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1.  Introduction

There are several advantages regarding the electronic study 
of silicon which makes it motivating such as (abundance on 
the earth, low price charge, non-toxicity, easy and smooth dop-
ing, etc.). The cells produced industrially reach a conversion ef-
ficiency of 15 per cent on average (modules at 11-per cent) [1].

Thus, according to Moore’s Law, the continuous minia
turization of transistors empirically characterizes the ex-
ponential trend over fifty years. It has globally made an 
unprecedented development conceivable by experimental 
exploration and technological mastery of the microscopic 
field of matter. It is looking at the unquestionable sili-
con as the primary key material of this industrial boom, 

whose electronic properties have made it the Bedrock of 
insulated-gate field-effect transistors. However, this sys-
tematic reduction in the standard size of the electronic 
components cannot continue indefinitely, the single-atom 
transistor  [2] being the ultimate physical limits. It expects 
a paradigm shift in the coming decades, on which many 
research teams composed of physicists, concentrated en-
gineers and chemists. Concerning this Perspective of con-
siderable studies and abundant research of new and recent 
high-performance materials, numerical simulation occupies 
a vital place, furthermore, from the early 1970s atomistic 
methods whose improvement exploded. Thanks, in compo-
nent to this same Moore’s law which are specially adapted.  
Their reliable predictive power linked to the degree of low 
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approximation of the Fundamental underlined theories and 
evident ability describing the accurate nanometer-scale of the 
materials, which gives it the cardinal approaches towards the 
experimental complement. Since experiences and simulations 
go together simultaneously; too often separated in research 
laboratories, both approaches can help each other, and whose 
symbiosis catalyzes scientific and industrial development and 
improvement. In micro-electronics, several problems are as-
sociated with transporting phenomena, the capping of the 
frequent clock processors [3, 4]. Notably, the dynamic nature 
of transport phenomena makes them difficult towards the 
model. However, over the past and previous thirty years, has 
in many ways been developed. Comprehensive, universal and 
critical properties, such as thermal and electronic conductivi-
ties introduction allow getting more or less accurately [5, 6]. 
Recently, nano-science, nano-technology and nano-materials 
are booming and make up a transversal domain between 
physics, chemistry and many other scientific and industrial 
fields and aspects. In respect to this, the electronic quantum 
transport properties in nanostructures are essential for the 
development of nano-electronic devices  [7, 8] as an element 
connecting between these components  [9]. Whether chemi-
cal or structural, however, impurities have familiar places 
in nano-materials where they have locations that are not 
predictable. Their appearance effects and changes different  
physical quantities  [10, 11]. For example, there can be a  no-
table impact on ballistic coherent transport properties in 
a  nano-junction  [10], chemical defects or substitution dis-
order. Furthermore, there will be an appearance the locali
zed and scattered states in the defect region as well as in 
bulk far from the disturbed area. The transportation of these 
nanostructures can even be controlled by doping chemical 
impurities  [12]. Hence, the nano-electronic device proper-
ties and its functionality can be significantly affected or also 
constructed in such an ordered and disordered configuration. 
In correspondence compared with the properties of solids, 
there is a significant change between the physical properties 
of nano-materials. The understandings towards the nano-
materials physical properties were due to the presence of 
a defect, and the nanoscale prompted physicists and chemists 
strictly depending on their structures.

In describing them, it is essential to utilize and exploit 
several current adapted methods, such as the Phase Field 
Matching Theory (PFMT) [13–15] which is an excellent tool 
for the study of electronic quantum transport in nano-materials 
with breaking symmetries. It is useful when determining the 
scattering probabilities for the transmission and reflection 
process of electrons, as well as quantum particles according 
with the Landauer-B ttiker formalism [16–18]. This approach 
illustrates the electronic properties in the tight-binding ap-
proximation context (TBA), which is used widely for elec-
tronic and automatic calculations for transport  [12, 19–21].

In aforementioned of this work, through a nano-wire 
consisting of an atomic chain of silicon doped with a single 
atom of germanium, the problem of coherent ballistic elec-
tronic transport was examined. The tight-binding theory 
is an efficient and effective method towards the study of 
the perfect system far from defect. Moreover; it is possible 
to write the secular equations with this approximation for 
our system where the atomic orbital s and px have chosen 
in the present case. In particular, let’s use Slater-Koster 
Hamiltonian parameters  [22] calculated by Harrison’s tight-
binding theory (HTB)  [23]. Due to its transparency and 
natural forms as a primary and parameterization method for 

numerical calculations, the HTB method is chosen. Har-
rison has simplified the linear combination atomic orbitals 
approach  (LCAO) by building universal parameters which 
can perform the calculations [24]. Moreover, the PFMT with  
Landauer-B ttiker formalism deals the scattering problem by 
studying the transmission and reflection probabilities of the 
incident wave  [16, 25]. The PFMT is said to be a powerful 
mathematical tool that links and connect the electronical con-
ductance to the scattering matrix. Thus, the PFMT method has 
mainly been adopted by many scientists to study the disorder 
systems [26, 27]. Lately; at the surface in metallic structures, 
it was used to determine the localized electronic states [15].

Given the critical advancements in silicon-based technolo-
gies and the pressing challenges in miniaturizing electronic 
components to their physical limits, this research aims to 
address the nuanced mechanisms of electronic transport 
within doped silicon quantum wires. Recognizing the pivo
tal role of silicon in the semiconductor industry, driven by 
its abundance, cost-effectiveness, and superior electronic 
properties, and the advent of novel phenomena at the na-
noscale, our study seeks to transcend traditional analytical 
paradigms. The Phase Field Matching Theory (PFMT) and 
tight-binding  (TB) approximation are leveraged to unravel 
the complex interplay of energy localization, ballistic trans-
port, and the implications of germanium doping. This re-
search endeavors to enhance our theoretical understanding of 
quantum transport mechanisms in low-dimensional systems 
and to pioneer new pathways for developing next-generation 
nano-electronic devices. By probing the intricacies of defect-
induced variations in electronic and thermal conductivities, 
our work is positioned to significantly contribute to the 
advancement of nanotechnology, offering a comprehensive 
framework for exploring and exploiting the unique proper-
ties of nano-materials for innovative electronic applications.

2.  Materials and Methods

2.1.  Description of study model. The studied system consists 
of two semi-infinite mono-atomic linear chains of silicon (blue 
color), where the mesh parameter is the same everywhere. 
These chains are connected by a single germanium atom (red 
color) considered as a defect. In this model, each atom is 
described by tow s and px-like atomic orbital. The overlap 
integrals which describe the interactions between the nearest  
atoms is noted Hij; such that i, j denote the type of atomic 
orbital. es and ep are the energies of the site «s» and «px», 
respectively and Cα is the wave function coefficient of the 
site «α». The system is presented in Fig.  1, with the asso
ciated physical quantities.

Hn-2,n-3 Hn-1,n-2 H'n,n-1 H'n,n+1 Hn+1,n+2 Hn+2,n+3

dSi-Ge dSi-Ge dSi-SidSi-Si

cn -3 cn-2 cn -1 cn cn+1 cn+2 cn+3 

 Ɛn -3 Ɛn-2 Ɛn -1 Ɛn’ Ɛn+1 Ɛn+2 Ɛn+3 

Defect 
BL BL M.R.L M.R.R

Fig. 1. Schematic representation of a one-dimensional chain of atoms 
disordered by two bulk leads (BL), two matching regions left and 

right  (MRR and MRL) and one atom defect (red color)
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Let’s note that each atom has two s and p-like atomic 
orbital (Fig.  1).

2.2.  Methods. It is imperative to understand the electronic 
transport properties of nano-wire. Otherwise, electronic 
transport or electronic conductance in solids is bound by 
the movement of electron in which their behavior may 
change toward nanostructures. Furthermore, the electrons 
that contribute to nano junction transport exhibit cha
racteristic wavelengths that are compared towards these 
components size, leading to coherent quantum effects. The 
nano-electronic device’s properties and their functionality 
can then be significantly affected or even built on these 
nano-junctions quantum effects. Still, it cannot be expressed 
in the context of the conventional regime. Hence, the ef-
ficient and accurate determination and perception of trans-
mission and reflection scattering probabilities for electrons, 
as well as quantum particles, is done from an algebraic 
phase matching field theory (PFMT).

To study scattering nano-system, let’s start by specify-
ing the electronic states for the modeling band structures 
making use of a tight-binding approximation (also known 
as TBA), likewise called the combination of linear atomic 
orbitals (LCAO). From the historical and classical point 
of view, the contribution to the development of the TBA 
theory was first given by author of  [28]. It is possible to 
use the tight-binding approximation, the electron transport 
in a one-dimensional atomic chain that can be expressed 
in quantum mechanics to a single secular particle by the 
Schr dinger equation:

H r E rk kψ ψ( ) ( ) ,
 

= 	 (1)

where ψk  – the system’s wave function for state k; E – the 
energy of state k; H – Hamiltonian.

Let’s use a base of atomic orbitals that overlap or «hy-
bridize» as:

ψ j= ∑ ∑C
N

ei n
i n

ik R n
,

,

. ,
1 



	 (2)

where Ci,n denotes the orbital coefficients, where i is the 
number of atoms in unit cell and n is the number of orbi
tals (n = s, px). Since atomic orbital functions are considered 
orthogonal:

j j δn
i

n
i

n n′ ′= , ,	 (3)

where

δn n

n n

n n
,

,

.
′ =

= ′
≠ ′





1

0

if

if
	 (4)

In the (TB) approximation, it is possible to consider 
that the nearest-neighbors Cn, Cn–1, Cn+1 ≠ 0; and the others  
are void. Equation (1) becomes:

H c V E c H cij n i n ij n− ++ + − + =1 1 0( ) ,e 	 (5)

where e i – the energy of the orbit i, Hij – the matrix that 
contains the overlap elements between the atom n and n′.

By introducing Bloch’s theory for the electronic structure 
in the system’s bulk that is presented in Fig. 1: c e cn

i
n±

±=1
jα  

or e i± jα  is the phase translation factor along a direction «α», 

it requires a total and comprehensive calculation of the bulk 
dispersion. Otherwise, equation (5) provides the different 
eigenvalues but it is necessary to extract the propagation 
mode, which obeys the condition given by |Z| = 1. However, 
the computation of evanescent modes allows to search for 
the eigenmodes that capture the condition |Z| < 1. On the 
other hand, the system given by equation (5) generates  
a rectangular Hamiltonian matrix for the defect area. In 
this situation, the Hamiltonian matrix comprises an unba
lanced number of unknown variables alongside with the 
number of secular equations. Hence, it is not possible for 
a direct solution. An adequate method, such as the phase 
field matching theory (PFMT), is needed. It is an analyti-
cal approach that can determine the physical quantities 
describing disordered systems. It has been introduced as  
a powerful method to study the equilibrium of low-di-
mensional systems that integrates the nano-structures and 
the static structure of a 3D semi-infinite crystal lattice. 
In early  1967, this method was used for the first time for 
a study at the equilibrium of a semi-infinite 3D crystal 
lattice  [29]. It was initially developed for the scattering of  
phonons and magnons in excitation through nano-junction, 
consequently used for the study of vibrational proper-
ties  [30]. In 2012, it implemented to study electronic 
transport  [14, 31]. With the matching theory, it is pos-
sible to describe the electronic properties of any system, 
based on the phase matching of the electronic states of 
the electrodes with those of the nano-junctions. Moreover, 
this method makes it possible to make use of unit cells of 
different sizes and shapes to consider systems. It is similar 
to the different types of excitations by replacing the dy-
namic equation of phonons or magnons by the Schr dinger  
equation. It shows that the system has been divided into 
three central regions according to the application of the 
matching method, namely the nano-junction region or the 
defect zone and two other leads on the right and left of 
the nano-junction which are the matching zones (MRL and  
MRR) and the bulk (BL).

For the eigenmode i, from left to right, the propagating 
electron wave incident can be reflected or transmitted.  
Moreover, for an outside atom bordering the defect source 
and due to the displacement in both sides, using the 
matching approach as a function of the phase factor «Z»  
as well as the bulk eigenvectors «Ul and Ur» the wave 
function coefficients will be expressed. The linear coeffi-
cients Cn

l of the atomic orbitals forming the system’s wave 
function can be shown for the left matching as the sum 
of the incident wave and a superposition of the eigen
vectors of the reflected perfect wave:

c c Z U Z cn
l

v
n

l
v

n
v= [ ]+−

=
∑

1

ν

,	 (6)

where v – the number of the bulk eigenmode Ul denotes the 
eigenvector of the bulk matrix and Z is the phase factor.

For a site within the electron wave to the right of 
the defect, the atomic coefficients Cn

r can be expressed 
by an appropriate superposition of the eigenvectors of 
the perfect transmitted wave:

c c Z Un
r

v
v

v
n

r= [ ]
=

∑
1

,	 (7)

where Ur denotes the eigenvector of the bulk matrix.
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From equations (5), (6) and (7) used next to transform 
the rectangular Hamiltonian matrix for the defect area 
into an inhomogeneous square matrix for the scattering 
problem (6×6):

G
e

h
Ti

i

= ∑
2 2

.	 (8)

This matrix solution yields the transmissions and re-
flections probabilities where the total transmission makes 
it possible to calculate the global electronic conductance 
across the defect, which is given by the basic and essential 
Landauer-B ttiker relation.

3.  Results and Discussions

In this section, numerical calculations are presented 
for quantic wire of silicon doped by an impurity of ger-
manium. The different physical properties determined by 
our calculation model are presented, where the atoms are 
characterized by the electronic states 3s and 3p for silicon 
and by 4s and 4p for germanium. Their orbitals hybridization 
is s and px for both types of atoms. The TB parameters 
are rescaled used in this work according to Harrison data, 
which it presents in Table 1.

Table 1
Hopping parameters used in this work from [23]

Atom type α Ge Si

On-site matrix elements (eV)
εs –15.16 –14.79

εp –7.33 –7.59

Types of interaction between 
nearest neighbors

χ Si-Ge Si–Si

Distance interatomic between 
nearest-neighbors

dχ(A°) 2.33 2.2

Hopping parameters (eV)

Vssσ –1.85 –2.08

Vspσ 1.99 2.24

Vppσ 3.12 3.50

In Table  1, α denotes the atom type; Ge or Si, the 
on-site matrix elements and the hopping parameters are 
calculated as follows:

e j j

j j
n n
l l

n
l

n n
l

n

n
l

n n
l

n l

r R r R

r R H r R V

,
, ( ) ( ) ,

( ) ( )

′
′

′
′

′

′
′

′ ′

= − −

− − = ll nn n nR R, ( ).′ ′ −δ 	 (9)

The index χ represents the types of interaction between 
nearest neighbors, Ge–Ge, Si–Si or Si–Ge and the Hop-
ping elements are expressed by Harrison’s tight-binding 
theory as:

V
m dl l m

n n
l l m

e
, ,

, ,
, , ,′

′
′=χ

χ
η



2

2 	 (10)

where ηl l m, ,′  – the Harrison coefficients, m represents the 
band type σ or π between l and l’ which represent two dif-
ferent atomic sites, me refers to the electron vacuum mass, 
dχ – the distance interatomic between nearest-neighbors or 
it is possible to use directly 2 7 62me = .  eV· 2.

Let’s note that the Harrison coefficients ηl,l ′,m used 
in this paper are; ηsss = –1.32, ηsps = 1.42 and ηpps = 2.22 
for all hybridization type.

3.1.  Electronic properties in the bulk
3.1.1.  The dispersion relationship. To determine the sys-

tem’s band structure, it is necessary to write the secular equa-
tion that has a size equal to the total number of orbits per unit 
cell. The application of the equation (5) obtained by TB ap-
proximation on an atom in the bulk presented in Fig. 1, where:

ψ j j

j

= + +

+

∑∑ ∑∑+
+

−
−

c e c e

c e

n
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l
n
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ik R
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n
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l
n

R





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


. .

.

1
1

1
1∑∑∑

l

. 	 (11)

Leads to the two following equations:
–	 for j jn s= :

( )e j j j j

j j j

s n n
s

n
s

n n
s

n
p

n n
s

n
s

n

V E c H c H

c H c

x+ − + + +

+ +

− − − −

+ + +

1 1 1 1

1 1 1 nn
s

n
pH xj + =1 0; 	 (12)

–	 for j jn px= :

( )e j j j j

j j

p n n
p

n
s

n n
p

n
p

n n
p

n
s

n

V E c H c H

c H c

x x x

x

+ − + + +

+ +

− − − −

+ +

1 1 1 1

1 1 ++ + =1 1 0j jn
p

n
px xH . 	 (13)

Introducing Bloch’s theory in the x direction yields 
a  matrix of order (2×2) as following:

E
A B

B C
=

+
− +





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ω
ω

,	 (14)

where

A x= ( cos ),2 j 	 (15)

B i
V

Vx
sp

ss

= ( sin ) ,2 j σ

σ
	 (16)

C
V

V
Vx

pp

ss
p s ss= + −( cos ) ( ) / ,2 j e eσ

σ
σ 	 (17)

ω
e

σ
=

+ −( )
.

s

ss

V E

V
	 (18)

The dispersion curve E = E(jx) for our mono-atomic chain, 
in the first Brillouin zone is given in Fig. 2 with jx ∈[–π, π]. 

0

-3

-2

-1

0

1

2

3

E-
 E

F(e
V)


π−π

x
Fig. 2. Representation of dispersion curve for a mono-atomic silicon chain 

with a single germanium defect described as s and px-type orbital.  
The Fermi level is set at the zero energy reference position



INDUSTRIAL AND TECHNOLOGY SYSTEMS:
MATERIALS SCIENCE

35TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 2/1(76), 2024

ISSN 2664-9969

It is clearly seen that there is symmetry regarding (jx = 0) 
for each curve. These curves are continuous and represent two 
energy bands; the red and blue colors correspond respectively 
to the π and σ bands, arise from the spx orbital hybrids. In 
this work, the computed electronic band structures in the 
bulk system using TBA yielded a direct gap corresponding 
to the valence band maximum of (Ev = –1.32  eV) and the 
conduction band minimum of (Ec = 0.13 eV). These occurred 
at the jx = –p and jx = p points, respectively.

3.1.2.  Eigenvalues and eigenvectors. To determine the 
matching matrix, it is necessary to explain the displace-
ment of the matching region as a function of the specific 
eigenvectors and eigenvalues, induced by the study of the 
electronic properties at the bulk by the TB method. This 
approximation applied for one site at the bulk and its other 
N neighborhoods atoms fold up to the chosen site via the 
phase factor Z where; Z ei x= j , Z e i x− −=1 j  and the hopping 
parameters mentioned in equation (9). The equations (12) 
and (13) become:

–	 for jn s= :

( )

;

e σ σ

σ σ

s ss sp x

ss sp x

V E s V Z s V Z p

V Z s V Z p

+ − + − =

= − −

− −1 1

	 (19)

–	 for jn xp= :

( )

.

*

*

e σ σ

σ σ

p x sp pp x

sp pp x

V E p V Z s V Z p

V Z s V Z p

+ − − + =

= − −

− −1 1

	 (20)

With an increase of the base as:

s p
s

Z

p

Zx
x= = − = − =j j j j1 2 3 4, , , .

Equations (19) and (20) can be expressed in the fol-
lowing matrix form:
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where
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General phase factors are the solutions of the system 
matrix (21). In Fig.  3, the absolute value of the phase 
factor is represented as a function of ω for the various 
bulk modes in Fig.  3. There is an electron wave propaga-
tion represented by a line parallel to the x axis, where 
the propagating modes are in the range of ω ∈[0, 2.15] for 

mode 1 and ω ∈[0, 3.83] for mode 2. On these ranges, the 
electronic waves cross the system without attenuation (by 
the way). In addition, there is an evanescent mode which 
has an exponential form, represented by the decreasing 
curve until it is vanished. The evanescent modes are from 
ω = 2.15 and ω = 3.83, where the system acts like a mirror 
and don’t let the waves pass through it.
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Fig. 3. The variation of the absolute values phase factor versus ω;  
(blue color) for state 1 and (red color) figured state 2

3.1.3.  The group velocity. The speed of energy displace-
ment for our model system is defined by υg :

υ
jg

x

B
=

∂
∂

.	 (23)

Such as B: the bulk matrix element:
–	 for jn s= :

υ σ σg ss sp xi Z Z V s i Z Z V p= − + +− −( ) ( ) ;1 1 	 (24)

–	 for jn xp= :

υ σ σg sp pp xi Z Z V s i Z Z V p= + + −− −( ) ( ) .*1 1 	 (25)

The evolution of the group velocity as a function of ω 
is presented in Fig.  4. The group velocity which ensures 
the transmission of energy in the system in the frequen-
cies band similar to the propagating modes; where the 
phase factor modulus |Z | = 1, ω ∈[0, 2.15] for state 1 and 
ω ∈[0,  3.83] for state 2 for υg1 and υg 2 respectively. It is 
zero (υg  = 0) for other values (evanescent mode) where the 
phase factor modulus |Z | < 1. This confirms the existence 
of propagating and evanescent modes in the bulk region 
in a perturbed mono-atomic chain. Though the evanes-
cent modes do not transport energy like the propagating 
one, but they are necessary for a complete description of 
scattering formalism.

3.2.  Electronic scattering. The electronic scattering is 
studied at the perturbed domain with incident electron 
waves from the left of the adsorbed atomic chain to the 
right zone in Fig.  1, which is split into its transmitted 
and reflected parts. 
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The PFMT is an adapted method to determine the 
electronic scattering properties via the disturbed zone in 
our system between the germanium defect and these nea
rest neighbors (silicon atoms) left and right by writing 
the secular equations for each atom like the following one:

j ψ j ψ

j ψ j ψ

s
n

s
n

p
n

p
n

H I

H I
x x

=

=







,

,
	 (26)

where
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j j

j j
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H H lV

H H

x x

x x x x

+

+

+

= =

= =

=

1

1

1

,

,

== + −l V l Vpp pp
2 1σ π( ) .	 (27)

While the coefficient l refers to the Cartesian cosine 
directions: l = cosq·cosj.

The defect study gives rise to a matrix system of 6 rows 
and 10 columns:

D

h h h h h

h h h h h

h h h h h
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where
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The system of equation (29) has no solution. It is 
necessary to reduce it to a system with several unknowns 
and equations.

To analyze the scattering in the presence of defect, 
it is necessary to know the propagating modes, and also 
to consider the evanescent solutions of our system. With 
the Phase Field Matching Theory, it is possible to write 
the coefficients Cn of the left and right matching regions 
as a function of Z which was defined before in bulk and 
the eigenvectors Ur and Ul. A matching matrix (R) of 
order (10×6) is obtained. Using the defect and match-
ing matrixes, it is also possible to obtain a numerically 
soluble square matrix (M) with 6 rows and 6 columns:

M D R( ) ( ) ( ).6 6 6 10 10 6× × ×= × 	 (30)

Due to the fact that the scattering phenomena are 
related to the incident electronic wave from the left (Si) 
lead to the right passing through the (Ge) defect, this 
latter has a footprint on the transmission and reflection 
coefficients presented by curves (Fig.  5).

The transmission and reflection coefficients curves are of 
nonlinear form with tow Fano resonances, resulting from the 
coupling between the localized defect states and the bulk 
propagating modes. They spread respectively on the interval 
of ω ∈[0, 2.15] for the first state and ω ∈[0, 3.83] for the 
second state, and they vanished at the limit of propagat-
ing zone according to the beginning of evanescence area. 
In particular, for state 1 at ωF = 2.034 and for state 2 at 
ωF = 1.448, it assigns a Fano resonance. The results obtained 
show that the transmission spectrums decrease due to the 
electric wave moving through the system. Contrariwise, 
the reflections increase at the beginning of scattering to 
reach a maximum at the limit of propagating band.

Furthermore, for the incident electron wave for an 
eigenmode i, it is possible to calculate the reflection and 
transmission amplitudes rii′ and tii′ which, are normalized 
with respect to the group velocities υgi and υgi ′  in the form:

r R t Tii gi gi ii ii gi gi ii′ ′ ′ ′ ′ ′= =( ) , ( ) .υ υ υ υ2 2
	 (31)

In addition, the total electronic transmission and re-
flection probabilities for an eigenmode are the sum over 
all the contributions:

r r t ti ii
i

i ii
i

= =′
=

′
=

∑ ∑
' '

, .
1 1

	 (32)

Fig. 4. The variation of the group velocity as a function of ω: a – for υg1; b – for υg 2
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To compare theory and measurement, the unitarity con-
dition ri+ti = 1 is used. It checks our numerical calculation.

To describe the overall transmission, it is useful to 
define the system conductance, which is expressed as the 
sum of the individual transmission coefficients, carried 
out over all input and output channels:

σ ω ω( ) = ( )′∑∑ tii
ii '

.	 (33)

The resulting electronic conductance of our studied 
system s(ω), where the sum is carried out over all propa-
gating modes is shown in Fig.  6.
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Fig. 6. The electronic conductance curve as a function of ω  
for a monoatomic Si chain with Ge defect for state 1 (red color),  

state 2 (blue color) and total (dark color)

In these curves, the conductance spectrum (σ1 and σ2)  
starts with their higher values at ω = 0, fluctuate for excita-
tion energies belonging to the interval  [0, 3.83]. In  addi-
tion, the total conductance which is the sum of the tow 
contributions σ1 and σ2, exceeds unity; it started with 2 in 
the range of ω ∈[0, 2.15] where the two states overlap. 
For state 1, the conductance vanished at ω = 2.15 and for 
state 2, it decreased with increasing ω then becomes zero 
at the limit of propagating zone for ω = 3.83. This variation  

in the electronic conductance is caused by the multiple 
reflections on the edges of the disturbed area.

3.3.  Thermal conductivity. The study of electronic trans-
port at low dimension systems has led to the discovery of 
many fascinating aspects of quantum resistance. Linking 
charge transport in the different geometrical configuration 
confined to a quantum transmission problem, developed 
by Landauer in a series of papers beginning some twenty 
years ago [32], was a theoretical idea of unification impor-
tance. The idea, in its modern understanding  [33], can be 
expressed in terms of a formula for conductivity between 
two ideal electrodes. The thermal conductivity depends 
mainly on the material and the temperature. In general, 
it goes hand in hand with electronic conductance. From 
an atomic point of view, it links thermal conductivity 
to two types of behavior: the motion of charge carriers, 
electrons or holes and the oscillations of atoms around 
their equilibrium position. In metals, the free electron 
movement is predominant, whereas with nonmetals, the 
vibration of the ions is the most important. It, therefore, 
links the thermal conductivity, on the one hand, to the 
electronical conductivity (movement of charge carriers) 
and to the structure of the material itself (vibrations of 
atoms or phonons). In our work, let’s consider only the 
thermal conductivity due to the electron of the atoms 
and to do this, let’s start with the calculation of the elec-
tronic conductance, which is an essential parameter for 
the calculation of the thermal conductivity. The waveguide 
conductance σ(ω), the Fermi-Dirac distribution n T qi( , ( ))ω  
and the velocity of each mode υgi play an essential role. 
For the net heat current, ∂Q12, across the defect, between 
the two ends of the waveguide held at slightly different 
temperatures T+DT > T. Let’s obtain:

∂ = ×

× ⋅
∂

∂

∑

∫

Q

dq q q q
n T q

T

i

gi i i i
i

12 2

1 1

2�

�
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( ) ( ) ( , )
( , ( ))

.

π

υ ω σ ω
ω

	 (34)

In general, the thermal conductivity is ensured by the 
phononic contribution and the electronic one, more than the 
magnetic contribution in the case of ferromagnetic metals.

Fig. 5. The evolution of the transmission and reflection coefficients: a – for state 1; b – for state 2
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In this work, the electronic contribution is investigated; 
where the heat is carried by charge majority carriers which 
are the electrons provided by the two states 1 and 2.

The thermal conductivities are presented in Fig.  7 as 
a function of temperature and group velocity. The calcu-
lation curves show that the heat transport contributions 
increase to reach a maximum value. The explanation of 
what has just been formulated is that the electrons are 
more excited from the valence band towards the conduction 
band and each mode has an electrons number and special 
feature. So, the thermal effect reduced the performance 
of electronic systems by thermal runaway.
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Fig. 7. The evolution of the thermal conductivity as a function  
of the temperature for each state (blue and red) and  

the total one (black color)

3.4.  The densities of state. Electronic local density 
of state (LDOS) is one of the most important electronic 
properties that, informs about the behavior and electronic 
system nature. It also provides information about the nature 
of the chemical bonds between atoms. Indeed, it represents 
the energy per volume unit at 3D, energy per surface unit 
at 2D and energy per unit of length for a quantum wire 
as in our case; where it is obtained by using the square 
matrix M, resulted from the PMFT method and the Green 
functions  [34–36] under the following operator form:

G i Z i I M Zx x( , , ) ( ) ( , ) .ω e j ω e j+ = + −[ ]−1
	 (35)

For a wave vector parallel to the direction of the de-
fect chain, the local densities are given by the following 
equation:

ρ ω j ω δ ω ωα α α
( , )( , ) ( ),n n

x m
n

m
n

m
mL L′ ∗ ′= ⋅ ⋅ −∑2 	 (36)

where n and n′ represent two different atomic sites, a Carte-
sian direction and L Lm

n
m

n
α α,  ′  are the components a of the vector 

displacement of n and n′ atoms, for the energy branch ωm.
Finally, the density of states, which corresponds to 

the sum over jx, can then be given by the general form:
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Based on the given expressions, let’s represent in the 
various Fig. 8–11 the different local densities of state relating 
to the studied sites according to Table 2, which summarizes 
the ω value positions in different spectral peaks and theirs, 
height in arbitrary units.
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Fig. 8. The calculated LDOS for the atomic site 1

Fig. 9. The calculated LDOS for the atomic site 2
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Fig. 10. The calculated LDOS for the atomic site 3

0 2 4 6 8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45



LD
O

S 
(a

rb
itr

ar
y 

un
it 

)

0

Bulk LDOS
LDOS site 3



INDUSTRIAL AND TECHNOLOGY SYSTEMS:
MATERIALS SCIENCE

39TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 2/1(76), 2024

ISSN 2664-9969

Fig. 11. The calculated LDOS for the bulk and LDOS of the perturbed zone
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Table 2

The peaks position and their height in arbitrary units  
in the LDOS spectra

Atomic sites Width Height

Bulk ω = [6.4, 7.2] 0.303

Total
ω = [0.78, 2.16]
ω = [2.26, 3.76]

1.767
0.596

Site (1) ω = [0.44, 2.16] 0.936

Site (2), (3)
ω = [1.32, 2.14]
ω = [2.22, 3.82]

0.446
0.237

In Fig.  8, the local density of state (LDOS) of site 1 
of the doping atom has been represented; where, it is pos-
sible to notice that the curve presents a pick for ω = 1.76. 
It is the maximum of energetic amplitude corresponding 
to the contribution of the orbital s; its width informs us 
on the spectral distribution of the energy in the space 
of ω = [0.44, 2.16].

In Fig.  9 and 10, there are the LDOS of sites 2 and 3, 
where it is possible to notice that they are identical by 
symmetry to the system studied. Each one presents two 
peaks respectively for ω1 = 1.88 and ω2 = 3.24; the first is 
due to the contribution of the orbital s which is more 
energetic; the second is the contribution of the orbital px.  
The width of the density extends over ω = [1.32,  2.14] 
and ω = [2.22,  3.82] respectively; due to the spectral dis-
tributions of localized energies induced by the germanium 
impurity. The peak amplitude value of total local density 
of state shows that it is the sum of the partial densi-
ties of LDOS of the three irreducible sites of the system 
studied. Finally, in Fig.  11, the LDOS is represented for 
defect neighborhoods by comparing with that of bulk.  
It is possible to see that the energy amplitudes are larger 
and that the spectral distribution is more extensive while 
ω ∈[0.76,  3.76], while for this of the bulk, there is one 
peak for ω = 6.8, and the spectral width is ω = [6.4,  7.2]. 
Let’s note that the bulk modes are located on the higher 
pulsation part.

3.5.  Limitations and directions of research development. 
The study’s findings on energy localization and electronic 
transport in germanium-doped silicon quantum wires of-
fer significant practical applications across various fields. 

Primarily, they enable the development of more efficient 
semiconductor devices with optimized electronic and ther-
mal properties, leading to advancements in transistors, 
sensors, and quantum computing elements. Additionally, 
insights into defect-induced variations support the cre-
ation of non-destructive testing methods for higher quality 
control in material manufacturing. These advancements 
not only enhance current nano-electronic device techno
logy but also pave the way for innovative applications in 
energy storage and conversion, contributing to sustainable 
energy solutions. Furthermore, the research methodolo-
gies and results serve as valuable educational tools for 
the next generation of scientists and engineers, fostering 
future innovations.

4.  Conclusions

In this work, we focused our interests on the electronic 
properties of low-dimensional systems, which is an exciting 
and encouraging theme. With the Top-down and Bottom-up 
approach, it is now possible to develop low-dimensional 
systems from the quantum dot and the quantum wire to 
the systems 2D. These systems have interesting proper-
ties, notably the electronic and thermal conductivities, 
which deviate from the 3D system. We  have examined 
from our work the electronic properties of a  quantum 
silicon wire doped with a germanium atom. The appearance 
of this foreign atom breaks the translational symmetry 
in the direction which is perpendicular to it and makes 
the usual methods inappropriate and improper. There has 
been an introduction of a powerful mathematical method; 
the PMFT plays a crucial role in determining the diffe
rent localization and scattering phenomena in a perturbed 
atomic chain by studying the electronic wave scattering 
by an impurity. Furthermore, the results reveal that the 
system conductance and the reflection and transmission 
coefficients appreciably vary with the atomic defect pa-
rameters. The variation of the conductance spectra may 
yield from the theoretical and experimental points of 
view, making use of useful information in the defect’s 
neighborhood in specifics nano-structures. Moreover, we 
calculated the associated thermal conductivity, which is 
a measurable quantity and the electronic density of the 
states located in the neighborhood of the implanted defect.  
These states induced by the defect vanish on both sides 
of the impurity. Finally, it is essential to understand and  
comprehend how much atomistic modeling can be a  po
werful tool when developing new materials. If it has ever 
existed, the border between the basic and applied sciences 
is always more elegant. This narrow distinction is atomis
tic modeling out at once, exploring the development of 
their technological applications and underlying fundamental 
physical phenomenon.
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