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DOUBLE INCLINED CRACKS 
OVERLAPPING EFFECT ON MIXED 
STRESS INTENSITY FACTORS 
USING XFEM OBJECT-ORIENTED 
IMPLEMENTATION

The object of research is the Mixed Mode Stress Intensity Factor (MMSIF) of a two-dimensional (2D) plate.
With the emergence of modern technologies and advanced innovations which contribute to the development 

and improvement of the design, implementation and management of construction projects, it has become easier. 
However, it is very difficult to manufacture components free from unavoidable defects, such as cracks, which lead 
to material deterioration and ultimately shorten its service life. Based on the process of local enrichment region 
using partition of unity concept, the extended finite element method (XFEM) has overcome the limitations of the 
standard FEM method in terms of modeling and numerical simulation of discontinuities (cracks) while gaining its 
general advantages. This makes XFEM a powerful and widely used digital tool in recent years. One of the most 
frequently raised problems in the discontinuities field (cracks) is the phenomenon of juxtaposition of multiple 
cracks in a cracked isotropic plate, which must be studied to determine the extent of its effect on the crack stress 
intensity factor in order to obtain higher safety reliability. On this basis, an improved object-oriented program-
ming (OOP) with extended finite elements was used because of its great importance and well-known benefits.

In this paper, the MMSIF of a 2D plate is determined to show the effect of the out-of-phase orientation of the 
angle, as well as the effect of the juxtaposition of two inclined cracks. As a result of the research, it is shown that, 
the convergence between the results obtained in this study with those reported in the literature, and to theoretical 
values is remarkable and their close agreement was noted. In the future, based on the object-oriented approach 
characteristics represented by flexibility, scalability, and modularity, which were explained in this research, this 
proposed approach can be enriched to include heterogeneous materials modeling, whether linear or nonlinear, crack 
propagation in dynamics, in addition to Complex 3D industrial problems.
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1.  Introduction

In the field of civil engineering, the safety of structures 
is a major concern in engineering, which requires preven-
tive maintenance as well as corrective interventions, which 
must be implemented to correct errors that may occur 
during construction, in order to ensure the reliability of 
constructed buildings and increase their lifespan.

These errors give rise to various forms of internal or 
external forces, which subsequently give rise to various 
forms of discontinuities, in particular cracks.

The discipline of discontinuities was learned in the field 
of fracture mechanics, and thanks to it, many theories and 
calculation methods were developed in this regard, in par-
ticular the extended finite element method (XFEM), which 
was introduced in the second millennium [1–6], as a practical 
numerical procedure for analyzing discontinuity problems.

It is an extension of the finite element method (FEM) 
by enriching standard finite element (FE) shape functions 
with special enrichment functions (level set functions).

The concept of stress intensity factor (SIF) is con-
sidered one of the most important major advances in 
the field of linear elastic fracture mechanics (LEFM).  
This is a critical parameter that uniquely describes the 
stress. Field near the crack tip, as well as its design ma
kes  it possible to know the direction and growth rate of  
the cracks.

With the abundance of scientific research, many tech-
niques have been developed to calculate SIF, including the 
stiffness derivative method [7]. The virtual crack extension 
method [8], the virtual crack closure technique [9], as well 
as the energy-based methods which are most frequently 
adopted such as the J-integral method [10, 11], and the 
contour integration method [12, 13].
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The calculation of the stress intensity factor (SIF) by the 
extended finite element method (XFEM) has also taken its 
part in the scientific literature. In [14] presented a compara-
tive study between extended finite element method (XFEM) 
and finite element method (FEM) in ABAQUS software; 
for stress intensity factors (SIF) calculation of a cracked 
aluminium plate at the angle.

In  [15] is worked on SIF extraction through an experi-
mental and theoretical analysis at the crack tip on specimens 
subjected to a three-point bending load. In  [16] is focused 
on the calculation of SIF by presenting a new local mesh 
refinement approach. Using a combination of extended finite 
element method (XFEM), and hexahedral elements with 
variable nodes for three-dimensional (3D) linear elastic solid  
fracture analysis for straight and curved planar cracks.

A stress intensity factor computation for cracked plates 
using level set method combined with the extended finite 
element method (XFEM) presented in  [17].

In  [18] presents a crack stress intensity factor calcula-
tion in dynamic numerical model of crack propagation by 
mean of combination between each FEM, XFEM methods 
with M-method Integral.

Since the phenomenon of juxtaposition of several cracks (ad-
jacent cracks) in a structure can be very dangerous, due to 
the possibility of connecting them together, creating a large 
crack that can cause a catastrophic failure, resulting in the 
reduction of resistance residual of the structural element.

Therefore, the study of this phenomenon in terms of stress 
intensity factors (SIF) becomes very important to determine 
the remaining breaking strength and capacity of the mate-
rial and structure. Our research deals with the presence of 
double inclination cracks with an out-of-phase orientation 
in an isotropic plate element using an object-oriented C++ 
code [19] based on the XFEM method.

The aim of research is studying the effect of the overlap 
of these cracks on the mixed stress intensity factors (SIF). 
This will allow reducing structural damage, increase safety 
and further improve design by predicting crack growth rates 
by accurately calculating these factors.

2.  Materials and Methods

2.1.  Theoretical formulation. The extended finite element 
method (XFEM) is a numerical method based on the 
concept of partition of unity, which involves local enrich-
ment of nodes near the discontinuity to describe the jump 
in a  discontinuous displacement field across the crack as 
well as the remeshing is not required during crack growth.

The displacement vector, for 2D discontinuities model-
ling in XFEM framework is given by the following expres-
sion  [20, 21]:
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B xα ( ) – asymptotic function for the crack tip in isotropic 
elasticity given by [22]:

B B B B B

r r r r

≡ [ ] =

=









1 2 3 4

2 2 2 2

, , ,

sin , cos , sin sin , cos sins
θ θ θ

θ
θ

θ ,	 (3)

where (r, θ) are the polar coordinates in the system of the 
local crack tip.

Elements that belonged to a circle C(x0,r) around the 
crack tip, whose center is the crack tip, and its radius r ; 
are generally enriched with these functions [23].

The first term of Westergaard tip functions r sinθ 2 
represents a discontinuity in displacement field.

For the rest of the domain, the enrichment is chosen 
to be the modified Heaviside step function, so that the 
resulting displacement field contains a discontinuity at 
the crack location, Fig.  1.
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Fig. 1. Enriched node selection’s for an arbitrary 2D crack  
problem by XFEM

As for Stress intensity factors (SIF) which are im-
portant numerical parameters in fracture mechanics, they 
characterize the strength of stress singularities near the 
crack tip, through which describing the evolution mate-
rial’s resistance to crack propagation.

For linear elastic fracture mechanics problems in 2D, 
the contour integral J is equal to the energy release rate G.  
The relation between the contour integral J and stress 
intensity factors mode I and II (KI and KII) for mixed-
mode problems in 2D can be represented as [21]:
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The contour integral J for the body with crack is given 
in equation (4) [10, 11].

Here Γ is a closed contour line encompassing the crack 
tip, n is its normal unit. W is the strain energy density, 
Ti = sijnj is the traction vector perpendicular to Γ in the 
outward direction, d1j is Kroneker delta, sij is stress tensor,  
uk is the displacement vector and dΓ is differential ele-
ment of arc length along the closed contour Γ:
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The J-integral for the sum of the two states of a cracked 
body  (1 and 2) with characteristics ( , , )( , ) ( , ) ( , )σ εij ij iju1 2 1 2 1 2  are 
defined as:
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On further solving, get:

J J J I( , ) ( ) ( ) ( , ),1 2 1 2 1 2= + + 	 (8)

where I ( , )1 2  is called the interaction integral for states 1 and 2,  
which is equal to [5]:
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where I (1, mode I) and (1, mode II) are interaction integrals.
According to equation (9), for two state (2) in XFEM, 

the SIF KI(1) mode I is evaluated by putting (KI
(2) = 1, 

KII
(2) = 0) (a pure mode I), and the SIF KII

(1) mode II by putt- 
ing (KI

(2) = 1, KII
(2) = 0) (a pure mode II).

2.2.  OpenXFEM++ numerical code overview. The object-
oriented programming language (OOP) has useful resources 
and the potential to enrich its library that allows inde-
pendent and concurrent execution. This language is often 
chosen because of the various benefits this design offers, 
including providing general-purpose codes that are under-
standable, maintainable, and extensible by making it easier 
to integrate new object types, solution techniques, and  
other features as soon as they become available.

The OpenXFEM++ code [24], is an open source environ-
ment written in C++ language and developed within the 
framework of object-oriented programming (OOP) approach, 
based on an existing finite element code FEMOBJ [25],  
an object-oriented finite element package for static and dy-
namic nonlinear applications.

The extended finite element method (XFEM) is inhe
rently a modular numerical tool, so object-oriented program-
ming facilitates the use of this module. Therefore, evaluat-
ing OpenXFEM++ code in terms of numerical efficiency 
depends on object-oriented programming mechanisms.

Knowing that every object-oriented application design 
requires finding classes and objects with specific structures 
and attributes, OpenXFEM++ includes object, class, derived 
class, class members, function, etc. It also contains all the 
elements of object-oriented programming: methods, mes-
sages, constructors, destructors, encapsulation, polymorphism, 
inheritance, and class hierarchy, in addition to the basic 
techniques used in this type of programming.

Since the code consists of hundreds of classes and class 
templates with multiple default inheritances, some typical 
classes are discussed here with brief description. The data 
and functions kept to a minimum, with a simple presenta-
tion of member functions arguments.

2.2.1.  Element class. Element Class is an abstract class which 
five class are publicly divided, which are: Tri6_U  (6  nodes 
triangle elements), Tetra4 (4 nodes tetrahedral elements), 
Tri_U (3 nodes triangle elements), Quad4_U (4 nodes quad-
rilateral elements), and MITC4 (4 nodes quadrilateral shell 

elements), therefore creating the lists of enriched and non-
enriched element.

One of the basic tasks of this class is to return en-
riched interpolation functions, ensuring interaction between 
finite elements and enriched finite elements, dividing into 
finite elements sub-triangles, as well as storing the local 
coordinates of the original element, using many methods 
similar to the treatGeoMeshInteraction method and the 
PartitionMySelf method.

2.2.2.  Enrichment item. This class is concerned with the 
characteristics and features of the discontinuities that cause 
enrichment, which are called objects and each of which has 
its own geometry. It contains four objects: CrackInterior, 
CrackTip, Hole, and MaterialInterface.

The CrackInterior object contains methods to model 
the internal crack correctly, it updates the crack geometry 
with the function UpdateMyGeometry(), resolves the linear  
dependence of the enriched nodes with the function H(x) 
using the function resolveLinearDependency() and also 
updates the enrichment after the cracks grow with the 
function updateEnrichment(  ).

The CrackTip class is closely related to the CrackInterior 
class, especially the two-dimensional model. It uses the 
myTips function to read the information of the studied 
crack from the input file. The buildIntegrationDomain2  
function identifies the elements that intersect with the 
boundaries of the radius of the circle centered at the tip of 
the crack to Compute the interaction integrations, which 
is used Later to calculate SIFs.

Hole and MaterialInterface object implement holes, and 
material interface discontinuities between two Materials 
successively.

2.2.3.  Enrichment function. The EnrichmentFunction class 
is an abstract class. Its primary role is to define specific 
functions that the enrichment function must implement 
through the EvaluateYourSelfAt() object, which is used to 
calculate the enrichment value of the node function and 
its gradient. The EvaluateYourGradAt() object is also used 
to calculate the derivatives of the enrichment function at 
a point, for example, the Gaussian point (GP) in order 
to formulate the enriched stiffness matrix.

The EnrichmentFunction class is divided into several 
classes, including: DiscontiniousFunction divided class imple-
ments a discontinuous function H(x) and is used to enrich 
nodes that belong to elements cuted by crack.

AsymptoticFunction divided class is a virtual base class, 
it implements the asymptotic functions, it is used to enrich  
nodes that belong to elements contain crack-tip for homo
geneous media.

AbsSignedDistance divided class used model the mate-
rial interface.

2.2.4.  Others class. In addition, several other utility classes 
are also defined in a comprehensive finite element library, 
to have mathematical extraction of engineering variables:

–	 The GeometyEntity class is an abstract class and is 
concerned with the enrichment element geometry and 
Recognize different types of geometric entities: Vertex, 
PiecewiseLinear, PiecewiseParabolic, Circle and ellipse.
–	 Class EnrichmentDetector aims to make a selection 
of nodes to be enriched chosen by read from the input 
data file using a virtual method named setEnrichedNodes.
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–	 As well as to determine the direction of crack growth 
CrackGrowthDirectionLaw class and its MaxHoopStress 
derived class are used, based on the maximum hoop 
stress criteria of Erdogan and Sih.
–	 The abstract class CrackGrowthIncrementLaw imple-
ment the crack growth increment law: Paris law, fixed 
increment and adaptive increment.

3.  Results and Discussions

3.1.  Out of phase angle orienta
tion effect on inclined crack. The first 
example considers an inclined cracked 
plate element with Out of phase angle 
orientation, this squared plate is sub-
jected to uniform tensile stresses s = 1 
on its two sides.

Fig.  2 shows a geometry and di-
mensions of cracked plate (W), con-
taining one inclined internal cracks 
of length  (a/W = 0.25).

Whose elastic properties E modulus of elasticity and υ  
Poisson’s ratio. The thickness is negligible compared to 
other plate’s dimensions. Therefore, 2D analysis is performed 
with simple structured triangular elements to connect the 
geometric plate shapes.
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Fig. 2. Center inclined crack geometry in an infinite square plate under 
uniaxial tensile

The mixed stress intensity factor (SIF) mode I and 
mode II at crack tip are calculated depending on an angle (β) 
which is ranged from 0° to 180° with a pitch of 5° begin-
ning from x axes to y axes and 90° in a counterclockwise 
direction respectively, and compared with theoretical SIFs 
under tensile load given by the formula [26]:
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Table 1 lists the measured SIF for Mode I and Mode II 
for different β angle values, the error ratio compared to the  
theoretical solutions.

The Normalized SIF mode I and II results, presented in 
Table  1 show an obvious convergence with an acceptable  

error rate (around 5  %) comparing with those given by 
theoretical results.

Fig. 3 represents the normalized stress intensity factor va
lues evolution in mode 1. The graph reveals a flagrant decrease 
in KI until its annihilation within the interval of crack angle 
inclination ranging from 0° to 90°, which can be explained 
physically by the change in state of the crack through these 
lips, which pass, from a state of total open lips at 0° inclina-
tion angle, towards total closed lips at 90° inclination angle.

Same observation for the second case but in the op-
posite direction, however, there is a pronounced increase 
in KI evolution up to its maximum values in an interval 
of crack inclination angle going from 90° to at 180°. This 
can be explained physically by the opposite phenomenon 
of the previous case, hence the transition from a state of 
total closure to a state of total crack opening.
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Fig. 3. Normalized SIFs mode I value vs angle of inclination β  
for an infinite plate with an inclined center crack under  

uniaxial tensile

For normalized stress intensity factor KII mode II, the 
behaviour change completely for case a (Fig. 3), since the 
proportionality between KII value and inclination angle β 
between (0° and 45°) is preserved; when beyond this range, 
the loss of the proportionality appears from 45° to 90°. 
An inversed phenomenon took place for case b (Fig.  4) 
inclination angle ranged between 90° to 180°, wherein all 
values are inside the negative range for normalized stress 
intensity factors mode II, with the remaining curve shape.

For the physical meaning, the deduction is that there 
is slip phenomena in the positive field, then a stability 
of crack lips (KII = 0 no slip), and reversal of slip in the 
negative direction all this appear in the range of 0° to 90°.  
The same phenomena will appear but in the opposite di-
rection ranged from 90° to 180°.

Table 1

Convergence of normalized SIFs for an inclined center crack

Angle β Normalized KI 
calculated

Theoretical 
normalized KI

% error
Normalized KII 

calculated
Theoretical 

normalized KII
% error

30° 0.7308 0.7500 2.56 0.4210 0.4330 2.79

60° 0.2418 0.2500 3.28 0.4239 0.4330 2.10

120° 0.23928 0.2500 4.28 –0.41586 –0.4330 3.96

150° 0.72854 0.7500 2.86 –0.41996 –0.4330 3.01
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Fig. 4. Normalized SIFs mode I value vs angle of inclination β  
for an infinite plate with an inclined center crack under  

uniaxial tensile
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3.2.  Two similar inclined cracks. In this second part, an 
example of two inclined internal cracks of length (a/W = 0.25) 
in a rectangular cracked plate (L = 2W), subjected to uniform 
tensile stresses s = 1 on the two upper and lower sides. 
The goal of this example is to illustrate the efficiency of 
OpenXFEM++ implementation.

Table  2, summarizes a comparison between normalized 
mixed stress intensity factors values (NMSIF) mode I and II  
at the crack tip A and C calculated by setting an angle 
β = α = 20°, using C++ object oriented programming code, 
with those obtained by [27] using dual boundary element 
technique, as well as error rate (Fig.  5).

Table 2

Normalized SIFs convergence for an inclined center crack with  
an angle β = α = 20° under tensile loading at tips A and C

Normali
zed SIFs

Tip-A Tip-C

(C++) Ref C++/Ref (%) (C++) Ref C++/Ref (%)

KI 0.14385 0.14497 0.77 0.14386 0.14483 0.67

KII 0.31649 0.32561 2.80 0.31650 0.32939 3.91
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Fig. 5. Double inclined crack geometry in an infinite rectangular plate 
under uniaxial tensile

The same things for Table 3 which summarize a compari-
son between normalized mixed stress intensity factors  va
lues (NMSIF) mode I and II at the crack tip B and D (Fig. 6).

Table 3

Normalized SIFs convergence for an inclined center crack with  
an angle β = α = 20° under tensile loading at tips B and D

Normali
zed SIFs

Tip-B Tip-D

(C++) Ref C++/Ref (%) (C++) Ref C++/Ref (%)

KI 0.10265 0.10479 2.04 0.10265 0.10354 0.86

KII 0.31935 0.33163 3.70 0.31936 0.33514 4.71

 

 

a

c

b

d

Fig. 6. Stress contour for a double inclined crack at inclination  
angle equal to α = β = 12°: a – Von Mises stress; b – sxx ;  

c – sxy ; d – syy

3.3.  Overlapping effect. Let’s take the previous example 
as basic principle, but by applying a small modification 
by mean of adding another crack just next to the first 
in order to study overlapping effect.

The stress intensity factor values influence at the 
crack-tip A was studied by changing the second crack’s 
angle inclination β which ranged between 0° and 90° with  
a pitch of 5°. This is done by fixing the crack inclina-
tion AB at α = 20°.

The normalized mixed stress intensity factors values (SIFs) 
mode I and II, which correspond to crack tips A and C are 
plotted in Fig.  7 and Fig.  8, respectively.
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Fig. 7. Normalized SIFs mode I correspond to crack  
tips A and C vs inclination angle β for an infinite plate with two inclined 

center crack under uniaxial tensile
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Fig. 8. Normalized SIFs mode II correspond to crack  
tips A and C vs inclination angle β for an infinite plate with two inclined 

center crack under uniaxial tensile

Stress intensity factors in mode I at both crack-tip A and 
C results given by object-oriented programming C++ code, 
using extended finite element method are shown in Fig. 7.  
It can be seen that on one hand, stress intensity factors 
values increase at crack-tip C. On the other hand, it is 
moderately stable at crack-tip A, which means that there 
is no overlapping effect of crack C–D on crack A–B.

Through Fig. 8 which contains the stress intensity fac-
tors value mode II calculated at both crack-tip A and C.

A quasi-stability of stress intensity factor values at crack 
tip A is observed, with a variation range not exceeding 9 %. 
Regardless of stress intensity factors curve values at the 
crack tip C, that has a decreasing and increasing trend in 
the interval form 0° to 45° and from 45° to 90° of crack’s 
angle inclination β, respectively.

3.4.  Discussion. Concerning our results, it is possible 
to see two major aspects:

–	 The first is the obvious convergence with an ac-
ceptable error rate (around 5  %) of the normalized 
stress intensity factors values modes I and II calculated 
using XFEM object-oriented implementation, compared 
to those given by the theoretical results.
–	 The second aspect is the absence of any effect of 
crack angle inclination variation in juxtaposition case 
of two inclined cracks, concerning normalized stress 
intensity factors values (KI/KII) at static state.

The absence of this effect is due to one limitation inheriting 
this study, which is the fact that dynamics effect is not taken 
into account in this research, leading to neglect mass matrix.

In the future, it will be necessary to carry out studies on 
the influence of juxtaposition of two inclined cracks in the case  
of crack propagation.

4.  Conclusions

An object-oriented programming called OpenXFEM++ 
based on the extended finite element method is applied in 
this study by modeling a 2D internal oblique crack to il-
lustrate the improvement of the code through its efficiency, 
applicability and extensibility.

In this paper, tensile loading was applied to a two-di
mensional (2D) plate with inclined cracking to calculate 
mixed-mode SIFs (KI/KII). The effects of different factors such  
as the direction of the out of phase angle, as well as the 
effect of the juxtaposition of two inclined internal cracks, 
were taken into account, giving the following conclusion: the 
undeniable robustness and efficiency of the implementation 
used as well as the extended finite element method (XFEM) 
for the numerical modeling of discontinuities.

The results obtained with XFEM agree remarkably 
with those reported in the literature and thus justify the 
exceptional performances of the method for SIF calculation.

Negative values of the mode II stress intensity factor (KII) 
are mainly linked to the sliding phenomenon of cracked lips.

The phenomenon of juxtaposition of two inclined cracks 
has almost no effect on the SIF in mixed mode (KI/KII) in  
the static state.

It is possible to note that all these results and remarks 
are valid only for linear static case; many surprises can 
arise if to apprehend these two physical phenomena.
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