
INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

20 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/2(75), 2024

ISSN 2664-9969

UDC 004.02
DOI: 10.15587/2706-5448.2024.298425

DEVELOPMENT OF FUZZY SEARCH
METHOD FOR CREATING AN EFFICIENT
INFORMATION SEARCH SYSTEM
IN TEXT DATA

The object of research is the processes of effective search for information in a set of textual data. The subject of the
research is the fuzzy search method, which will allow to effectively solve the problem of searching for information in a set
of textual data. The paper considers the process of developing a fuzzy search method, which consists of 9 consecutive steps
and is required for a quick search for matches in a large set of text data. Based on this method, it is proposed to create
a fuzzy search system that will solve the problem of finding the most relevant documents from a set of such documents.

The proposed fuzzy search method combines the advantages of algorithms based on deterministic finite auto
mata and algorithms based on dynamic programming for calculating the Damerau-Levenshtein distance. Such
a combination allows to implement the symbol similarity table in an optimal way. As part of the work, an approach
for creating a symbol similarity table was proposed and an example of such a table was created for symbols from
the English alphabet, which allows to find the degree of similarity between two symbols with constant asymptotics
and to convert the current symbol into its basic counterpart. For document filtering, a metric was developed to
evaluate the correspondence of text data to a search phrase, which simultaneously takes into account the number
of found and not found characters and the number of found and not found words.

The Damerau-Levenstein algorithm allows to find the edit distance between two words, taking into account the
following types of errors: substitution, addition, deletion, and transposition of characters. The work proposed a modifi-
cation of this algorithm by using a similarity table to more accurately estimate the editing distance between two words.

The developed method makes it possible to create a fuzzy search system that will help find the desired results
faster and increase the relevance of the obtained results by sorting them according to the values of the proposed
test data similarity metric.

Keywords: fuzzy search, Damerau-Levenstein distance, editing distance, character similarity table, text data
processing.

Kyrylo Kleshch

© The Author(s) 2024

This is an open access article

under the Creative Commons CC BY license

How to cite

Kleshch, K. (2024). Development of fuzzy search method for creating an efficient information search system in text data. Technology Audit and Production

Reserves, 1 (2 (75)), 20–24. doi: https://doi.org/10.15587/2706-5448.2024.298425

Received date: 16.12.2023

Accepted date: 11.02.2024

Published date: 13.02.2024

1.  Introduction

The volume of electronic information in the world grows
annually by 30 %, accordingly, the increase in the amount
of available data complicates the process of managing and
searching for information in this data [1]. Since access
to the necessary information is of great importance, the
skills of efficient search in large volumes of data become
extremely important. When working with textual data such
as documents, web pages, e-mails, tables, presentations, etc.,
it is critical to be able to quickly and accurately find the
information and documents necessary from a list.

However, traditional search algorithms can be ineffective,
especially on large datasets, or when there are inaccuracies
in the search phrase or textual data, such as spelling or
typographical errors. In such cases, classical algorithms that
rely on exact matches may not meet the needs of users [2].
That is why algorithms for fuzzy text search are becoming

extremely important. The study of fuzzy text search algo-
rithms is an important direction in the field of information
search and text processing [3]. Fuzzy search technology is
used to search information and text databases, providing
matches for a pattern, even in the presence of errors or
uncertainties in the data [2].

There are many fuzzy search algorithms such as:
–	 Jaro-Winkler algorithm;
–	 N-gram algorithm;
–	 Bitap algorithm;
–	 usual Levenshtein algorithm.
However, they were not suitable for the implementation

of the proposed method for various reasons. The fuzzy search
method, which combines the advantages of algorithms based
on deterministic finite automata and algorithms based on
dynamic programming for calculating the Damerau-Leven-
shtein distance, performed best. Such a combination allows
to implement the symbol similarity table in an optimal way.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

21TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/2(75), 2024

ISSN 2664-9969

As part of the study, the task of finding the most
relevant text documents and e-mails in the environment
for storing such documents was considered. The user must
be able to find information about the necessary document
without knowing the correct spelling of a particular word,
and not paying attention to possible inaccuracies in the
textual data.

The aim of research is to develop a fuzzy search method
that will allow to perform the task in an optimal way, as
well as to implement the proposed method in the system for
searching for the most relevant e-mails, documents or texts
in the backup environment. To implement such a method, it
is necessary to modify the Damerau-Levenshtein algorithm
by introducing a symbol similarity table.

2.  Materials and Methods

2.1.  Problem statement. The object of research is the
processes of effective search for information in a set of
textual data. The main task of the work is the develop-
ment of a fuzzy search method that will help find the
desired results faster and increase the relevance of the
obtained results, due to their sorting according to the values
of the test data similarity metric.

The task was considered in the following form. Let X be the
set of documents that are in the data storage environment D,
which is presented in Fig. 1. Documents can be of different
types: doc, email, pptx, txt, pdf, html, image, cpp, etc., the
main thing is that each document contains text data in its
title or content. S is a user-supplied search phrase, also called
a template. A pattern can consist of a single word, several
words that form a sentence, or a set of independent words.
The search phrase can be specified with any unicode character.

Fig. 1. Schematic representation of the document
storage environment

Then Y ∈X is a subset of documents from X that are
most relevant to the search phrase S and are sorted in
order of decreasing relevance according to the textual data
similarity metric.

2.2.  Conducting an experiment. In practice, a fuzzy search
method was implemented, which consists of 9 steps and
combines the advantages of various algorithms, both based
on deterministic finite automata and dynamic program-

ming algorithms for calculating the Damerau-Levenshtein
distance. These algorithms were implemented in the C++
programming language and implemented in the document
search system in the data backup environment. The pro-
posed method was tested for execution time and correct
operation using an expert system.

2.3.  Symbol similarity table. A symbol similarity table
is a reference table that numerically determines the simi-
larity between symbols. It allows to identify similar sym-
bols from different languages or simply visually similar
symbols. Usually, the values in the similarity table are
defined from 0 to 1, where zero indicates a perfect match,
and one indicates no similarity [4]. The paper proposes
the approach of filling the table in the form of groups
in a JSON file. To improve the efficiency of work, it is
necessary to create a table of similarity of symbols, which
will consist of several different categories:

–	 Semantically similar symbols. The category will consist
of semantically similar symbols from different languages
to symbols from the English alphabet, an example of
symbols is shown in Fig. 2.
–	 Typographical errors. The category will contain pos-
sible typographical errors for characters from the English
alphabet, namely all surrounding characters on the key-
board, an example of the characters is shown in Fig. 3.
–	 Visually similar symbols. This category consists of
groups of symbols that have a similar appearance, an
example is shown in Fig. 4.

Fig. 2. An example of semantically similar symbols for the letter «K» [5]

Fig. 3. An example of typographical errors

Fig. 4. An example of visually similar symbols

The symbol similarity table consists of two dictionaries.
Such a structure allows to perform operations with con-
stant asymptotics. The table has 2 main functions: the first
accepts two characters as input, and returns a measure of
their similarity from 0 to 1; the second accepts a charac-
ter, and returns the base for it. For example, let the user
set the search phrase S = «Ka d » (everyone), then its base
counterpart will be S(base) = «kazdy». «For such a transfor-
mation, it is necessary to translate each character from the
search phrase into its basic counterpart using the similarity
table function.

2.4.  Fuzzy search based on deterministic finite automata.
At this stage, it is necessary to choose a fuzzy search al-
gorithm that will quickly find all words from the text set

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

22 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/2(75), 2024

ISSN 2664-9969

that are close to the search word. That is, with the editing
distance <= d_max. Algorithms based on finite automata
are ideal for the current task. After all, such algorithms
build all possible patterns of words that differ from the
search word by no more than a given editing distance.

In practice, 3 different solutions based on finite state
machines were tested. A tree-based automaton implements
the idea of constructing a finite automaton based on a pre-
fix tree. It accepts all words that differ from the search
phrase by no more than a given edit distance. At the
same time, taking into account the operations of inser-
tion, deletion, transposition and replacement. The main
disadvantage of this machine is a large number of states
for a long search word and an editing distance of more
than 3 [6]. Accordingly, it takes a long time to build and
consumes a lot of memory. Due to the listed shortcom-
ings, it was decided to abandon the use of this machine
in the proposed method.

The second approach implements an automaton based
on hashing and, accordingly, there is no binding to the
structure of the prefix tree. Let the cost of each operation,
be it deletion, insertion, transposition or replacement, be
the same and equal to one, which allows to build a more
structured automaton, helping to speed up the construc-
tion and determinization of NFA [7]. Each state of the
automaton corresponds to a certain configuration, which
includes the number of processed characters in the pattern
and the number of editing operations used. Each transi-
tion between states corresponds to a specific operation.
States that have fully processed the pattern are final. The
proposed automaton is quite similar in principle to the
Levenstein automaton, but at the output, in addition to
the Boolean value, it also returns the editable distance
between words, and also supports the symbol transposi-
tion operation. Among the disadvantages, one can note
the complex selection of a hash function for hashing states
and a long determinization process [7]. However, these
shortcomings are not critical, and this approach is proposed
as a priority for solving the given problem.

The logic of building an automaton based on a transi-
tion table is no different from the logic of building an
automaton based on hashing. The main advantage of using
a transition table is the absence of the need for explicit
determinism [7]. With a template and a maximum edit-
ing distance, the machine can immediately start check-
ing words. When analyzing each symbol of the word,
a characteristic vector is calculated relative to the given
pattern. Depending on the value of this vector and the
current state, the next state of the automaton is deter-
mined, which is selected from the table of all possible
transitions [7]. After all incoming characters have been
processed, a check is made to see if the current state is final.
This approach is only practical for small values of the
maximum edit distance, since the size of the table grows
exponentially.

3.  Results and Discussion

To implement the proposed method, it is necessary to
perform the following steps:

1.	 Get a set of text data from incoming documents.
Split the text into words.

2.	 Convert each symbol from the set to its basic coun-
terpart using a similarity table.

3.	 Translate the search phrase into a basic analogue
using the similarity table.

4.	 Build a deterministic finite automaton for each word
from the search phrase.

5.	 Use DFA to find the previous edit distance between
each word in the search phrase and the text set.

6.	 Use the modified Damerau-Levenshtein algorithm
to specify the editing distance.

7.	 Match words from the search phrase with words
from the text set.

8.	 Calculate the numerical metric of relevance of text
data to the search phrase.

9.	 Sort and filter incoming documents according to
the obtained characteristics.

The first step is to get the text from the incoming
documents. If the input document is already a text file or
a web page, then no pre-processing of the data is assumed.
If the incoming documents are pictures or presentations,
then the file name can be taken as text data. After that,
it is necessary to divide the received text into words, us-
ing separator symbols. The second and third steps of the
proposed method are performed using a similarity table.
In the fourth step, it is necessary to build a deterministic
finite automaton based on hashing for each search word.

After passing the fifth step of the proposed method, the
vast majority of words from the text set will be filtered
out, because they will have an edit distance greater than
the maximum allowable suitable edit distance. However,
there will still be words that could potentially fit, and
it is for such words that the edit distance needs to be
refined using a modified Damerau-Levenshtein algorithm
using a similarity table.

A modification of the Damerau-Levenshtein algorithm
is that a symbol similarity table is also used to calculate
the editing distance. This allows for more detailed control
over character similarity comparisons, allowing the algorithm
to handle cases where certain characters are visually or se-
mantically similar to others [8]. In the case of replacing
a symbol, the degree of similarity between two symbols is
determined using a table, this is reflected in the formula using
the compareCharCost() function, which is shown in Fig. 5.

Let’s consider an example: let the search phrase be
the word «Ka d », and the word from the text data set
be «kazdy», then it is necessary to find the edit distance
between these words using the classic Damerau-Levenshtein
algorithm and the modified one, the results of the work
are shown in Fig. 6 and Fig. 7, respectively.

Fig. 5. Formula for calculating the modified Damerau-Levenshtein distance

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

23TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/2(75), 2024

ISSN 2664-9969

Fig. 6. Calculation of the edit distance using the classic

Damerau-Levenshtein algorithm

Fig. 7. Calculation of the editing distance by the modified
Damerau-Levenshtein algorithm

After that, it is necessary to match each word from the
template with each word from the text, in Fig. 8 words
from the template are marked in blue, and words from the
text are marked in red.

Let’s introduce the word similarity metric:

P a b d max len a len bword , , , () () ()()= −1

where d – the modified Damerau-Levenshtein distance;
len(x) – the length of word x.

For the same words, the metric will show 1, for completely
different words – 0. For each word from the search phrase,
let’s calculate the metric with each word from the text.

Possible situations:
1) there is no match for the current word in the text,

so the current word is not found;
2) there is an unambiguous match in the text for the

current word, accordingly, the current word is found, the
word in the text is marked as used;

3) for the current word there are several matches in
the text, accordingly the current word is found, the word
in the text with a higher metric is marked as used.

Let’s introduce the phrase similarity metric. It is worth
noting: the situation when there is no match for the search word
from the search phrase in the text is much worse than the situ-
ation when not all words from the text are marked as used [9]:

P
P len word

len phrase

P

phrase
Sword word

Tword wo

=
⋅ ()()

() −

−
−

∑

∑ (1 rrd len word

len text tFactor
penaltyCoef

)
,

⋅ ()()
()⋅

⋅

where tFactor and penaltyCoef are balancing coefficients.

Fig. 8. Search for matches between the template and the text

The metric can take values between 0 and 1, where 1 is
the best match and 0 is the worst. In the case of too
large a penalty, the metric may even become negative,
in which case it is possible to consider it equal to zero.

Let’s introduce the relevance metric of phrases R P maxScorephrase phrase= −()⋅1 ,
R P maxScorephrase phrase= −()⋅1 , the metric can take on values from 0 –

the best match, to maxScore – the worst match, the value
of maxScore = 100’000 is proposed in the work.

To improve the accuracy of the calculation, it is suggested
to introduce a module that will ignore certain words in
a long search phrase and in a long text. For example, words
from the English language that do not make sense when
searching: «a», «the», «in», «at», «by», «to», but the following
short words cannot be ignored: «my», «you», «no», «yes».

Based on the proposed metrics, it is necessary to calcu-
late the relevance of each document to the search phrase,
and then sort and filter only those whose metric value
is less than the threshold value. The method of expert
evaluation was used to select the balancing coefficients.
Several expert users were offered an input test, namely:
a search phrase and a set of textual data. Their task was
to arrange the set of input data in the order of decreas-
ing relevance to the search phrase, discarding, in their
opinion, irrelevant instances [10]. Based on the opinion
of experts, the order of phrases for each test, which is
considered true, was formed. The system was balanced
so that all test cases returned results in this order. For
example, consider the search phrase «His eyes functioned
fine» and a set of input text data:

–	 «human eye»;
–	 «cognitive functions»;
–	 «his book»;
–	 «fine-tuning»;
–	 «the eyes»;
–	 «fine movements»;
–	 «eye functions»;
–	 «absent or non-functioning»;
–	 «eye to see fine detail»;
–	 «his spiritual eyes».
The result of the system operation for such inputs is

shown in Fig. 9, respectively, the most relevant results
with more matches are located above. It should be noted
that the system filters results that are not at all relevant
to the search phrase.

Fig. 9. System performance result

The proposed system was successfully implemented in
the C++ programming language and implemented in a web
application for storing backup copies of data. Thanks to
the system, the average search time for relevant results has
decreased by 5 %, but for search phrases of different lengths
and different number of words in the phrase, the result may
differ. The longer the search phrase, the smaller the gain
in time. The number of relevant results increased by 10 %,
but this estimate is highly dependent on the input text data
and the frequency of unforced spelling errors by the user.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

24 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/2(75), 2024

ISSN 2664-9969

The limitations of the study include the small number of
experts who participated in the formation of the system for
determining the correct order of sorting documents according
to the search phrase, based on this system, the values of
the coefficients in the proposed formulas were determined.

The conditions of the martial law in Ukraine in no
way affected the obtained results, because the proposed
method is based on known algorithms, which were made
certain modifications. However, the war in Ukraine has
affected the search queries that users make more often
and the information stored in documents and web pages in
cloud environments.

Other modifications of fuzzy search algorithms are planned
in the future. For example, it is possible to add the use of
b-trees or the use of technologies for working with big data.
Separately, it is worth considering the direction of context
analysis in documents, because fuzzy search algorithms are
trained only to search for words with possible errors, but
they do not know how to work with synonyms.

4.  Conclusions

A fuzzy search method is proposed for finding the most
relevant documents according to a search phrase. The main
idea of the method is that first it is necessary to translate
the search phrase and the input text sets into their basic
counterparts using a table of character similarities. Using
DFA, determine those words from the text that have an edit
distance to the search words less than a given value. Only
for these words from the text, determine the refined editing
distance using the modified Damerau-Levenshtein algorithm.

To implement several steps of the method, an approach
to creating a symbol similarity table was proposed, which
would allow taking into account the possible semantic
similarity of symbols in words. By evaluating similarities
based on different criteria such as form, context, and pho-
netics, the character similarity table allowed a modified
fuzzy search algorithm that can rank matching results even
in the presence of a large number of unicode mismatches
of similar character values. This, in turn, increased the
number of relevant results by 10 %, depending on the
length of the search phrase.

To select the most suitable documents, a metric for
evaluating the relevance of text data according to the
search phrase was proposed. On the basis of testing with
the help of expert evaluation, the optimal coefficients in
the relevant formulas were calculated.

Conflict of interest

The author declares that he has no conflict of interest
in relation to this research, including financial, personal,

authorship, or any other nature that could affect the research
and its results presented in this article.

Financing

The study was conducted without financial support.

Data availability

The manuscript has no associated data.

Use of artificial intelligence

The author confirms that he did not use artificial in-
telligence technologies when creating the presented work.

References

1.	 Boytsov, L. (2011). Indexing methods for approximate dictio
nary searching. ACM Journal of Experimental Algorithmics, 16.
doi: https://doi.org/10.1145/1963190.1963191

2.	 Carvalho, J. P., Coheur, L. (2013). Introducing UWS – A fuzzy
based word similarity function with good discrimination capabi
lity: Preliminary results. 2013 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE). Hyderabad. doi: https://doi.org/
10.1109/fuzz-ieee.2013.6622494

3.	 Yu, M., Li, G., Deng, D., Feng, J. (2015). String similarity
search and join: a survey. Frontiers of Computer Science, 10 (3),
399–417. doi: https://doi.org/10.1007/s11704-015-5900-5

4.	 Navarro, G. (2001). A guided tour to approximate string match-
ing. ACM Computing Surveys, 33 (1), 31–88. doi: https://doi.org/
10.1145/375360.375365

5.	 Fancy Letters. Available at: https://symbl.cc/en/collections/
fancy-letters/

6.	 Sn el, V., Keprt, A., Abraham, A., Hassanien, A. E. (2009). Ap-
proximate String Matching by Fuzzy Automata. Advances in Soft
Computing. Berlin Heidelberg: Springer, 281–290. doi: https://
doi.org/10.1007/978-3-642-00563-3_29

7.	 Kleshch, K., Shablii, V. (2023). Comparison of fuzzy search
algorithms based on Damerau-Levenshtein automata on large
data. Technology Audit and Production Reserves, 4 (2 (72)),
27–32. doi: https://doi.org/10.15587/2706-5448.2023.286382

8.	 Kleshch, K. O., Tsarov, M. O. (2023). Modification of the
fuzzy search algorithms to use a symbols similarity table.
Таuridа Scientific Herald. Series: Technical Sciences, 3, 21–28.
doi: https://doi.org/10.32782/tnv-tech.2023.3.3

9.	 Mihov, S., Schulz, K. U. (2004). Fast Approximate Search in
Large Dictionaries. Computational Linguistics, 30 (4), 451–477.
doi: https://doi.org/10.1162/0891201042544938

10.	 Wang, J., Li, G., Fe, J. (2011). Fast-join: An efficient method
for fuzzy token matching based string similarity join. 2011 IEEE
27th International Conference on Data Engineering. Hannover,
458–469. doi: https://doi.org/10.1109/icde.2011.5767865

Kyrylo Kleshch, Assistant, Postgraduate Student, Department of

System Design, National Technical University of Ukraine «Igor Sikor-

sky Kyiv Polytechnic Institute», Kyiv, Ukraine, ORCID: https://

orcid.org/0009-0006-8133-3086, e-mail: kleshch.kirill@gmail.com

