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CONTRIBUTION TO MICROMECHANICAL 
MODELING OF THE SHEAR WAVE 
PROPAGATION IN A SAND DEPOSIT

The object of study is the vertical wave propagation in a sand deposit. This paper is aimed at analyzing the 
vertical wave propagation in a sand deposit through micromechanical modeling that inherently takes account of 
intergranular slips during deformation. Such a problem, which is part of the general framework of wave propa-
gation in the soil, has long been analyzed using continuum models based on approximate behavior laws. For this 
purpose, a 2D Discrete Element Method (DEM) model is developed. The DEM model is based on molecular 
dynamics with the use of circular shaped elements. The intergranular normal forces at contacts are calculated 
through a linear viscoelastic law while the tangential forces are calculated through a perfectly plastic viscoelastic 
model. A model of rolling friction is incorporated in order to account for the damping of the grains rolling motion. 
Different boundary conditions of the profile have been implemented; a bedrock at the base, a free surface at the 
top and periodic boundaries in the horizontal direction. The sand deposit is subjected to a harmonic excitation at 
the base. Using this model, the fundamental and resonance frequencies of the deposit are first determined. The 
former is determined from the low-amplitude free vibration and the latter by performing a variable-frequency 
excitation test. It is noted that there is a significant gap between the two frequencies, this gap could be attributed 
to the degradation of the soil shear modulus in the vicinity of the resonance. Such degradation is well proven in 
classical soil dynamics. The effects of deposit height and confinement on resonance frequency and free-surface 
dynamic amplification factor are then investigated. The obtained results highlighted that the resonance frequency 
is inversely proportional to the deposit’s thickness whereas the dynamic amplification factor Rd increases with the 
deposit’s thickness. In the other hand, when the confinement increases the deposit becomes stiffer, which results 
in reducing the amplification. Such result is in accordance with theoretical knowledge which states that the most 
rigid profiles such as rocks do not amplify seismic movement.
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1.  Introduction

The propagation of seismic waves from bedrock to the 
free ground surface is strongly influenced by the proper-
ties of the soil layers traversed. In particular, the stiffness 
and damping of these layers have a significant impact 
on the transmission of motion. For granular soils, these 
two properties, i.  e. stiffness and damping, depend on the 
characteristics of the applied motion, such as amplitude 
and frequency, as well as on certain soil state parameters, 
such as confining and density states. The classical methods  
used to analyze the transmission of motion and its am-
plification from bedrock to surface are typically based 
on continuum mechanics. These methods are effective for 
cohesive soils, but for granular soils, given their discrete 
nature, the discrete element models (DEM) can provide 
more information on the mechanisms involved. DEM is 
a  numerical method that simulates the behavior of granu-
lar materials by treating individual particles as discrete 
entities. This allows to capture the complex interactions 

between particles, which are essential for understand-
ing the behavior of granular soils. This method has just 
proved its place in the field of geotechnics through the 
study of natural phenomena such as the liquefaction of 
sands under Rayleigh-wave  [1–3]. On the other hand, 
it was used in the field of rail transport to check the 
stability of the ballasts under cyclical loads  [4,  5]. The 
modeling of wave propagation with DEM has been used 
to characterize the shear modulus and the damping of 
granular materials for low frequencies [6]. The parameters 
influencing the attenuation of wave amplitudes for a set 
of grains of the same diameter have been also studied us-
ing DEM  [7]. Simulations of shock-induced load transfer 
processes in granular media was carried out by in [8]. The 
wave propagation in granular assemblies with a focus on the 
effects of particle size and elastic properties on the wave 
velocity was investigated in  [9]. In the same framework, 
an analysis of the effect of the grain shape on the wave 
propagation in a granular material was presented in  [10] 
and the influence of force chains on the wave propagation  
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in cohesion less granular packing was studied  [11]. The 
dynamic force chains were used to recognize the major 
propagation path of a dynamic load in cohesion less granu-
lar materials in  [12, 13] and the problem related to the 
stability of force chains is studied in  [14].

The aim of this research is to perform a 2D numerical 
study the vertical shear wave propagation in a sand deposit. 
For this purpose, a discrete element model is developed 
and numerical simulations are conducted to analyze the 
response of the deposit subjected to harmonic excitation at 
the base. In order to show certain features of the behavior 
of granular deposits under harmonic excitations, various 
parameters are varied, including excitation frequency and 
amplitude, as well as deposit thickness and confinement.

2.  Materials and Methods

The discrete element model employed in this work is 
based on the molecular dynamics method. It models the 
granular material at the micromechanical scale using in-
dependent elements. The grains of the material interact 
at the contact points and each grain interacts with its 
neighbors and develops contact forces. It is assumed that 
the global deformation of the medium is mainly due to 
the relative motions of the grains considered as rigid bo
dies  [15, 16]. The choice of a simple shape of the grains 
plays an important role in the optimization of the modeling 
time [10]. For the modeling simplicity, the most used shapes 
are discs for a two-dimensional 2D modeling and spheres 
for the three-dimensional 3D case. The contact forces are 
calculated through simple models based on a  slight overlap 
of the grains  [17, 18].

2.1.  Equations of motion. The movement of the grains 
is the parameter responsible for the overall behavior of 
the medium, this movement obeys to the Newton’s second 
law (1), which is used to obtain the accelerations of the 
grains. These equations are constructed taking into ac-
count all external forces, including gravitational and contact 
forces. The integration of these equations must be carried 
out gradually with sufficiently short time increments. It is 
therefore necessary to discretize time in fairly small steps, 
during which accelerations, velocities and positions are ac-
curately predicted. The evolution of grain displacements from 
one-time step to another is obtained in two stages; a first 
prediction step which uses the acceleration at the start of 
the time step and a second correction step involving the 
acceleration at the end of the time step. Velocities and posi-
tions are corrected according to the change in acceleration 
during the time step using the «Velocity-Verlet» algorithm.

Grain motions are governed by Newton’s second law, 
which is expressed as follows:
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where ��
�
xi and ��

�
ji represent respectively the translational and 

rotational accelerations of the grains; mi  and Ii  are the mass 
and the moment of inertia respectively; 



Fi j
contact  is the in-

teraction force applied by a grain j in contact with grain i;  


g is the acceleration due to gravity; 


Mi j
contact  is the moments 

caused with respect to the center of gravity of grain i by the 
contact forces 



Fi j
contact .

2.2.  Law of interaction between grains
2.2.1.  Contact forces. A simplified decomposition is used 

to study contact forces; a normal component 


Fn  and a  tan-
gential component 



Fs  included in the plane tangent to 
the grain at the point of contact  [19]. The evaluation of 
interaction forces is usually done according to an appro-
priate interaction laws. The orientation of the tangential 
force 



Fs is given by the direction of the relative tangential 
velocity between the two grains at the time of contact.

The Normal Contact Force 


Fn  is calculated by a vis-
coelastic model (Fig.  1):





F k D V nn n n n n= − −( )ν ,	 (2)

where kn is the elastic stiffness; vn is the viscous damping 
constant; Vn  is the normal velocity.
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Fig. 1. Normal force modeling between grains

The normal distance between two grains i  and j de-
noted Dn  is defined geometrically by:

D x x r rn j i i j= − − −
 

,	 (3)

in which ri and rj are the radius of grains i and j.
It should be noted that the elastic stiffness and the 

viscous damping (kn  and νn) are chosen in a way to cor-
rectly model the behavior of the material. In fact, kn must 
be large enough to avoid a substantial overlap which affects 
the overall behavior, while νn controls the damping in the 
material, it is calculated from the coefficient of restitu-
tion εn which represents the ratio between the separation 
velocity (rebound velocity) Vns  and the contact initiation 
velocity (impact velocity) Vn0 . The value of this coefficient 
is naturally between 0 and 1. Thus, the viscous damping 
coefficient νn is obtained as a function of the restitution 
coefficient according to equation  [16]:

ν
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,	 (4)

in which meff  is effective mass calculated as:

m
m m

m meff
i j

i j

=
+( )

,	 (5)

where mi  and m j are the masses of the two contacting grains.
The tangential contact force is calculated by a visco

elastic model with slip (Fig.  2)  [20], 


Fs is given by:





F k D v V F ss s s s s d n= +min( , ) ,µ 	 (6)
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where ks is the tangential stiffness; vs  the viscous damping 
coefficient; µd  is the inter-particle coefficient of friction;  
Ds is the grain deformation due to shear force; Vs is the tan-
gential velocity of grain j with respect to grain i.
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Fig. 2. Shear force between grains

2.2.2.  Contact duration. The duration of a contact tc 
is half the natural period of the oscillator and can be 
expressed as:

t
m

kc
eff

n

= π .	 (7)

This contact duration tc is of practical importance. 
Indeed, the integration of the equations of motion is only 
stable if the integration time step Dt  is sufficiently small 
compared to tc, in other words the evolution of the contact 
should be well described. Otherwise, calculation instabilities 
may occur due to late detection or even non-detection 
of contacts. To avoid these instabilities, it is common 
to discretize the duration of the contact tc at least in  
ten-time steps  [16]:

Dt
m

kmax
n

≈ 0 1. ,π 	 (8)

where m is the smallest effective mass in the system.

2.3.  Wave propagation modeling. The model used for 
the modeling of vertical shear wave propagation in a sand 
deposit implemented on a C++ code.

First, the sand grains are pluviated under gravity to form 
a dense deposit, with using different boundary conditions. 
Periodic boundaries have been introduced to represent an 
infinite profile in the horizontal direction, the upper surface 
is considered free and the profile is limited and supported at 
the base by a wall which is considered as bedrock. A chain 
of grains is introduced onto this bedrock, through which 
a controlled horizontal displacement is applied. The inter-
actions between the grains of the chain and the deposit 
grains are treated with the same interaction models used 
in the interactions of the deposit grains.

In order to study the shear wave propagation in the 
profile, a harmonic displacement with controlled amplitude 
and frequency is applied to the grain chain at the bottom 
of the deposit. Finally, the deposit is divided into a defined 
number of layers in which the average displacements is 
monitored during the excitation of the profile.

3.  Results and Discussion

3.1.  Model Parameters. Fig.  3 shows the sand deposit 
model to be subjected to a base excitation, the different 
boundary conditions are indicated.

The properties of the grains as well as the microme-
chanical parameters used in the computation of the contact 
forces between the grains are presented in Table  1.
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Fig. 3. Sand deposit’s model and boundary conditions

Table 1
Simulation parameters

Parameters Value

Grains number 5000

Grain radius ri 1.00·10–3 to 2.00·10–3 m

Density Gs 2600 kg/m3

Contact normal stiffness kn 1.2·106 N/m

Contact shear stiffness ks 9.6·105 N/m

Inter-particle friction coefficient µ 0.5
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The width of the deposit (period) is set to 2.0 m. With 
the used number of 5000 grains, the obtained deposit’s high  
is about 0.53 m.

Once the deposit is built, it is subjected to a harmonic 
excitation at its base u t A ft( ) = sin( )0  with A0

44 10= ⋅ − m 
and ω = 20 rad/s. The dynamic amplification factor Rd( ) at  
the top layer of the deposit is defined as:

R
A

Ad =
0

,	 (9)

where A denotes the displacement amplitude at the free 
surface; A0 is the displacement amplitude at the bedrock, 
i. e. the base excitation.

3.2.  Analysis of vibrational properties of the sand deposit’s 
model. In order to avoid the perturbations due to transient 
response of the profile, the amplitude of the excitation is 
gradually increased during 4.5 seconds to reach a maximum of 
4 10 4⋅ − m, maintained for 6 seconds before gradually decreas-
ing and reaching zero during 1.5 seconds (Fig. 4, a). The 
monitoring of the horizontal motion propagation through-
out the deposit is carried out by dividing the profile into 
10  sub-layers. The average displacement in each sub-layer 
is monitored during and after the excitation.

Fig. 4, b presents the displacement at top sub-layer 
during the excitation. By comparing the amplitude of the 
displacement at this layer with that of the excitation, it is 
clear that the introduced excitation movement is amplified 

at the free surface. Fig. 4, b shows also that the soil experi-
ences a damped vibration after ending the excitation, this 
means that the deposit exhibits an elastic damped behavior.

The fundamental frequency of a deposit is usually es-
timated using low vibration amplitudes. For the present 
modeling, the fundamental frequency of the deposit can 
be estimated from the free vibration phase resulting after 
stopping the excitation. Fig. 5 shows a zoom of the displace
ment history in this phase.

The period of vibration estimated from the displacement 
plot is approximately T = 0 1642.  s. This period corresponds 
to a natural frequency ω π= =2 38 265T . rad/s. From this 
frequency, it is possible to estimate the shear wave velocity 
in the deposit [21] using the formula c H T= =4 12 833.  m/s.

On the other hand, it is possible to estimate deposit’s 
ratio for small vibration amplitudes using the logarithmic 
decrement expressed as  [22]:
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in which δ  is the logarithmic decrement; Y imax( ) and Y imax +( )1  are 
two successive pics in the free vibration.
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Fig. 4. Variation of the excitation amplitude at: a – the bedrock; b – the top layer
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The calculations based on the response curve of Fig. 5, 
give the damping ratio:

ξ
π

=

+




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=
1

1
2

0 2292

3 65
2

.

. %. 

This low amplitude of free vibrations could be considered 
as damped elastic vibrations. Based on the low obtained 
damping value, one would expect the resonant frequency 
to be slightly lower but not far from the fundamental fre-
quency which is around 38 265. rad/s.

Fig. 6 shows a part of the steady state response 6 s 7 s≤ ≤( )t  
at the base, the middle and the top layers.
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Fig. 6. Variation of displacement from the base to the surface

It is possible to note in Fig. 6 the presence of progressive 
amplification of the motion from the base to the surface. 
The amplification ratio (Rd) of the maximum displacement 
is at the top sub-layer with a value of 1.47.

Fig. 7 shows the evolution of the dynamic amplifica-
tion factor versus the height with respect to the bedrock.
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Fig. 7. Variation of the dynamic amplification factor vs. the distance  
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Fig. 7 clearly highlights the movement amplification 
from the bedrock up to the free surface. Furthermore, it 
reveals that the used excitation frequency is lower than 
the first natural frequency (fundamental frequency) of 
the deposit.

3.3.  Influence of the excitation frequency. To investigate 
the influence of excitation frequency on the deposit response 
and estimate the first resonance frequency, various excita-
tions with frequencies ranging from 10  rad/s to 35  rad/s 
were applied. Fig. 8 shows the evolution of the dynamic 
amplification factor at the top layer in the steady-state phase.
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Fig. 8. Dynamic amplification factor at the top layer vs. excitation frequency

Fig. 8 shows that with the increase of the excitation 
frequency, Rd  increases, it reaches a peak, and then it de-
creases. The first resonance frequency corresponds to the 
maximum value of the amplification; it is approximately 
equal to 33  rad/s. It may be noted that this is quite low 
compared to the fundamental frequency estimated above 
from the low-amplitude free vibration. This difference is 
probably due to the degradation of the shear modulus at 
high vibration amplitudes.

3.4.  Influence of the thickness of the deposit
3.4.1.  Influence on the movement amplification. In the 

aim to study the influence of the deposit thickness on 
the movement amplification at the surface, five thicknesses 
were studied (0.53 m, 0.70 m, 0.85 m, 1.02 m and 1.97 m). 
These thicknesses are obtained by varying the width of 
the deposit while keeping the same number of grains. The 
deposit is subjected to a harmonic excitation with ampli-
tude A0

44 10= ⋅ − m and excitation frequency ω = 25rad/s.
Fig. 9 presents the variation of the dynamic amplifica-

tion factor (Rd) with deposit thicknesses.
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Fig. 9. Dynamic amplification factor vs. deposit thickness



INDUSTRIAL AND TECHNOLOGY SYSTEMS:
MECHANICS

15TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/1(77), 2024

ISSN 2664-9969

Fig. 9 shows that with increasing thickness, Rd  increases 
initially, it reaches a maximum then it decreases. This 
plot highlights the change in fundamental frequency with 
thickness. At thicknesses where the fundamental frequency 
is close to the excitation frequency, resonance occurs, cor-
responding to the peak on the graph. For this application, 
it can be understood that for a deposit’s thickness about 
0.75  m, the resonance frequency is 25  rad/s.

3.4.2.  Influence on the resonance frequency. In order 
to study the influence of the deposit thickness on the 
resonance frequency, four thicknesses were studied (0.53 m, 
0.64  m, 0.74  m and 1.00  m). These thicknesses are ob-
tained by varying the width of the deposit while keeping 
the same number of grains. The deposit is subjected to 
a harmonic excitation with amplitude A0

42 10= ⋅ − m  and 
different excitation frequency ω (8  rad/s to 25  rad/s).

Fig. 10 presents the variation of the dynamic amplifi-
cation factor (Rd) with deposit thicknesses and excitation 
frequency.

Fig. 10 shows that with increasing thickness, Rd  initially 
increases, reaches a maximum, then decreases. It clearly 
highlights the change in resonance frequency with thickness.  
For each thickness, when the excitation frequency is close 
to the fundamental frequency, resonance occurs, corre-
sponding to peaks on the graphs.

These graphs indicate therefore, that the resonance 
frequency is inversely proportional to the thickness and 

that the dynamic amplification factor Rd  increases with 
the deposit’s thickness.

3.5.  Influence of the deposit’s confinement on the wave 
propagation. Deep soil layers are naturally subjected to 
confining pressures. To simulate this case, a weighing 
chain of grains is introduced at the surface of the de-
posit; the confining stress could be increased through 
the increase of the specific weight of the chain grains. 
In this application, the deposit is subjected to a har-
monic excitation with amplitude A0

44 10= ⋅ − m, excitation 
frequency ω = 30  rad/s  and confining pressures ranging 
from 10000  kPa to 80000  kPa.

Fig. 11 shows a part of the steady state response 7 s 8 s≤ ≤( )t  
of displacement time history of the top layer for different con- 
fining pressures.

Fig. 11 highlights the decrease of the displacement 
amplification at the top layer with the increase in con-
fining pressure. Fig. 12 shows the variation of the dyna- 
mic  amplification ratio following the confining pres-
sure  change.

Fig. 12 shows clearly that the dynamic amplification 
factor Rd  decreases with the increase of the confinement.

This indicates that the deposit becomes stiffer when 
the confinement increases, which results in reducing the 
amplification. This result is in accordance with theoretical 
knowledge which states that the most rigid profiles such 
as rocks do not amplify seismic movement. 
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Fig. 10. Variation of the dynamic amplification factor at the top layer vs. the deposit’s thickness H :  
a – H = 0.53 m; b – H = 0.64 m; c – H = 0.74 m; d – H = 1.00 m
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In order to study the change in confinement effect 
with excitation frequency, two frequencies (20  rad/s and 
30  rad/s) were used for a deposit with confining pres-
sures of 0 and 10 000 kPa. Fig. 13 shows parts of the 
steady-state response of the displacement time history at 
the top layer for the two excitation frequencies.

Fig. 13 shows that the effect of confinement on amplifica-
tion is sensitive to the excitation frequency. For the studied 
case, it could be understood that the frequency of 20 rad/s is 
sufficiently low compared to the resonance frequency of the 
pressureless deposit, so amplification is low. Increased confine-
ment stiffens the deposit and makes the resonance frequency 
further away from the excitation frequency, resulting in a small 
reduction in amplification. On the other hand, the frequency 
of 30 rad/s is close to the resonance frequency of the deposit, 
so amplification is initially high. In this case, confinement 
moves the resonance frequency away from the excitation 
frequency, significantly reducing amplification. Finally, this 
section concludes by showing that deposit behavior is highly 
dependent on confinement. Thus, the behavior of a granular 
soil layer is strongly affected by its depth in the soil profile.

3.6.  Variation of the amplification at the free surface 
with the excitation frequency and amplitude. Several simula-
tions have been performed by using the initial deposit and 
changing the excitation amplitude and the frequency. The 
amplitude is varied from 8·10–5  m to 1·10–3  m for frequen-
cies of 15  rad/s, 20  rad/s, 25  rad/s, and 30  rad/s. Unlike 
elastic deposits, the simulation showed that the amplification 
is affected by the excitation amplitude.

To see how the dynamic amplification factor varies 
with the two excitation parameters, a fitting function is 
developed following the model:

R a A dd
b c= ⋅( )( )⋅ω ω ,	 (12)

where Rd  is dynamic amplification factor; A is excitation 
amplitude; ω is excitation frequency.

Using the results of all the simulations, the model 
coefficients obtained are given in Table  2.

Table 2
Model parameters

Coefficient Value

a 1180.160

b 0.149435

c –3.45735

d 1.27231
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Fig. 13. Parts of the steady-state response of the displacement time history at the top layer with confining pressures of 0 and 10000 kPa:  
a – excitation frequency 20 rad/s; b – excitation frequency 30 rad/s
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Fig. 14 presents the correlation between the values of 
the dynamic amplification factor Rd  obtained from the DEM  
simulation and Rd  from the fitting function (12).
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Fig. 14. Rd fitting model from DEM simulations

Fig. 14 shows a linear correlation with a and a cor-
relation coefficient of R2 0 9888= . . Therefore, the obtained 
fitting function enables the dynamic amplification fac-
tor to be correctly estimated as a function of excitation 
amplitude and frequency. It should be noted that this 
work is done only for excitation frequencies below the 
fundamental frequency.

3.7.  Discussion. In this research work, we have pre-
sented a model based on the discrete element method for 
simulating wave propagation in a granular soil deposit. 
The advantage of this type of model is that it inherently 
considers the discontinuous aspect of the material and, 
consequently, the intergranular slippage that occurs dur-
ing large deformations, as in the case of vibrations in the 
vicinity of resonance. The performed simulations using 
this model reflect well-established vibratory properties on 
the subject of wave propagation in soil deposits such as:

–	 The movement amplification that increases from the 
bedrock up to the free ground surface for low frequencies,  
as shown in Fig. 7.
–	 The phenomenon of resonance and the frequency of 
resonance, by performing a variable-frequency vibration 
test that gives the typical response presented in Fig.  8.
–	 The thickness dependence of the dynamic amplifica-
tion factor and resonance frequency, as thicker deposits 
are more flexible (Fig. 9 and Fig. 10).
–	 The decrease of the dynamic amplification factor 
with increasing confinement pressure, which makes the 
deposit stiffer (Fig. 12).
Furthermore, given the fundamental frequency and 

damping factor obtained from the free vibration response 
in section 3.2 (ω = 38.265 rad/s and ξ = 3.85  %), the reso-
nance frequency should be very close to the fundamental 
frequency, as reported in reference  [21]. However, it was 
found that the resonance frequency obtained from the vari-
able-frequency vibration test in section 3.3 (ω≈33 rad/s) 
is significantly lower than the fundamental frequency of 
the deposit. This is due possibly to the degradation of the 
soil shear modulus in the vicinity of the resonance. This 
finding underlines the need to consider the effect of shear 
modulus degradation in a rational way when calculating the 

response of soil deposits. It should be noted that this issue 
is commonly studied in earthquake engineering through 
continuum mechanics using approximate behavior models. 

Finally, as with any numerical modeling, the model 
used in this work involves simplifications. It is possible 
to believe that the most important simplifications here 
are firstly the 2D nature of the model and secondly the 
circular shape of the grains. Although the results obtained 
are interesting, it would be worthwhile to carry out similar 
investigations using a 3D model and element shapes closer 
to those of real grains. Through this modeling approach, 
it would also be interesting to characterize the degrada-
tion of shear modulus as a function of strain level for 
soils with different micromechanical properties such as 
grain shape, contact friction and intergranular cohesion. 
Such degradation characterization could even be a valu-
able addition to the continuum-based models commonly 
used in this field.

4.  Conclusions

The Discrete Element Model presented in this paper 
deals with a two-dimensional modeling of wave propagation 
in a granular material deposit. Several simulations have 
been performed to understand the response of granular 
materials to applied harmonic excitations at the bedrock. 
Different parameters affecting the dynamic response of the 
deposit are analyzed namely, the excitation frequency, the 
thickness and the confinement of the deposit.

The performed simulations highlighted several response 
aspects such as the amplification of the exciting move-
ment from the bedrock up to the free surface, the reso-
nance situation when the excitation frequency becomes 
close to the fundamental frequency and the change of 
the fundamental frequency with deposit’s thickness and 
confinement. The simulation showed that for a granular 
deposit, the resonance frequency is quite low compared 
to the fundamental frequency, this is probably due to the 
degradation of the shear modulus of the material with 
the strain increase near the resonance. With regard to 
confinement, it is shown that the behavior of a granular 
soil layer is strongly affected by the confining pressure 
applied on it, i.  e. by its depth in the soil profile.

For the used granular deposit, it is shown that it is 
possible to obtain a linear fitting equation that correlate 
the dynamic amplification factor to the amplitude and fre-
quency of the excitation below the first natural frequency. 
Such a function can serve as an easy tool for estimating 
amplification instead of going through simulations.
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