for such a signal. Some 
MKs (STM32 F3 and F7, ESP32) have built-in inverters 
on all UART lines, so it is possible to connect S.BUS to 
any UART. It should also be noted that the CPPM and 
PWM signals have a delay of about 60–80  ms, while the 
S.BUS is only 10–20  ms.

4)  IBUS, XBUS are serial protocols of Flysky and JR 
companies and are actually a copy of S.BUS. The latter 
can transmit only 14 channels, but theoretically has the 
lowest signal delay among serial protocols. Both protocols 
support two-way communication.

5)  CRSF is a protocol developed by Team Black Sheep 
(TBS) for their Crossfire RC system. It is also very similar 
to S.BUS and other digital protocols in terms of coding. The 
main advantages of the protocol include low latency and 
two-way communication capabilities. With only four wires, 
it provides not only control, but also telemetry transmission.

6)  MSP (Multiwii Serial Protocol) is created as part 
of the Multiwii software. It basically allows to send MSP 
commands to the controller input, which is usually done 
during the initial setup of the controller via USB, and 
supports 8 channels in one signal wire.

7) FPort is a protocol developed by Frsky and Betaflight 
for controlling drones. Normally, the control signal and 
telemetry data require separate connections, but FPort 
combines them into one bidirectional signal, making it more 
compact and easier to configure. Unlike S.BUS  (Frsky), 
which is inverted, FPort is UART compatible without 
additional inverters.

8)  MAVLINK is a telemetry protocol similar to FPort 
developed by the Pixhawk/ArduPilot community that pro-
vides two-way communication between the controller and 
the receiver.

Group 3 protocols provide communication between the 
controller and the executive devices (motors or servos) 
through a wired communication channel, and in fact they 
set the speed and direction of rotation of the motors. Their 
feature is that the controller must control the motors 
at a higher speed than the receiver receives commands, 
because in addition to receiving control commands, the 
RTS controller usually constantly receives a lot of data 
from various sensors, such as gyroscope and accelerome
ter, at a much higher speed (e.  g., from 2 to 8 thousand 
times per second), which are used to correct the error 
of control or hold position and direction. The number of 
protocols of group 3 is small, these are: PWM, Oneshot, 
Multishot, Proshot and Dshot. It should be noted that 
DShot is a two-way protocol, in which not only motor 
control commands are issued from the controller, but it 
also tells the controller how fast the motors work (RPM), 
this data is used in feedback. S.BUS (FrSky) and PWM 
protocols for motor control will be considered for research 
into the RTS microprocessor control tool.

3.2.  Selection and justification of the target platform. An 
analysis of promising microcontroller (MC) platforms for 
the implementation of the RTS remote control device was 
carried out (Table  1). Among all the candidates, develop-
ment kits based on the MK ESP32 – which is a  mul-
tifunctional system on a crystal, developed by Espressif 
Systems – a Chinese company based in Shanghai, drew 
special attention. ESP32 is positioned as an autonomous 
solution for the organization of Wi-Fi wireless networks, 
which can organize the connection of any third-party MK 
device to Wi-Fi, and is also able to run programs auto
nomously  [10].

Table 1
Summary characteristics of the most popular platforms for embedded systems

Device CPU RAM ROM (Flash) Wi-Fi Input/output lines OS Cost

Arduino 8–20 MHz 1–8 Kb 16–256 Kb – 14–54 n/d 6–25 USD

ESP8266 80 MHz 80 Kb 512 Kb + 9 FreeRTOS 3–12 USD

ESP32 160 MHz 512 Kb 4–16 Kb + 43 FreeRTOS 5–15 USD

RPi Pico (W) 133 MHz 256 Kb 2–16 Mb – (+) 26 n/d 6–12 USD

Omega2 580 MHz 64 Kb 16 Mb + 12 Linux 22 USD

RPi Zero (W) 1 GHz 512 Mb 16–32 Gb – (+) 40 Linux 15–20 USD

C.H.I.P. 1 GHz 512 Mb 4–8 Gb + 45 Linux 50 USD
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The positive features of this platform include a low 
price and high power: the MK has 3 cores, 2 of which 
operate at a frequency of up to 240 MHz  [11], and many 
different hardware modules for input and output, includ-
ing UART and PWM, as well as Wi-Fi and Bluetooth 
modules, which opens up great opportunities for the ap-
plication of this platform for the manufacture of various 
IoT devices  [12] and automation systems in general. The 
ESP32 is supported by various popular development en-
vironments (IDEs) such as Arduino, PlatformIO, or can 
be programmed using the ESP-IDF framework from MK.

The ESP32 platform is used in various industries to 
receive and process data from sensors  [13], to control 
solar panels and irrigation systems  [14], for smart home 
systems and air quality control systems  [15, 16].

Thus, this MK can be used as a controller of the remote 
control system, having connected to it a radio receiver 
that works according to the serial S.BUS protocol and 
engine control modules.

Let’s take a closer look at what the S.BUS protocol 
packet looks like, which the receiver sends to the controller. 
The length of an S.BUS packet is 25 bytes, and each chan-
nel is 11 bytes. The total number of channels is 16. The 
starting byte 11110002 = (240), which comes as MSB (that 
is, the most significant bit comes first) – on an ESP32-type 
MK should be checked as 000011112 = (15). The last byte 
is 000000002 or xxxx01002. The penultimate byte (23) 
contains additional binary flags: 17 and 18 channels in the 
first and second bits, respectively, a lost frame and signal 
loss indication, in the third and fourth bits, respectively.

To obtain channel values, after receiving a packet and 
checking the first and last bytes, it is necessary to de-
code as follows (bytes are received in MSB format, but 
assembled as LSB):

ch1 = b1|((b2<<8)&0x07FF),
ch2 = (b2>>3)|((b3<<5)&0x07FF),
ch3 = (b3>>6)|(b4<<2)|((b5<<10)&0x07FF),
ch4 = (b5>>1)|((b6<<7)&0x07FF),
ch5 = (b6>>4)|((b7<<4)&0x07FF),
ch6 = (b7>>7)|(b8<<1)|((b9<<9)&0x07FF),
ch7 = (b9>>2)|((b10<<6)&0x07FF),
ch8 = (b10>>5)|((b11<<3)&0x07FF),
ch9 = b12|((b13<<8)&0x07FF),
ch10 = (b13>>3)|((b14<<5)&0x07FF),
ch11 = (b14>>6)|(b15<<2)|((b16<<10)&0x07FF),
ch12 = (b16>>1)|((b17<<7)&0x07FF),
ch13 = (b17>>4)|((b18<<4)&0x07FF),
ch14 = (b18>>7)|(b19<<1)|((b20<<9)&0x07FF),
ch15 = (b20>>2)|((b21<<6)&0x07FF),
ch16 = (b21>>5)|((b22<<3)&0x07FF),

where chn – channel n, bi – i-th byte from the packet, 
& – bitwise AND operation, | – bitwise OR operation, 
>> – bitwise shift operation to the right, << – bitwise 
shift operation to the left.

The data transfer speed of the protocol reaches 100 Kbit/s, 
and is non-standard for UART. Other UART configuration 
parameters: parity – even, stop bits: 2, data bits: 8. The 
signal is inverted, which means that some ICs, such as 
Arduino, cannot accept this signal. A simple transistor and 
resistor inverter circuit can be used to invert the signal. 
But on most modern MKs, including ESP32, it is pos-
sible to configure the UART to read an inverted signal.

3.3.  Features of implementation and choice of program-
ming language. The process of controlling an autonomous 
RTS is complicated for many reasons, the main of which is 
the minimization of the delay in the arrival of the control 
signal from the remote control to the executing devices. 
Some MCs have advanced capabilities for parallelism, have 
a mechanism for changing the operating frequency: they 
purposefully become slower or faster, depending on the need 
for calculations. In the absence of load or when executing 
certain commands, they can significantly reduce the operating 
frequency, which reduces energy consumption and extends 
the possible time of operation from a limited power source.

Another important aspect is the choice of programming 
language for implementing the program on MС. Typically, 
this choice is driven by support for supporting hardware 
and peripherals such as:

–	 general purpose signal input/output interface (GPIO);
–	 analog input lines and analog-digital signal conver
ters (ADC);
–	 wired digital interfaces (UART, SPI, I2C) and com-
munication modules (Wi-Fi, Bluetooth), which are re-
quired to solve the problem. Availability of signal output 
hardware (PWM, RMT). MС developers almost always 
suggest using certain libraries of abstract representation 
of hardware resources (HAL) to access certain registers 
and peripherals for some programming languages (mostly 
C/C++). Another aspect is the support of one or another 
high-level language. Very often, too complex capabilities 
of a supported high-level programming language are lim-
ited or not implemented at all in the compiler version 
for certain hardware platforms. It is also important to 
consider the compiler and tools that will be used to 
compile the code. For embedded environments, the ability 
to optimize not only the performance of the compiled 
application, but also the size of the code that imple-
ments it is very important.
The code is executed under the control of the operat-

ing system, which also performs some other tasks, such 
as handling the events of transceivers such as Wi-Fi or 
Bluetooth modules. All this can lead to variability in the 
execution time of the same code.

The most expedient for the implementation of remote 
control algorithms in accordance with the specified condi-
tions will be the choice of C/C++ programming languages. 
Development in these programming languages can be done 
for most platforms, they provide direct control over memory 
allocation, and these languages have the necessary libraries 
to support hardware and peripherals. In comparison, the 
Python language (MicroPython) does not provide control 
over memory allocation, and has somewhat poor performance, 
and the Go language (TinyGo) also lacks support for wireless 
peripherals (Wi-Fi and Bluetooth) on the ESP32 platform.

3.4.  Practical implementation and research of the RTS 
control system on the ESP32 platform. FrSky R9 Mini 
900  MHz was used as the receiver, which was connected 
to UART1 MK. FrSky Taranis X-Lite 2.4GHz ACCST 
Radio 16CH was used as the control panel. To control the 
engines, a bridge circuit module was used on the L298N 
for each pair of engines, to ensure the possibility of re-
versing the autonomous RTS.

At startup, the driver configures the UART to the fol-
lowing settings: 8 data bits, even, 2 stop bits, 100  Kbit/s, 
and sets the UART interrupt handler, which retrieves  
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messages from the OS queue. It also sets the flags for 
inverting the signals coming to the UART from the receiver.

After that, the configuration and setting of PWM 
hardware modules is carried out using the ESP-IDF ledc 
library. A separate timer is selected for each pair of control 
signals (for one motor), which allows each motor to be 
controlled independently (2  KHz PWM frequency, 10-bit  
timer resolution). The calculation of PWM splicing de-
pending on the desired speed of rotation p (in percent) 
is calculated by the expression:

d
p d

=
⋅ max

,
100

	 (1)

where d r
max = −2 1 – maximum value of duty cycle; r = 10 – 

PWM timer resolution.
Software-wise, each motor is a separate object with 

two PWM phases that are linked by a separate timer for 
clocking. This object has an interface that allows to set 
the speed and direction of rotation or disable the motor. 
An OS queue is connected to each object, with the help 
of which control commands are received, which allows 
to significantly reduce the reaction time in the engine 
control chain, due to the parallel processing of messages 
on different computing cores of the MC.

After receiving and checking the next control packet, 
which arrived via the S.BUS protocol, the value of the 
control channels is read: movement speed, lateral displace-
ment, rotation and settings (direction of movement, engine 
blocking, etc.). The received values are sent to the RTS 
control routine, which decomposes them into commands 
for controlling individual engines, which in turn are sent 
to the engine control modules. The time of successful ar-
rival of a control packet is memorized, and if no packets 
are received for some time, a forced command to stop the 
engines is issued, and the movement of the RTS is stopped 
until the control signals are restored. The structure of 
the remote control system is shown in Fig.  1.

To reduce the delay time, the PWM setpoints are cached 
and if the change from the next signal is less than 1  %, 
the motor control signal remains unchanged.
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UART
(S.BUS)

Control Panel
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(L298N) PWM MCD 

(L298N)PWM 

D1 D2 D3 D4

Fig. 1. Structural diagram of the remote control system

3.5.  System efficiency analysis and conclusions. The 
MCU platform ESP32-WROOM v3.1 is chosen for the 
implementation of the control system: processor frequen-
cy 160  MHz, software environment ESP-IDF 5.01.0001. 
The software implementation of the considered control 

algorithms is implemented using the C++ language. The 
program was compiled using the GCC compiler with set-
tings for performance (Optimize for performance-O2). The 
program was downloaded to the flash memory of the MK 
and executed under the control of the OS FreeRTOS [17] 
with a quantization time of 1  ms.

A study of the functioning of the proposed remote con-
trol system was carried out, for which it was placed on the 
chassis of a ground autonomous RTS with four-wheel drive. 
Steering was carried out by all wheels, regardless of the 
possibility of reversing, which, in combination with a special 
chassis, provides significant mobility of the RTS, includ-
ing the possibility of lateral displacement without rotation.

In the course of the study, the time of processing con-
trol signals and their decomposition by PWM channels 
was measured (Table  2). Time was measured using the 
MC’s internal counter (esp_timer_get_time() function) with  
a resolution of up to 1  µs.

Table 2

Calculation time for the algorithm for decomposing control commands  
on PWM channels (ESP32, 1 core, 160 MHz)

No. State
Calculation time 

min, μs
Calculation time 

max, μs

1 No control (Disable) 3 3

2 Rotation 20 40

3 Side shift 25 45

4
Change of speed or 
direction of movement

10 15

Table 3 and Fig. 2 show the measurements of the delay 
time of the control signals on separate PWM channels in 
the mode of parallel and serial (without the use of a queue) 
processing at different frequencies of the processor. The 
delay time was measured at the limit of simplification of 
command queues for all motor controllers.

Also, the software implementation of the algorithm 
was additionally tested at a frequency of 240  MHz, from 
which it was found that the delay time decreases by 
~1.3–1.4  times, which is practically proportional to the 
increase in frequency. From the obtained results, it can 
be seen that the delay in the case of parallel processing 
when using the OS queue is reduced by 1.7–2.8 times, 
compared to the sequential implementation of the algorithm.

Table 3

Comparison of the delay time for parallel and serial implementations  
of the algorithm for sending signals through PWM channels depending  

on the frequency of the processor

No. State

Delay time 
(160 MHz), μs

Delay time 
(240 MHz), μs

min max min max

1 Processing and recording 3 3 2 2

Parallel sending of a PWM signal (queue)

2
Change of speed or direction of move-
ment, or lateral shift (4 channels)

40 46 29 32

3 Rotation (2 channels) 24 30 19 23

Sequential sending of a PWM signal (no queuing)

4
Change of speed or direction of move-
ment, or lateral shift (4 channels)

66 130 49 73

5 Rotation (2 channels) 91 104 48 60
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Fig. 2. Comparison of the maximum delay time for different 

implementations of the algorithm for sending signals through PWM 
channels depending on the frequency of the processor

3.6.  Discussion. The results obtained in the work can 
be applied to the development and improvement of remote 
control systems for robotics and drones. Also, the proposed 
system can be used as part of simulation training com-
plexes for the training of operators of robotic equipment, 
for which the MС, which is part of the system, must be 
directly connected to the control computer of the training 
complex using the UART/USB interface. This will ensure 
the uniformity of remote control and the possibility of 
a  seamless transition from training to operation of the tool.

The proposed system uses only commercial components 
of general purpose with low cost, which reduces the cost of 
both the robotic complex and the simulation-exercise complex.  
In the conditions of martial law in Ukraine, the low cost 
and availability of the components that make up the system 
give significant advantages to the proposed solution.

Further research may focus on closer integration of 
the control system with simulators and support for digital 
motor control protocols, including brushless ones such 
as DShot.

4.  Conclusions

From the obtained results, it can be seen that both 
implementations of the algorithm provide a negligible delay 
compared to the signal transcoding delay, which is tens of 
milliseconds. Also, the total delay time obtained is signifi-
cantly less than the delays that are present when exchanging 
wireless communication channels via Wi-Fi or Bluetooth 
networks. Thus, it is possible to note the expediency of 
using specialized radio communication equipment with the 
S.BUS protocol to control the executive devices in the 
RTS, for accurate traffic control in real time.
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ANALYSIS OF EXPERIENCE 
IN OPTIMIZING THE OPERATION OF 
AN AUTOMATED PRODUCTION LINE 
FOR FOLDING CARDBOARD BOXES

The object of research is an automated system for controlling the bending mechanisms of the folding-gluing line 
for cardboard packaging products. In the work, the ways of optimization and the development of an automated 
control system for the bending mechanisms of the folding and gluing line, which makes it possible to fold various 
structures and standard sizes of cardboard boxes using modern automation tools based on programmable logic 
controllers, were carried out in the work.

A mathematical model has been proposed to describe operations on the folding-gluing line. Based on the model, 
a methodology has been developed for calculating the parameters of the automated control system for the box 
folding production line, depending on the technical parameters of the line and the parameters of the boxes to be 
bent. This will make it possible to choose optimal technological modes of the production process and obtain high 
quality parameters of cardboard packaging products. To verify the mathematical model of the production line, 
software has been developed in the Delphi development environment, which was applied with the developed auto-
mated production process control system based on a programmable logic controller (PLC) and an operator panel. 
This produced a number of results, in particular, controlling the speed of the hook bend in proportion to the speed 
of the line. And also provided an opportunity to increase line speed and, accordingly, production productivity.  
It has been possible to change the mutual location of system elements, which made it possible to reduce the distance 
between workpieces and increase the capacity of the line tape by 30 %.

The obtained research results were implemented at the production enterprise of typographic products «Di-
nas»  (Zaporizhzhia, Ukraine), which contributed to the improvement and optimization of production processes. 
Conducting further research will provide an opportunity to expand the proposed methodology for use on all types 
of folding and gluing lines.

Keywords: automated system, technological process, structural diagram, programmable logic controller, panel-
controller.
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1.  Introduction

Cardboard is often used as packaging material for vari-
ous products. It has a low cost, a wide range of standard  

sizes, design and assembly variability. Dense paper packag-
ing simply folds, saves space during storage, and is easily 
disposed of. At the same time, the boxes are quite strong, 
which led to their use in various industries, from the food  


